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Abstract: In this study, a Large Eddy Simulation (LES) based fire field model was applied to
numerically investigate the effectiveness of smoke control using smoke vents and curtains within
a large-scale atrium fire. Two compartment configurations were considered: the first case with
no smoke curtains installed, while the second case included a smoke curtain at the centre of the
compartment to trap smoke. Based on the thermocouple results, it was found that the model predicted
the gas temperature near the fire particularly well. The time development and heat transfer of the gas
temperature predictions were in good agreement with the experimental measurements. Nevertheless,
the gas temperature was slightly under-predicted when the thermocouple was further away from the
flaming region. Overall, it was discovered that the combination of a smoke curtain and ceiling vents
was a highly effective natural smoke exhaust system. However, under the same vent configuration,
if the smoke curtain height is not adequate to completely block the spread of smoke, it significantly
reduces the pressure differential between the compartment and the exterior, causing reduced flow
rates in the outlet vents.

Keywords: large eddy simulation; smoke curtain; computational fluid dynamics; smoke control;
natural ventilation

1. Introduction

Sydney is the most highly populated city in Australia with a wide variety of complexity in
architecture serving multiple functions. Owing to the rapid advancement of building and construction
technology, the complexity of building designs has also drastically increased over the past two decades.
In the past, fire safety and protection systems were mainly based on prescriptive codes and they
were found to be effective for traditional building developments. Owing to the rapid increase in
large-scale constructions, as well as the increase of uniqueness in their designs, it is difficult to apply
the prescriptive codes for modern buildings such as shopping malls which may comprise of a large
atrium area. This presents potential risk due to smoke and flames spreading. For this reason, fire safety
and protection measures based on conventional methods or prescriptive codes (i.e., the Australian
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Code of Practice for fire protection in buildings [1]) are difficult to implement in such premises.
In addition, since buildings nowadays are filled with combustible materials (i.e., communication
systems, wires, hazardous chemicals, furniture, etc.), it is common that the outbreak of unwanted fires
in these building arcades can easily turn to large-scale uncontrollable fires. Therefore, the design of fire
safety and protection systems should be specifically designed for buildings based on their architectural
structures. Hence, there is an increase in the popularity of performance-based approaches [2–6].

In structural fires, it is generally agreed that smoke inhalation is the deadliest threat to occupants
and that smoke can spread over enormous distances from the fire source [7]. Although building
materials nowadays considers bio-based fire retardants which can significantly reduce flame and
smoke production [8,9], there are still considerable amounts of other combustible materials, such as
furniture, papers, and plastic consumables, which poses a huge threat to fire safety. In particular,
smoke dispersion is one of the most lethal hazards in compartment fires, especially for those with an
atrium, such as shopping malls or exhibition centres. Smoke reduces visibility and contains asphyxiant
gases, such as CO and CO2, which can cause suffocation or respiratory issues to human occupants.
It is also a serious concern for evacuation and rescue operations by either fire-fighters or emergency
correspondents. Therefore, the design of smoke exhaust systems such as natural venting and dynamic
smoke extraction systems with mechanical fans are a major consideration in the fire safety of large
structures. It is of great importance to study how the quantity and position of the fire vents affect
the smoke movement in building fires. A well-positioned venting system allows for the efficient
removal of smoke and heat from the building, reducing the overall severity of the fire on the building
structure as well as reducing the chances of human fatalities. Many studies were carried out in the
field of fire-induced smoke control in complex structures such as high-rise buildings and subway
stations [10–15].

The application of computational fluid dynamic (CFD) modelling on building fires has become
increasingly popular due to the rapid advancement of numerical methodologies and computational
power [16]. The heat and mass transfer, as well as the conservation of gas species and smoke
particulates can be aptly computed by CFD models with quality meshing and a good selection
of numerical models. CFD predictions can potentially provide other alternative information upon fire
experiments. In addition, hypothetic fire scenarios that are costly and difficult to implement in reality
can also be achieved in CFD simulations. For instance, a large eddy simulation computational study
was performed by Gao et al. [10] to investigate the smoke dispersion within a subway station where
both natural and mechanical ventilations were examined. It was demonstrated through numerical
simulations that the use of mechanical fans can effectively control the horizontal movement of smoke
which could be useful for smoke control systems. Ji et al. [17,18] applied Large Eddy Simulation (LES)
to characterise the smoke dispersion within an urban tunnel where both thermal and mechanical
driven mechanisms were implemented to control the inertia force that acts on smoke moments.

