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Abstract: The emergence of affordable unmanned aerial systems (UAS) creates new opportunities
to study fire behavior and ecosystem pattern—process relationships. A rotor-wing UAS hovering
above a fire provides a static, scalable sensing platform that can characterize terrain, vegetation,
and fire coincidently. Here, we present methods for collecting consistent time-series of fire rate of
spread (RoS) and direction in complex fire behavior using UAS-borne NIR and Thermal IR cameras.
We also develop a technique to determine appropriate analytical units to improve statistical analysis
of fire-environment interactions. Using a hybrid temperature-gradient threshold approach with data
from two prescribed fires in dry conifer forests, the methods characterize complex interactions of
observed heading, flanking, and backing fires accurately. RoS ranged from 0–2.7 m/s. RoS distributions
were all heavy-tailed and positively-skewed with area-weighted mean spread rates of 0.013–0.404 m/s.
Predictably, the RoS was highest along the primary vectors of fire travel (heading fire) and lower along
the flanks. Mean spread direction did not necessarily follow the predominant head fire direction.
Spatial aggregation of RoS produced analytical units that averaged 3.1–35.4% of the original pixel
count, highlighting the large amount of replicated data and the strong influence of spread rate on
unit size.

Keywords: drones; fire rate of spread; thermal imagery; spatial autocorrelation; pseudo-replication;
analytical units

1. Introduction

Although laboratory and modeling approaches offer greater control of environmental conditions
and better replicability than is possible in field settings, empirical studies of fire behavior remain
important to a range of scientific inquires [1–4], including supporting theory of fire spread dynamics [5,6],
evaluation/validation of mathematical fire models [7–10], and assessments of fire and other disturbance
interactions [11,12], fuel treatment design and effectiveness [13–15], and fire behavior process-vegetation
pattern relationships [16–18]. In each of these areas of study, field observations and experiments
provide opportunities to quantify actual fire behavior providing validation of numerical experiments
in an intellectual environment that still prefers real-world corroboration of modeling research [6,19].
Remote sensing from handheld devices, tripods, manned aircraft, satellite, and, increasingly, unmanned
aerial systems (UAS), are fundamental to the systematic measurement of fire behavior in the field [20].

The most common fire behavior metrics that are derived from empirical studies can be grouped
into two distinct types: (1) energy release as characterized by intensity and/or power [21] and (2) fire
movement such as rate of spread (RoS), spread direction, and residence time. Measurements of fire
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energy have significant scientific legacy from a multitude of small-scale laboratory experiments [22–24],
in-situ field observations [25–27], and regional to global assessments of satellite imagery [28–31].
Significant limitations and assumptions are inherent in the estimates of fire radiative energy (FRE), fire
radiative power (FRP), and fire intensity, primarily related to difficulties in collecting data over the full
temporal range of combustion [32–34]. However, the performance of these metrics is well-documented
in the literature, and many of the caveats are well-summarized in Table 6 of Hudak et al. [35].

Derivations of fire movement metrics are less common in the literature, but they are experiencing a
renaissance of sorts [36–39]. Fire RoS, an essential metric for characterizing fire intensity [40], and more
generally fire behavior, has become obtainable at high temporal and spatial resolutions (~0.1–1 Hz and
1–50 cm, respectively) from UAS. The ability of UAS to collect data from new perspectives and variable
scales has created a need for more robust algorithms to characterize fire progression and RoS. Such
fire movement data are increasingly valuable for characterizing relationships between fire behavior
and environmental patterns in fuels, moisture, wind, and topography, as well as in providing better
estimates of fire intensity and real-time data for managing wildfires.

UAS confer a fresh, dynamic, and relatively safe and inexpensive perspective for studying
wildland fire in field settings [4,41,42]. A rotor-wing UAS hovering above a fire provides a static,
scalable scientific measurement platform, with some advantages over other systems. For example,
fixed-wing aircraft must be moving, and thus face challenges in providing spatially and temporally
consistent measurements [39]. Helicopters have the same hovering capabilities with longer flight
durations [36,43,44], but they come with high operating costs, complex logistics, increased risk, and the
potential to produce rotor wash that affects fire behavior. Boom lifts [27], towers [45], large tripods [46],
or trees can raise sensors to overhead perspectives but constrain the spatial extents of measurement
and must be resistant to high temperatures.