Numerical models should be compared with experiments in order to assess their applicability
and accuracy. A full-scale experimental test provides valuable data to understand the smoke behavior
and provide critical validation data for modelling. A series of simulation studies were carried out by
Gutiérrez-Montes et al. [19–21] in a 20 m cubic super large atrium to numerically examine the smoke
extraction via natural and exhaust systems. Through their studies, it was discovered that although the
ventilation system was able to extract the heat away from the building, the gaseous products were
contained, which might be harmful to occupants. More recently, a comprehensive sensitivity analysis
using the same atrium configuration was performed by Ayala et al. [22,23] to assess the influence of
different geometrical configurations on the numerical simulations, namely roof geometries, location of
the exhaust and fire, and area of the openings. The study demonstrated that with appropriately tuned
modelling aspects, the fire model could yield results that agreed well with the experimental data. Other
studies with full-scale experimental results include Chow et al. [24] and Hadjisophocleous et al. [25,26].
Chow et al. conducted fire tests in a 27 m high atrium with a heat release rate (HRR) of 1.6 MW to
study the natural smoke filling process. The results were compared with calculated results using NFPA
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92B [27] and the model from Tanaka and Yamana [28]. Hadjisophocleous conducted an extensive series
of atrium fire tests with a range of HRR from 15 to 600 kW under different exhaust rates from 1.94 to
5.13 kg/s, studying the effectiveness of the smoke exhaust system in terms of interface height, smoke
layer interface, and CO2 concentration. A two-zone smoke movement model [29] was used to predict
the smoke layer height, layer temperature, and CO2 concentration.

Nowadays, numerical simulations using CFD techniques are commonly applied for a wide
range of fire safety assessments such as compartment and wildland fires [30–33], fire forensic
investigations [34], solid combustibles [35], toxic gas approximations [36,37], and many other fire
phenomenon [38]. Nevertheless, smoke movement and visibility simulations remain the most
widely adopted in the construction and fire safety engineering industry. By applying CFD studies,
a comprehensive collection of numerical data can be produced that could be useful in designing
performance-based fire protection engineering systems.

The temperature of smoke released by the fire source is much higher than that of the surrounding
air. The buoyancy caused by the temperature difference can drive the smoke upward. In such
cases, roof windows, creating natural ventilation, can be introduced to exhaust the smoke efficiently.
This study aims to investigate the smoke propagation under different fire vent and smoke curtain
configurations in a large atrium fire scenario. In essence, a large-eddy simulation (LES) based fire
field model will be utilised to carry out simulations on the full-scale fire tests conducted by Hägglund
and Nireus [39]. The numerical model will be validated by experimental data based on thermocouple
measured time profiles, smoke layer thickness, and velocity profiles for opening vents. Once validated,
the model will be used to simulate a series of hypothetical cases. The objectives of the present work
can be summarised in the following points:

• Numerical Simulations will be performed using the Large Eddy Simulation based computational
model on two large-scale atrium fire experiments.

• Additional simulations based on hypothetical scenarios will be performed to investigate the
effects of different inlet and outlet configurations, as well as different size smoke curtains.

• The concept of zonings using smoke curtains as well as the control of smoke by pressurisation
and natural ventilation via opening vents are investigated through a numerical standpoint.

• According to comprehensive analysis of the numerical simulation results, the overall smoke
movement and flow development within the compartment and across each opening’s vents can
be comprehensively analyzed to gain more insights on the influence of the smoke curtain.

2. Mathematical Model

In this numerical study, the Fire Dynamics Simulator (FDS) version 6.7.0 was utilised which
is a well-known fire field model that is available in the public domain for compartment fire
simulations. It adopts the LES approach, incorporating all essential sub-modelling components
including combustion, radiation, and turbulence to account for all essential behaviours and phenomena
of non-premixed flames. The combustion model that was used in the current simulations is a fast
chemistry mixture fraction model based on the “mixed is burnt” assumption. The assumption that
the chemistry is “fast” means that the reactions that consume fuel and oxidizer occur so rapidly that
the fuel and oxidizer cannot co-exist. The flame sheet is the location where fuel and oxidizer vanish
simultaneously [40]. The heat release rate per unit volume is based on oxygen consumption, which
was suggested by Huggett [41]. The amount of heat generated as a result of the chemical reactions
involved during combustion is feedback as a source term in the energy equation. Smoke generation is
modelled base on a soot yield, which is defined as the mass of soot produced per mass of fuel. For this
study, a soot yield of 0.01 was adopted, which provides a reasonable assumption for full scale fires in a
large compartment where a more precise model is not a necessity. The main focus is on the average
smoke generation over a long duration; the model will produce a fair approximation smoke generation
and gives insight into the smoke movement in a large atrium. For turbulence modelling of small-scale
eddies (i.e., length scale filter equivalent of the size of the grid), the Smagorinsky subgrid-scale (SGS)
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model [42] is adopted with a Smagorinsky constant of 0.2 and the turbulent Schmidt and Prandtl
numbers are prescribed as 0.5, respectively.

3. Experimental Configuration

The numerical simulations that are presented in this article are based on a series of compartment
fire tests that were carried out in a large-scale atrium facility in Stockholm, Sweden by Hägglund and
Niresus [39]. The dimension of the building compartment was 39 m by 11 m with a vertical ceiling
height of 8 m. The walls and ceiling were constructed using corrugated sheet metal panel and mineral
wool, while the building’s floor was made of concrete. The purpose of this experiment was to evaluate
the hot gas and smoke layer, as well as studying the movement of smoke within a large atrium under
various opening vents configurations.

3.1. Configuration 1 (No Smoke Curtain)

The first case that was considered in this paper corresponds to test 4 of the report by Hägglund [39].
It does not have a smoke curtain installed in the atrium. Figure 1 shows the top and side view of the
floor plan. As can be seen in the figures, three outlet vents, labelled D1, D2, and D3 were positioned at
the top of the long side of the building. The outlet vents all share the same dimension of 2.2 m × 0.6 m
and are positioned 0.2 m below the ceiling level. Two floor level openings A1 and A2 were positioned at
ground level on the left and front wall, as shown in Figure 1a,c. The inlets were 1 m wide and 2 m high.
A 2 m2 square methanol liquid fuel pool was placed in the left quarter of the test facility (i.e., 9.75 m
displacement from the left compartment wall) with a heat release rate (HRR) of 430 kWm−1. The initial
environment conditions of the compartment enclosure were 15 ◦C for the internal air temperature.
The external air temperature was 8 ◦C with negligible wind conditions. Four vertical thermocouple
trees, labelled T1 to T4 were placed inside the compartment to measure the internal temperature
profiles. The corresponding positions of these thermocouple trees are depicted in Figure 1a. Each tree
consists of seven measuring points at height level from 1 m to 7 m, in which the vertical distances in
between are 1 m.
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Figure 1. Configuration of the large atrium for Configuration 1 (no smoke curtain), (a) Top view at the
lower level, showing the locations of the fuel bed, doorway openings, and thermal couple trees, (b)
Top view at the upper level, showing locations of the top opening vents and smoke curtain (c) Side
view showing the vent openings (figure modified after previous work [43]).