There has been growing interest in the capabilities of UAS as a fire research tool, but their
limitations are still not widely known [41]. Hardin et al. [47] outline the six primary challenges to
using UAS for environmental remote sensing. Relatively short flight times (~10–30 min) for small
rotor-wing UAS is the primary challenge and it largely determines mission parameters, such as
launch and landing locations and the amount of time for uninterrupted data collection. Payload
limits restrict sensor weight and, often as a result, sensor performance capabilities (e.g., uncooled
microbolometers vs. cooled shortwave thermal cameras). Visual line-of-sight rules limit operating
extents in many locations and further constrain launch and landing locations [41]. Consequently,
pilots, visual observers, and researchers are constantly at risk of interfering with fire operations. UAS
operations have not yet been fully integrated into fire operations either, and most fire personnel have
little experience working with UAS when compared to traditional manned aircraft [48]. All of these
factors increase the operational complexity in an already complex fire environment. Deploying UAS
in prescribed fire settings simplifies operations somewhat compared to operating in uncontrolled
wildfire situations, enhances research efficacy, and exposes scientists and fire managers to strengths
and weaknesses associated with UAS use more broadly.

UAS are also proving useful for collecting vegetation data, resulting in opportunities for acquiring
coincident fuels-fire behavior datasets with increasingly finer grains and larger spatial extents. Relatively
cheap UAS hardware combined with structure-from-motion photogrammetric techniques can be used
to build detailed three-dimensional (3-D) models of the environment [49–51]. Lidar systems, which are
being mounted to UAS platforms, have also produced 3-D datasets of similar quality and detail [4,52].
Thus, the analysis of pattern-process ecological relationships is now possible in unprecedented detail
and extent. There are at least two major and interrelated concerns for these types of pattern-process
analyses. First, the size of analytical units becomes an important consideration [3]. Point cloud data
are often summarized over two-dimensional (2-D) pixels or 3-D voxels with a number of metrics that
characterize the arrangement or presence/absence of points over defined areas or volumes [52,53]. The
choice of area or volume of these units can significantly affect results [54]. Secondly, and specific to
study presented here, the estimation of fire movement suffers from a lack of data between consecutive
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images. This can lead to a violation of statistical assumptions, particularly sample independence, and
thus the determination of appropriate analytical units is necessary.

Fire has inherent spatial and temporal dependence as a self-perpetuating chemical reaction [55],
which should be accounted for or leveraged in analyses. In particular, for RoS, if the values are
attributed to individual pixels at the original resolution of the imagery, interpolation is necessary
between flame fronts locations. These are essentially redundant data introducing artificial spatial
autocorrelation (SA), which confounds the true SA signal. This effect is spatially variable, as missing
data increases when fire covers a larger area between images (i.e., higher RoS). Statistical inference
and model performance will undoubtedly be affected by inflating independent sample sizes (i.e.,
pseudo-replication) and the aforementioned confounding of the true SA signal [56]. This general issue
is coined the ‘change of support problem’ or ‘modifiable areal unit problem’ (MAUP), where ‘support’
refers to the geometrical size, shape, and spatial orientation of the region associated with the value or
measurement of interest [57,58].

Here, in conjunction with estimating fire spread metrics from UAS imagery, we introduce a
method to derive more robust analytical units, while also maintaining inherent SA, in order to improve
pattern-process analyses, such as fuel-fire behavior interactions. Our approach is methods-oriented
with the intent of sharing techniques in sufficient reproducible detail, and with the expectation that fire
research with UAS will continue to develop and expand in use. Our paper addresses the following
specific objectives:

1. Collect spatially and temporally consistent images of free-burning fire using UAS-borne thermal
IR, NIR, and visible cameras on spatial domains of 0.01–1 Ha.

2. Generate image time-series with known radiometric and geometric fidelity.
3. Extract fire progression, rate of spread (RoS), and spread direction in complex fire behavior (e.g.,

interacting fire lines, multiple heads) using automated methods.
4. Determine appropriate analytical units from fire behavior data to improve statistical analysis of

fire-environment interactions (e.g., fire behavior-fuels).
5. Share lessons-learned with the intent of flattening the learning curve for others adopting UAS

technology for wildland fire operational and research use.

2. Materials and Methods

The following methods were derived from UAS deployments on a dozen prescribed fires in the
states of GA, FL, MT, and OR, USA. Here, we focus on data collected from seven field plots in three
prescribed fires conducted in dry ponderosa pine forests of western MT and southern OR. Five plots
were located at the University of Montana’s Lubrecht Experimental Forest (referred to as Lubrecht
henceforth) in May 2017. Two plots were located at The Nature Conservancy’s Sycan Marsh Preserve
(Sycan henceforth) in October 2018. Plot dimensions for the Lubrecht experiments were 10 × 10 m.
The Sycan experiments expanded plot sizes to 100 × 100 m. Data were collected by positioning a UAS
with nadir-viewing cameras above plot center and imaging fire as it burned through a plot. We include
relevant background and literature pertinent to the specific methods below.