3.2. Configuration 2 (With Smoke Curtain)

For Configuration 2, a smoke curtain was installed in the middle of the atrium. Figure 1b shows the
top view and side view of the atrium, respectively. Similar to configuration 1, the test was conducted
in the same large test hall facility with a base area of 11 m × 39 m, where the 2 m2 methanol liquid fuel
pool was placed in the left quarter of the atrium. The major difference for configuration 1 and 2 is that
a smoke curtain with 0.2 m thickness was installed at the middle of the compartment, 4 m from the
ceiling to the mid vertical level. As illustrated in Figure 1c, three rectangular top opening vents are
spatially distributed at the front side of the compartment wall near the ceiling, which are labelled as
D1, D2, and D3. These vents share the same dimension of 3.75 m × 0.8 m and were positioned 0.2 m
below the roof (i.e., 7.2 m to 7.8 m vertical height level). On the other hand, three rear top opening
vents were also positioned at the back wall of the compartment, labeled as B1, B2, and B3, respectively.
As depicted in Figure 1b,c, when the smoke curtain existed, the top opening vents, D2 and B2, which
overlapped with the smoke curtain, were not opened. Otherwise, a total of four vents labelled as
D1, D2, B1, B3 were opened for the smoke curtain case, with two vents on the front and back wall.
As illustrated in the figures, the vents are 3.75 m wide with 0.8 m height. The smoke curtain is an
11 m × 0.2 m wall with a height of 4 m from the ceiling. The initial environment conditions of the
compartment enclosure were 13 ◦C for the internal air temperature. The external air temperature
was 6 ◦C with negligible wind conditions. Two vertical thermocouple trees were installed within the
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atrium labelled as T1 and T4 to measure the internal temperature. The corresponding positions of
these thermocouple trees are depicted in Figure 1a. Each tree consists of seven measuring points at
height level from 1 m to 7 m, in which the vertical distances in between are 1 m.

Five simulation cases were performed in this study, as summarised in Table 1. The first two cases
(i.e., Case 1 and 2) are compared with the experimental measurements to demonstrate the validity
of the FDS model. The smoke curtain is installed in Case 2, while Case 1 is without a smoke curtain.
The reasons for constructing Cases 3 to 4 were to numerically investigate the influence of the smoke
curtain height and whether it can effectively pressurise the flaming zone and avoid smoke leak out to
the non-flaming zone. Finally, to study the behaviour of the natural ventilation through the floor level
openings, the doorway openings A1 are opened in Case 5 and both A1 and A2 are opened in Case 6.

Table 1. Numerical simulation cases and configurations for the fuel bed, opening vents, and
smoke curtain.

Case
HRR (Heat

Release Rate)

Floor Level
Openings (A)

Front Top Opening
Vents (D) Rear Top Opening Vents (B) Smoke

Curtain
A1 A2 D1 D2 D3 B1 B2 B3

1 (test5) 880 kW
√ √ √ √ √

× × × N. A.
2 (test42) 820 kW × ×

√
×

√ √
×

√
4 m

3(proposed) 820 kW × ×
√

×
√ √

×
√

2 m
4(proposed) 820 kW × ×

√
×

√ √
×

√
6 m

5(proposed) 820 kW
√

×
√

×
√ √

×
√

4 m
6(proposed) 820 kW

√ √ √
×

√ √
×

√
4 m

4. Modelling Configuration and Boundary Conditions

The three-dimensional computational domains of the atrium for Configuration 1 and 2 are shown
in Figures 2 and 3, respectively. The atrium is a rectangular box with a size of 39 m by 11 m by 8 m high.
The domain for both case studies was extended beyond the test facility to allow the incoming/outgoing
flows to be fully modelled around the inlet and outlet vents. For configuration 1, there were two
extended regions to consider the flow across the front wall vents (i.e., A2, D1-D3), and a left-sided
extended region to consider the flow across the side wall vent (i.e., A1). For configuration 2, two
extended regions were added, attaching to the front and rear walls to simulate the flow across the front
top vents (i.e., D1 and D3) and the rear top vents (i.e., B1 and B3). For Configuration 1, a rectangular
extended region with dimensions 50 m× 10 m× 12 m high was added to the front wall to better predict
the flow across the front top openings D1, D2, D3 and floor level doorway opening A2. The domain was
also extended 5 m beyond the side wall with inlet A1 with an extended region of 5 m × 12 m × 12 m.
In Configuration 2, the outlets were opened on both the front and rear wall. Therefore, the domain was
extended on both sides with dimensions 50 m × 10 m × 12 m.
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The initial boundary conditions for the numerical compartment model for both cases are
summarised in Table 2. Note that there was a substantial difference between the internal room
temperature of the test facility and the outside air. The test facility was initialised with the interior
temperature in the FDS model.

Table 2. Boundary condition of the fuel bed for Case Study 1 and Case 2.

Case 1 Case 2

Heat release rate, kW 860 820
Internal temperature, K 288.0 286.0
External temperature, K 281.0 279.0

Fuel type Methanol Methanol
Molar mass of fuel, kgmol−1 32 32

Heat of combustion of fuel, kJg−1 20.0 20.0
Area of fuel boundary, m2 2 2

Mass loss rate, kgs−1 0.043 0.041

Mesh Description

In CFD simulations, the definition of mesh resolution plays a vital role as the filter width is related
to the size of the grid control volume. Based on the FDS user guideline, the general computational grid
size can be determined through the characteristic length analysis that is based on the fire size. In essence,
the characteristic length scale D* [44] can be correlated to the heat release rate

.
Q, expressed as:

D∗ =

( .
Q

ρ∞cpT∞
√

g

)2/5

(1)

According to this characteristic length D*, the mesh resolution can be indicated by the spacial
resolution evaluated as R∗ = ∆l∗/D∗, where ∆l∗ is the overall mesh size that is applied in the
computational domain. It is suggested from previous studies that the minimum requirement for
large-scale fire simulation should demand a range of 1/10 < R∗ < 1/15. Based on these criteria,
three mesh systems were constructed, namely coarse, medium, and fine, comprising a total amount of
542000, 1246000, and 3878000 grid cells, respectively. It should be noted that this number includes the
amount of meshes covering the extended region, however the grid size of the extended region may not
be as fine as the ones within the compartment since those region are not the main focus of this study.
An overall mesh size within the compartment of (0.2 m × 0.2 m × 0.2 m), (0.15 m × 0.15 m × 0.15 m),
and (0.1 m × 0.1 m × 0.1 m) were applied for the coarse, medium, and fine mesh systems, respectively.
A mesh sensitivity test was performed and the results comparing the coarse, medium, and fine mesh
systems can be seen below in Figure 4. A significant improvement would result from increasing the
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mesh from a coarse to medium mesh system, with an overall average relative temperature difference
of 15.96%. On the other hand, the temperature difference between the medium and fine mesh system
is considerably less, with an overall average relative difference of only 2.18%. Therefore, the medium
mesh system was selected for all of the simulation case studies in this numerical assessment for the
large test hall simulations.
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5. Results and Discussions

5.1. Temperature Predictions versus Thermocouple Measurements (Case 1)

Figure 5a–d shows the temperature predictions compared to the experimental data at
thermocouple trees T1 to T4, respectively. The temperatures at 1 m height increased dramatically
from 60 s to 240 s, corresponding to the growth phase of the fire. The 2 m2 methanol fire reached a
stable release rate of around 860 kW in 100 s. As illustrated in the figures, the temperature results
were slightly overpredicted in comparison to the experimental results. However, both simulation
and experimental results for the ceiling temperature (i.e., 7 m high) stabilised at approximately 60 ◦C.
The ceiling temperature of 60 ◦C was reached after 540 s of simulation time, while the experiment took
600 s, a difference of 60 s. The thermocouples at 7 m show a similar pattern with the experimental
result. The maximum temperature difference was less than 7 ◦C. However, for the thermocouples at
3 m and 5 m middle levels, the maximum temperature difference was 15 ◦C. Finally, at lower levels,
the difference reduced to approximately 3 ◦C. All of the results have shown to be within 15 ◦C of the
experimental data. The temperature trends at different heights within the atrium were in agreement
with the observations that were reported in the experiments. Overall, the model predictions are in
reasonable agreement with the experimental results for Case 1.
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5.2. Temperature Predictions versus Thermocouple Measurements (Case 2)