2.1. UAS Platforms and Sensors

After testing many rotor-wing UAS and sensors (e.g., platforms: DJI (Shenzhen, GD, China)
Phantom, Phantom Pro, M600, M100; Skyfish (Missoula, MT, USA) M4; ICI (Beaumont, TX, USA)
Halo; 3DR (Berkeley, CA, USA) Solo, X8 (DIY); GoPro (San Mateo, CA, USA) Karma; sensors: FLIR
(Wilsonville, OR, USA) XT; ICI 8640; ICI SWIR 640; DJI X3, X5; Sony (Tokyo, Japan) A7R, QX1, QX30,
A6000; GoPro Hero; MicaSense (Seattle, WA, USA) RedEdge), we selected the DJI Matrice M100 with a
dual battery configuration and the FLIR XT and MicaSense RedEdge sensors. The Matrice provided
reliability at relatively low cost along with a good balance of size, speed, hovering stability, flight time,
payload, software capability and stability, camera integration, availability of spare parts, and ease of
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repair. A bench-calibrated (prior to both field missions) FLIR XT thermal camera (7.5–13.5 µm spectral
band) mounted on a DJI gimbal was used for the Lubrecht experiment. A multispectral Micasense
RedEdge camera on a fixed mount (no gimbal) was added for the Sycan burns. These two sensors
provide multispectral, radiometric assessment of fire and vegetation at wavelengths of 0.465–0.86 µm
and 7.5–13.5 µm. Table 1 shows the sensor specifications.

2.2. Plot Selection and Layout

Eight ground control points (GCPs) were established at the corners of two nested squares for
each plot. At Lubrecht, the outer square had 10x10m dimensions with the inner square at one-third
the area (3.33 × 3.33 m). For Sycan, the outer squares were 100 × 100 m and the inner squares
were 10 × 10 m. The internal geometry of the GCPs was established with measurements from a
TruePulse laser rangefinder. GCP locations were geotagged using an Emlid Reach RS rover-base
station dGPS setup. Plot layout and UAS camera orientation were consistent to ease interpretation and
georectification of imagery. Plots were selected to minimize canopy occlusion but also to represent a
variety of western US surface fuels that typically experience low and mixed severity fire. Plots were
ignited using a drip torch with the intention of achieving a coherent, steady-state fire front spreading
perpendicular to a plot edge. In practice, heterogeneous fuels and shifting wind speed and direction
led to ignitions at variable distances and directions from plot edges. For example, fire in Sycan plot 1
failed to carry into the plot, and it had to be re-ignited in receptive fuels within the plot boundaries.

2.3. Data Collection

The UAS hovered at a fixed altitude above plot center with cameras viewing nadir. Table 1 reports
the flying altitudes, corresponding pixel sizes, and other relevant data collection parameters.

Flight altitudes were established to capture the extent of the plot with a buffer of 2–5 m at Lubrecht
and 10–15 m at Sycan. Data were collected for at least one UAS battery cycle, until active fire spread
within the plot ceased, or progression of fire operations necessitated travel to the next plot. Temporal
resolution was fixed at 0.2 Hz at Sycan and 1 Hz for Lubrecht, although image capture rates were
delayed to 0.13 Hz and slightly variable (SD of 0.13 s) at Lubrecht due to memory card issues. The
FLIR XT was the primary sensor for the Lubrecht burn. Both the Micasense RedEdge and FLIR XT
were used at Sycan although the RedEdge was the primary camera for RoS derivation.

2.4. UAS Imagery Stabilization and Georectification

An important consideration for deriving useable fire data from UAS is the stabilization of imagery
to mitigate platform drift and jitter [59]. Gimbaled sensors reduce these effects, but correction is still
necessary. The first step is to establish GCPs that can be identified in different spectral bands with fire
in the field of view. Either ‘cold’ (i.e., low emissivity) or ‘hot’ (usually charcoal beds) targets relative to
background temperatures are options. After extensive experimentation, we settled on low-emissivity,
40 × 40 cm polished aluminum targets (for Sycan) and 12 cm diameter aluminum foil-wrapped circular
targets (for Lubrecht), which proved to be reliably identifiable in visible and infrared imagery. Target
visibility was tested at multiple altitudes in sunlit and diffuse lighting as well as in active fire conditions.
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Table 1. Sensor and data collection information for the two prescribed burns (Lubrecht and Sycan) in this study.