The temperature predictions and experimental results for Case 2 at thermocouple trees T1 and
T5 are displayed in Figure 6. Similar to Case 1, the temperature increased rapidly from 60 s to 120 s.
The methanol fire source is slightly smaller than Case 1. The 2 m2 methanol flame reached an HRR of
820 kW in 100 s. As can be observed, the temperature increased at a higher rate in the Case 2 simulation
result compared to the experimental result. Both the simulation and experimental results become
stable at 53 ◦C. For the simulation, it takes 330 s, and for the experimental result, it takes 300 s to reach
the stable temperature. The thermocouples at 7 m show a similar pattern with the experimental result.
The maximum temperature difference was less than 6 ◦C. However, for the thermocouple at the 3
and 5 m middle level, they have a maximum temperature difference of 13 ◦C. Finally, at the low level,
the difference reduces to 4 ◦C. Overall, the results show that the FDS model was able to replicate the
correct temperature trends and the temperature profiles were predicted with reasonable accuracy.
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5.3. Compartment Temperature and Smoke Layer Height over Time

The ceiling temperature increases are mainly related to the smoke layer. When the exhaust rate is
lower than the smoke generation rate, the smoke will accumulate in the atrium. In FDS, the smoke
layer height is estimated from a continuous vertical temperature profile based on a two-layer zone
model incorporating the N-percentage rule according to Janssens and Tran [45]. This empirical rule
determines the interface as being the height where the temperature rising over the ambient temperature
is equal to N % (10% is used in this study) of the maximum rise over the ambient temperature. This
methodology was applied in a wide range of studies under different scenarios such as small-scale
structures to large atriums and tunnel fires [46–48]. All of these studies have yielded predictions that
were in good agreement with experimental results. A more recent study by Gao et al. [49] found the
N-percentage rule to be more suitable for relatively stable stage of fires compared to cases with poor
temperature stratification. To improve upon the weaknesses of two-layer zone models, there has been
recent development in multi-layer zone models [50,51]. However, the current most frequently adopted
zone models are still the single-layer and two-layer zone models [52].

Figure 7a,b shows the smoke layer height predictions for the left and right section of the test facility
for Case 1 and Case 2, respectively. In case 1, the smoke layer stays around the 3 m position throughout
the room, which was in agreement with observations that were recorded in the experiment. In Case 2,
the smoke layer height on the left side (i.e., the side with the fire) of the smoke curtain accumulates to
approximately 3 m height, while the smoke layer at the right side of the smoke curtain remains at 8 m.
This indicates that the smoke is trapped in the left side of the room and seldom moves to the right
side. The effectiveness of the smoke curtain can be further emphasised in Figure 8, which displays the
three-dimensional smoke contour of the simulation compared to the experimental observations that
were recorded by Hägglund and Niresus [39] for Case 1 and Case 2, respectively. The introduction of
a smoke curtain effectively compartmentalised the smoke to one side of the atrium. In general, the
results demonstrated that the smoke movement was accurately predicted by the fire model.
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5.4. Hypothetical Cases

The previous cases demonstrated that the CFD model was able to produce reliable predictions for
the smoke movement in a large atrium fire. Cases 3 to 5 are hypothetical cases to study the effects of
smoke curtain height and different opening vents on the movement of smoke in a large atrium fire.

5.4.1. Study of Curtain Height

For Cases 2 to 4, the test facility was divided into two reservoirs by a smoke curtain with a height
of 4 m, 2 m, and 6 m, respectively. Figure 9 illustrates the smoke build up at three different time
instances (100 s, 300 s, and 700 s) for all three cases. As can be seen in the figure, the 2 m smoke
curtain was unable to completely block the smoke from spreading to the right-hand side of the atrium.
In addition, the vents were unable to effectively exhaust the smoke, causing the smoke to fill the entire
atrium. It is notable that the 2 m smoke curtain did delay the smoke from spreading to the right-hand
side by approximately 120 s. The results from the 2 m case are in stark contrast to the 4 m and the 6 m
smoke curtain case, where the curtain was able to restrict the smoke to only the left side of the atrium.
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Figure 9. Smoke contour of 2 m (case 3), 4 m (case 2), and 6 m (case 4) smoke curtain case at times:
100 s, 300 s, and 700 s.