Sensor Spectral Band for
Fire Behavior

Radiometric
Temperature Range 1 Array Size Plot Altitude Above

Ground
Ground Sample

Distance
Temporal

Resolution
Time Series

Length

(Focal Length) (µm) (◦C) (Pixels) Name (m) (cm) (Hz) (s)

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 1 19 3.59 0.13 725
FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 2 20 3.78 0.13 1216
FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 3 20 3.78 0.13 1449
FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 4 18.5 3.49 0.13 1014
FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 5 18 3.41 0.12 928
FLIR XT (9 mm) 7.5–13.5 100–190 3 640 × 512 Sycan 1 120 22.7 0.2 250

MicaSense
RedEdge (5.4 mm) 0.82–0.86 650–1150 4 1280 × 960 Sycan 1 120 8.2 0.2 250

MicaSense
RedEdge (5.4 mm) 0.82–0.86 650–1150 4 1280 × 960 Sycan 2 180 12.5 0.2 240

1 Tested on a Mikron M300 blackbody calibration source with a 100–1150 ◦C temperature range; 2 Higher temperature range achieved using a custom neutral-density filter; 3 High
gain setting without neutral-density filter saturated pixels at 190 ◦C; 4 Lower limit determined as blackbody radiance became clearly distinguishable from background radiance in a
laboratory setting.
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Two basic methods were evaluated to create co-incident, georectified imagery: (1) georectification
alone, which effectively corrects image jitter while rectifying, but requires each image to be separately
processed and (2) image stabilization of the time series, followed by separate georectification.
Georectification alone may seem faster, but automated GCP and tie-point locators struggle with
the rapid change between images due to fire spread. This created the need for manual identification
of GCPs and other visible tie-points in every individual image necessitating significant time and
resources. GCPs were also obscured by fire and smoke in some images, which led to inconsistent
results across the time series. The use of image stabilization algorithms, specifically those designed for
video stabilization, resolved these issues [59]. We used the warp stabilizer algorithm within Adobe
After Effects (version 15.1.2) for this purpose, although open-source variants are also available. By
locating objects that are relatively invariant throughout a time-series or only using the previous image
to identify tie-points, image stabilization algorithms efficiently produce image stacks that need GCPs
to be visible in only one image (often pre- or post-fire) for effective georectification. The downsides of
video stabilization techniques are their tendency to transform data to into video compliant data types
(8 or 16 bits), which often involve data scaling.

2.5. Data Pre-Processing

Before calculating fire behavior metrics, aligned imagery was converted to radiance (Micasense
RedEdge) and radiant temperature (FLIR XT) and organized in raster stack form. The FLIR XT sensor
requires proprietary software to extract radiometric data and calculates radiant temperature based on
calibrated equations specific to the sensor. Although improvements in radiant temperature estimates
can be made using a set of user inputs, the inputs can be temporally and spatially variable (e.g.,
emissivity) [60] and subject to radiometric saturation. Thus, accurate spatial calibration is unlikely.
We used default values besides ambient temperature and relative humidity, which were measured at
take-off for each plot. An emissivity constant of 0.98 was utilized. Calibration of imagery from the
Micasense RedEdge is integrated into several software packages (e.g., Agisoft Metashape), although its
use for observing fire requires customized scripts. A GitHub webpage provides Python scripts and
tutorials [61]. The RedEdge camera has five distinct sensors for each spectral band, and the image
rasters must be aligned post collection. While Micasense provides an automated alignment script,
the results proved inconsistent. We used the GCPs to create an alignment model using an affine
transformation within ERDAS Imagine software (version 16.5.0) to achieve satisfactory band-to-band
alignment. We then followed Micasense’s algorithms for radiometric calibration and calculation of
radiance for each spectral band.

2.6. Flaming Combustion Determination

Characterizing the movement of flaming combustion begins with a definition of flaming, as
measured by the sensors employed. Most commonly, raw digital numbers from the sensor are
converted to radiance and then transformed to radiant temperature. A static threshold is then applied
to the radiant temperatures for a binary classification. The value of this temperature threshold
varies considerably in the literature from 150 ◦C [44], 326.85 ◦C [36], 426.85 ◦C [43], 499.85 ◦C [38,40],
and the Draper point at 525 ◦C [62]. Another approach is to define the flaming front using edge
detection algorithms, which rely on gradient change in the imagery [37,45,63]. Major advantages
of edge detection approaches are the ability to apply them to image data that do not have robust
radiant temperature transformations available and in situations where absolute values of radiance
may be affected, such as smoky atmospheric conditions. With the rapid development of UAS-specific
sensors, we prefer the gradient approaches, as datasets are likely to be variable in scale, resolution, and
sensor-specific parameters, such as spectral bands and sensitivity. Theoretically, one gradient-based
approach could be applied to a variety of imagery and yield similar results, whereas methods reliant
on radiant temperature thresholds would likely have to be customized for each sensor and perhaps for
different spatial resolutions as well.
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However, gradient-based approaches typically define only the leading flame front edge. As the
active flame front is often discontinuous and complex in heterogeneous fuels, the edge-smoothing
needed to account for gaps, such as in Ononye et al. [63], simplifies subsequent fire behavior
calculations and risks reducing the variability seen at the fine scales capable from UAS perspectives.
Additionally, fire spread into areas not ignited by the initial flaming front will often be ignored in these
gradient-based approaches.

To overcome the limitations of both methods, we combined temperature threshold and edge
detection techniques to maintain observed variability and to maximize indifference to resolution,
sensor, and spectral band differences. First, edge detection following the Canny method was applied
to each thermal image [64]. Valero et al. [37] showed that the Canny method discriminates between the
flaming front, transient flames, and pre-frontal heat. Instead of directly using these edges, we extracted
pixel values along the defined flame front edge from the Canny algorithm and applied a two class
k-means clustering algorithm to automatically determine the flaming combustion threshold [65].

From one perspective, determination of flaming combustion (and any binary classification)
requires optimizing the balance between errors of commission (false positives) and omission (false
negatives) [66]. Errors of commission are abundant in the pixels that immediately precede the flaming
front due to preheated fuel and soot particles. Errors of omission are high in situations with high RoS,
low residence time, or occlusion by vegetation or smoke. In our study, for example, areas of sparse grass
and litter overlaying rock burned quickly but also cooled quickly once the flame front passed. This
required logic to attribute pixels that clearly burned in the flaming front but were never detected above
the flaming combustion threshold (omission error). Similarly, if temperature thresholds are set too
high, omission error rates increase leading to erroneously discontinuous flaming fronts. In such cases,
fire spread direction loses coherency, and estimates of RoS will erroneously decrease. Alternatively,
low thresholds cause high rates of commission error, which increase RoS, reduce variability in spread
direction, and incorporate unburned pixels.

We tested a dual-threshold approach to account for these situations: one to define the leading
edge weighted towards a low error of commission and another weighted to minimize error of omission.
This approach allows for the use of data from one or multiple sensors and a single spectral band or a
split window using different spectral bands. In our experiments at Sycan, we erroneously acquired
data from the FLIR-XT in the high-gain setting for plot 1, which saturated the pixels at 190 ◦C. This plot
also had the grass-overlying-rock fuel arrangement causing the residence times to be shorter than the
temporal resolution of the imagery. We thus used the Micasense NIR (0.82–0.86 µm) radiance values to
define the leading flame edge through Canny gradient detection and k-means clustering. Within each
particular timestep polygon, any pixels that did not reach the threshold were then compared to the
FLIR XT data. If at the lower threshold (190 ◦C), the pixels were assumed to have experienced flaming
combustion at that particular timestep. A single threshold was applied as defined by the k-means
clustering for the other plots (Lubrecht plots 1–5 and Sycan plot 2), since the residence times were
consistently longer than the temporal resolution of the imagery.

2.7. Fire Progression

Each pixel in the time-series stack was assigned the timestep at which flaming combustion initially
occurred after a temperature threshold was applied individually to each image. This is termed a fire
progression or time-of-arrival data layer, which is the basis for all subsequent fire behavior calculations
presented in this study.

2.8. Spread Rate and Direction

Of all the metrics based on fire movement, RoS and spread direction may have the most utility
for characterizing fire behavior. RoS can be estimated in the field, is commonly used, and exerts
strong influence on the estimation of fire intensity [40]. Johnston et al. [38] showed that sensor and
algorithm choice have significant influence on these estimates. Regardless of how flaming combustion
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is determined, the most popular approaches to estimate RoS utilize vector contours with movement
speed and direction estimated from straight lines perpendicular to adjacent contours. In cases where
threshold temperatures are used, contours are derived from the progression map, while edge detection
approaches inherently create contour vectors. Often, the flaming front is broken and discontinuous
and steps are needed to reduce the resulting complex geometry of the resulting vectors. Paugam et
al. [36] found that areas of complex vector shapes were difficult to characterize and had to average
groups of pixels at the cost of losing data by increasing pixel resolution to 1.44 m from the initial 18 cm.
Valero et al. [59] and Onyaye et al. [63] smoothed the contours and applied logic to traverse flame front
gaps in order to create continuous vector lines.

Our perspective was to characterize the variability and complexity observed in wildland fire
settings and to compliment the diversity of imagery that can be collected with UAS. We formulated a
new algorithm building on the previous work discussed above. While we utilize UAS-derived imagery,
the approach could be applied to nearly any overhead, coincident time-series imagery. We explicitly
consider complex fire behaviors, such as multiple distinct firelines interacting, which are common in
heterogeneous fuels typical of western US forest ecosystems. The approach is primarily vector-based
relying on pairing points defined as lead (i.e., where the fire is heading) or back edge (i.e., where
the fire came from). Figure 1 illustrates the algorithm. Scripting was completed using R statistical
software [67], with the additional packages ‘raster’ [68], ‘sp’ [69], ‘rgeos’ [70], and ‘circular’ [71]. First,
all spatially connected pixels of the same arrival time were grouped into individual polygons. Each
of these progression polygons can be assumed to be the actual native sampling resolution, which is
determined by the spatial and temporal resolution of the sensor and the RoS. For example, we observed
several distinct, elliptical-shaped fire heads in our plots at Lubrecht and Sycan plot 1, and the polygons
describing them are much larger than those for the flanking and backing portions of the fire (e.g.,
Figure 2 Box E). The statistical implications are important and are discussed below.