Figure 10 shows the pressure contour inside the atrium for the 2 m, 4 m, and 6 m smoke curtain
simulations. As can be seen in the figure, the 4 m and the 6 m smoke curtains were able to build a
positive pressure of approximately 4.5 Pa and 4.55 Pa, respectively at the left reservoir ceiling region.
This positive pressure causes the fire gases to be forced to exhaust through the top outlet vents D1
and B1 and the cold air outside the building to enter at the left vents D3 and B3. In comparison, the
2 m case had the entire ceiling at around 0 pressures. This caused the smoke to exhaust mainly at D1
and B1, and also smaller amounts at vents D3 and B3. In addition, the smaller pressure differential
between the interior and outside also caused the flow rate of the outlets to decrease. This effect can be
clearly seen in Figure 11 which shows the velocity at all four vents that were opened in the simulation.
The average velocity across the surface area of the vents for Case 2 and Case 4 are approximately 1.8 m/s
and 1.9 m/s, respectively, whereas Case 3 is approximately 1.2 m/s. This is a significant decrease in the
flow rate compared to all the other Cases. On the other hand, extending the smoke curtain from 4 m to
6 m caused a small increase in the flow rate, which was likely due to slightly higher pressure build up
near the ceiling vents.

In summary, the smoke curtain not only acts as a physical barrier for the fire gases to spread,
however it also led to a pressure increase in the right reservoir. This positive pressure causes a
stronger exhaust at vents D1 and B1 and leads the overall airflow to enter from the right. The more
substantial exhaust flow was able to control the smoke to the right reservoir effectively. The temperature
predictions for Case 2–4 at thermocouple trees T1 and T2 located at the left and right side of the atrium,
respectively are illustrated in Figure 12. The values are averaged over 100 s duration after the
temperature was stabilised. Overall, the temperatures were lower for both the 4 m and 6 m smoke
curtain case compared to the 2 m case at both T1 and T2. Because the 2 m smoke curtain was unable to
block the smoke from spreading over to the right side of the compartment, the temperature profile at
both sides of the room were higher relative to the other two cases. The maximum temperature was
90 ◦C at the 7 m thermocouple at T1. Remarkably, Case 2 and 4 which has the 4 m and 6 m smoke
curtain has a significantly lower ceiling temperature of approximately 50 ◦C and only at the right
reservoir. In addition, there is a minuscule increase in temperature at the left side of the building;
almost the entire left reservoir remains at a room temperature of approximately 10 ◦C for Case 2 (4 m
smoke curtain) and a slightly lower 9 ◦C for Case 4 (6 m smoke curtain).
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5.4.2. Study of Opening Vents