We regularly sampled along each progression polygon edge to create a series of focal points,
similar to Onyaye et al. [63], but at regular spacing (with random start locations) rather than select
specific locations. Paugam et al. [36] used a similar approach, but our pairing of the back and lead
edge points overcomes problems with perpendicular lines not representing the fire spread direction
when fire edges create complex polygon shapes. We also smoothed vector lines just enough to remove
the jagged edges created by the square shape of the pixel, which are artifacts of the sensor array (Raster
to Polygon tool with the ‘simplify polygons’ option selected, ArcGIS 10.6.1). Using regularly spaced
points introduces a sampling bias, but we iterated the algorithm twenty times with random start
locations for the points and averaged the results.

Each focal point was defined as either a lead or back edge point. This was determined by
examining the adjacent polygon to the point and assessing whether it burned before or after in time.
Leading edge points were connected with lines to back edge points with the logic demonstrated in
Figure 1. Back edge points can be connected to multiple lead edge points. This situation represents
fire growth in an expanding elliptical pattern, which most spatial fire spread models assume (e.g.,
FARSITE) [72]. The inverse situation is also possible where the fire closes in from multiple directions
resulting in more back edge points than lead edge points. This special situation is highlighted in
Figure 1 Box D. Once each point is paired, a straight line connecting the pair was created, which
allowed for distance and direction to be determined. The line was buffered with a width of two
pixels, and all of the pixels within this area were attributed with the direction and a RoS. The RoS was
determined by dividing the length of the line by the length of time between the previous and current
images. The buffering of the line leads to some pixels being attributed multiple RoS and directions. In
these cases, we attributed the minimum RoS and its associated direction with the assumption that the
fire traveled the shortest route.

Another special situation is fire spread of one pixel per timestep, which is not amenable to
the vector method above. We borrowed logic from calculation of topographical aspect from digital
elevation rasters for these cases. First, we calculated the potential RoS to all the adjacent pixels and
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decomposed RoS into separate x, y components. The most likely spread direction was taken as the
two-argument arc-tangent of the x, y components (‘atan2′ function) [67]. Therefore, this method is
built on the assumption that the direction of fastest spread is the most likely. We could not use the
same assumption that the shortest route is most likely here, as only one pixel is traversed per timestep.
We then placed a line pointed in this resulting direction, found the intersecting pixel, calculated the
pixel centroid to centroid distance, determined the length of time to traverse this line, and divided
the distance by time to calculate the RoS. The intersection of the spread direction line can clip the
corners of pixels that may not be the pixel with the most likely travel path. Thus, we added 20◦ to the
calculated direction line in both directions, iterated the process, and selected the pixel with the highest
resulting RoS as the most likely travel path. As pixel resolutions become larger and fire spread slows,
individual pixel movement gains in frequency. This method becomes increasingly important for the
accurate characterization of fire spread in those situations.
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Figure 1. Description of the rate of spread algorithm including situations requiring additional
consideration when experiencing complex fire behavior (Box D and F). Illustrated examples taken from
Lubrecht plot 5.

2.9. Analytical Units

The geometrical size and shape of analytical units are important considerations [58]. For RoS, the
minimum areal unit of measurement could be considered the point-to-point vector line and intersecting
pixels (i.e., Figure 1, Box E). However, considerable overlap occurs between these buffered lines
and the point-to-point spacing is arbitrary. Conversely, the progression polygons created from the
connected timestep pixels could also be considered a measurement unit. However, these polygons can
be quite large and incorporate backing, flanking, and heading fire behavior. We sought to aggregate
(or disaggregate depending on the perspective) pixels (or progression polygons) to achieve a medium
between these two extremes.

We chose an automated approach using the idea of connected components from graph
theory [73,74], hypothesizing that sharp changes in RoS between adjacent pixels delineate the
boundaries of relatively independent analytical units. Pixels are considered to be connected when
adjacent, within the same timestep, and below a defined change (or tolerance) parameter. The change
parameter determines the degree of pixel aggregation. We evaluated a series of values settling on
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0.015 m/s for the parameter as reasonable to aggregate to polygons that were relatively homogeneous
in terms of the backing, flanking, and heading fire behavior. Tuning this parameter is likely necessary
for higher RoS and different degrees of variability though this value was acceptable for the range of
RoS observed in this study. We also required a minimum polygon area of 6x6 pixels for progression
timesteps with high RoS (polygons sizes > 1 m2) to prevent individual and small groups of pixels
from becoming their own units. In these cases, pixels that displayed large deviations in RoS estimates
from neighboring pixels were predominantly artifacts of the algorithm (especially areas of complex
geometry) and were assumed to not be different units.

3. Results

We evaluated two cold target sizes as GCPs, circular with 12 cm diameter, and square with
40 cm sides, at six altitudes above ground level (AGL) up to 150 m. For polished aluminum with an
approximate emissivity coefficient of 0.04, targets must be roughly 1.1 times the size of the pixel to
be reliably visible in optical, thermal IR, and NIR imagery assuming line of sight is maintained. At
altitudes of 150 m, a ratio of 1.2 is a safer minimum threshold as atmospheric effects become larger. At
nadir and lower AGL (<100 m), targets can be half the size of pixels and still have visibility. However
with flames surrounding, we observed targets five times larger than a pixel obscured by heat. Eight
ground targets distributed throughout the image in our nested square plot layout provided accurate
georectification results following image stabilization techniques (RMSE 0.14–0.28 m for Lubrecht and
0.27–0.94 m for Sycan).

Fire behavior metrics were produced after the images were aligned, calibrated, and georectified.
First, fire progression maps from gradient-based threshold techniques were derived (Figure 2, Box
A and B). Similar to the results of Valero et al. [37], gradients successfully defined fire movement
in thermal imagery. The use of NIR also matched well with optical flame imagery (Figure 2, Box C
and D). A 1–3 pixel (8.2–24.6 cm) error of commission was observed at certain portions of the fireline
though. This was most conspicuous at the heading portions and along the wind vector (e.g., right side
of fireline in Figure 2, Box D). The use of the dual threshold technique filled the burned portions with
low residence times and followed the natural flow of the progression (cf. Figure 2, Box A and B), but
left unburned areas when visually compared to post-fire imagery (data not shown).

We observed complex fire behavior with multiple heading fires and interacting flanking fires in
nearly every plot, despite single strip ignition near each plot. Sycan plot 2 had the most coherent
fireline with relatively consistent topography and grass fuels. RoS ranged from 0–2.7 m/s at the two
Sycan plots and 0–0.1 m/s for the Lubrecht plots (Figure 3). RoS distributions all had heavy-tailed,
positively-skewed distributions with area-weighted mean spread rates of 0.013–0.02 m/s for the
Lubrecht plots and 0.305–0.404 m/s for the Sycan plots. Predictably, RoS was highest along the primary
vectors of fire travel (heading fire) and lower along the flanks. At Lubrecht, field estimates of RoS were
made between the visible targets (GCPs) within each plot. These estimates were significantly correlated
with our image-derived measurements (Pearson correlation, n = 12, r = 0.71, p < 0.05). Spread direction
followed expectations; though in areas of highly irregular and complex firelines, inconsistencies still
emerged despite designs to reduce them.

Spatial aggregation of RoS produced polygon numbers averaging 35.4% of the original pixel count
for Lubrecht and 3.1% of the pixels for Sycan (Figure 3), highlighting the large amount of redundant
data and the strong influence of spread rate. The areas of inconsistent spread direction due to complex
fireline geometry tended to have more polygons as spread rates showed increased variability along
sharper gradients within each progression timestep. Aggregated polygons had a mean size of 0.38 m2

for Sycan and 0.033 m2 for Lubrecht. The maximum polygon size was 23.6 m2 for Sycan and 2.8 m2

for Lubrecht.
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occlusion and additional missing data due to low flame residence time. (B) Data gaps filled using 
dual-threshold flaming combustion definition. (C) Optical (RGB) imagery from Micasense RedEdge 
camera highlighting one of the multiple heading fires within the plot. (D) Outline (white lines) of 
flaming combustion as defined by the method described in Section 2.6. (E) Calculated rate of spread 
delineated by image timesteps (black lines). (F) Automated aggregation of polygons to create 
analytical units. 

Figure 2. UAS data and derived metrics from Plot 1, Sycan Marsh, OR. (A) Fire progression with
tree occlusion and additional missing data due to low flame residence time. (B) Data gaps filled
using dual-threshold flaming combustion definition. (C) Optical (RGB) imagery from Micasense
RedEdge camera highlighting one of the multiple heading fires within the plot. (D) Outline (white
lines) of flaming combustion as defined by the method described in Section 2.6. (E) Calculated rate of
spread delineated by image timesteps (black lines). (F) Automated aggregation of polygons to create
analytical units.
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4. Discussion

Fire metrics based on fire progression estimates are common in the scientific literature though
rarely validated [38]. Our estimates of RoS compared well with visual, one-dimension estimates
(r = 0.71) and also with mathematical fire model predictions. For example, using observed weather and
fuel moisture parameters at Lubrecht and the timber litter and understory fuel model, Rothermel’s [75]
fire spread equation predicts heading fire spread rates of 0.0045–0.060 m/s, which compares favorably
to the 0–0.1 m/s range observed.