The numerical results for Case 5 and Case 6 are presented in this section. These two scenarios
were based on Case 2, however with one additional floor level opening for Case 5 and two additional
openings for Case 6. For these hypothetical cases, the atrium was divided into two reservoirs by a
4 m smoke curtain similar to case 2, however with the addition of doorway A1 and A2. Figure 13
shows the temperature at various thermocouple trees over time for Case 5 and 6. At thermocouple
tree T1 and T5 located in the left reservoir, both Case 5 and 6 had very similar temperature profiles
with maximum temperatures of 55.8 ◦C and 54.82 ◦C, respectively recorded at the 7 m height level.
This is approximately 3 ◦C lower than the ceiling temperature from Case 2. This trend continues at all
height levels at T1 and T5. On the other hand, the temperature predictions at the left reservoir were
lower for Case 6 compared to Case 5. As can be seen in the temperature plots at T2 and T3 in Figure 13,
the average ceiling temperatures for Case 6 was approximately 3 ◦C lower than Case 5. Temperatures
at lower heights at T2 showed very little difference between the two cases. However, at location
T3, the temperatures at 1 m, 3 m, and 5 m were also lower for Case 6. This was due to doorway A2
which was located much closer to thermocouple tree T3. Comparing both cases (5 and 6) to Case 2,
temperatures at the right reservoir were lower by approximately 1 ◦C for Case 5 and 3◦C for Case 6.
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The velocity over time at all the openings that were measured in the fire model for Case 2, Case 5,
and Case 6 are displayed in Figure 14. The introduction of doorway A1 and A2 caused a decrease in
velocity at vents B3 and D3. Because the doorways are at ground level, the buoyancy effect from the
fire gases flowing upward caused both doorways to act as inlets. Therefore, the total inflow of cold
air into the building has to be redistributed to take into account the increase in the number of inlets.
This is especially the case for Case 6, where A2 is opened directly below inlet B3, causing a substantial
drop of around 50% in the flow from B3 when compared to Case 5.
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Overall, the result indicates that by opening doorway A1 on the left side wall, this caused a small
decrease in temperature to the left reservoir. This is mainly due to cold air entering the atrium from
doorway A1 due to the buoyancy effect from the hot fire plume. However, opening A1 has little effect
on the temperature of the right reservoir. This may be due to the effectiveness of the 4m smoke curtain
in zoning the hot gases to the left reservoir, and the entire right reservoir remains close to the initial
room temperature. The addition of doorway A2 showed insignificant changes to the temperature
at the left side of the atrium. However, opening A2 caused a much more significant decrease in the
temperature at the right reservoir. This is a logical conclusion as it increases the exposure of the right
zone to the outside cold air.

6. Conclusions

In this article, the various strategies of smoke control using smoke vents and curtains within
a large atrium fire was investigated using LES-based three-dimensional CFD simulations with the
consideration of turbulence, combustion, radiation, and the fundamentals of conservation laws.
The model was validated by time-dependent thermocouple data that was measured at various vertical
height levels in the experiment. Based on the simulated predictions, the smoke layer thickness and
transient temperature predictions were in good agreement with the experimental measurements.
The maximum temperatures recorded by the thermocouples were decently predicted, especially for
the lower layer temperature. Once the model was validated, a series of proposed fire scenarios
with different ventilation, opening vents, and smoke curtain configurations were examined by the
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addressing model. The results showed that the 4 m smoke curtain was highly effective in zoning the fire
gases to one side of the atrium, particularly for a fire size of around 800 kW to 1 MW, in this geometry
configuration of a 39 m × 11 m × 8 m large test hall. This was mainly due to the two following reasons
(i) it acted as a physical barrier to block the dispersion of smoke from one zone to another; (ii) it created
a highly pressurised zone which forces smoke to be expelled away from the outlet vents at an increased
rate (i.e., where the fire origin is located) and (iii) it lowered the pressure at the side where the fire is
not located, causing more air to be entrained from the inlet vents. Reducing the smoke curtain height
from 4 m to 2 m drastically reduced the effectiveness of the smoke curtain. The 2 m barrier was only
able to delay the smoke from spreading to the other side of the compartment by approximately 120 s
and gradually, the smoke layer filled the entire atrium. The simulation results also showed that the
additional doorways at ground level caused a small decrease in the temperatures at lower heights.
The stack effect that was created by the hot fire plume induced additional air entrainment from the
doorways. Through in-depth numerical simulation studies, this provides additional numerical results
upon the experiments, including the in-depth smoke movement within the compartment and across
the opening vents and the influence of the smoke curtain towards the overall flow pattern, which can
be useful data to improve our understanding and enhance the validity of smoke extraction systems.
In summary, the following key numerical findings are:

• Smoke curtains are an effective tool to compartmentalise smoke for large-scale atriums which can
significantly increase egress time allowed for occupants during fire situations;

• With the application of a smoke curtain, although the smoke layer thickness slightly increased,
the smoke extraction rate increased via the outlet vents without any installation of a
mechanical system;

• Under the same opening vent configurations, smoke curtains less than 4 m high were not able to
completely contain smoke within the fire zone and the overall natural ventilation rate reduced;

• When the floor opening vent was located near the fire source, it might promote the fire size due to
an increase in air entrainment.
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