Spread direction followed general expectations with heading fire moving in the observed primary
spread direction. However, our results show an interesting pattern related to fireline coherency and
the relative amounts of flanking and heading fire. As mentioned, Sycan plot 2 had the most coherent
fireline and the direction histogram shows the majority of spread in the same direction. In contrast, the
majority of Lubrecht plot 5 experienced spread directions that were nearly orthogonal (mean 69.6◦

from North) to the direction of the heading fires (c. 135◦). All of the Lubrecht plots show this spread
direction distribution to varying degrees with plot 5 as the most prominent. The discontinuous surface
fuels are likely the primary cause of this behavior. The burn occurred in a previously thinned area
having numerous stumps, abundant 100-to 1000-hr fuel class (2.54–20.32 cm diameter) woody debris,
and skid trails left from mechanized equipment. The heading fires followed paths with sufficient fine
fuels and then flanked and backed into areas where the barriers (e.g., larger fuels) had stopped the
initial flame front. The associated changes in fire behavior have implications for fire effects [18].

Multiple heading fires also led to multiple firelines interacting, and the design of the algorithm
properly identified and estimated RoS in these situations with one significant caveat. Some of these
interaction zones, for example, the center of Sycan plot 1 (Figure 2, Box A), had lower RoS than
anticipated. The preceding polygons showed a rise in RoS as the two flanking fires interacted, but RoS
then decreased at the converging polygon. This artifact arose as a result of the temporal resolution of
data capture being considerably slower than the RoS, and from the assumption that the fire spread at
an equal rate from each fire line. Although between-image fire behavior can be inferred, assumptions
are inherently necessary. For example, total radiant energy or intensity metrics could be used to infer
higher than observed RoS or to determine the predominant direction of spread rather than assuming
equal rates from both directions.

The area traversed by fire between consecutive images causes a lack of data as fire behavior in the
intervening time period is unknown. As RoS is a derivative of fire progression and fire progression
is a derivative of the time-series imagery, it is possible and tempting to attribute each pixel from the
progression or time-series layers with a RoS value. However, our analysis shows that the majority of
these pixels are not measurement units nor statistically independent. The statistical consequences are
inflated or introduced spatial autocorrelation and pseudo-replication [56]. The approach proposed
here does risk a loss of relevant data if the change parameter is too high in value or RoS is spatially
homogenous. This could lead to large analytical units. For example, long, linear fire fronts with
consistent RoS could be aggregated to one or a few analytical units within a timestep (we emphasize
that the units here were aggregated within individual timesteps and not beyond). This issue could also
be exacerbated by coarse temporal resolution imagery. We focused on creating robust analytical units
for subsequent pattern-process relationships. From this perspective, consistent RoS implies either
consistent underlying patterns or little influence of pattern on fire processes, either case would be
discoverable with analysis using larger analytical units. The analytical unit derivation strategy may
need to be reconsidered for other analytical objectives. A potential research direction would be to
follow the general approach of Openshaw and Taylor [57] and systematically vary analytical units and
assess the effect on resulting spatial relationships. See Gelfand [76] for an in-depth review of existing
literature and strategies for the change of the support problem.

We hypothesized that this issue could be leveraged to help inform other data sampling methods.
The analytical unit size is dependent on the interaction of RoS and the temporal and spatial resolution
of the time-series imagery. Thus, with RoS predictions and known camera parameters, estimates
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of the analytical unit sizes are possible pre-fire. This information could provide guidance for field
sampling protocols, especially plot sizes, and unit sizes for other remotely-sensed data. For example,
UAS platforms have enabled increasingly fine-grained pre- and post-fire 3-D vegetation data [50]. The
data density from these photogrammetrically-derived point clouds can be hundreds to thousands of
points per square meter, and thus the level of spatial aggregation that minimizes the loss of pertinent
information while removing redundancy is becoming a research priority. The analytical units of fire
behavior are likely to be larger and of variable size when compared to this vegetation data as we show
in this study. Ultimately, these datasets will need to be transformed and aligned if characterization of
fire behavior and fire environment interaction is the objective. With additional research, derivation of a
generalized relationship between RoS and camera parameters and the resulting analytical unit sizes
can be useful for the production and analysis of comprehensive datasets.

Lessons Learned

UAS promise relatively cheap and low risk aviation platforms that provide new remote sensing
capabilities to a variety of users. In the course of our experiences over the last few years, we evaluated
many off-the-shelf and custom-built UAS. These experiences enable us to provide some suggestions
for fire researchers interested in employing UAS in their work. First, we advise to not focus on
flight capabilities alone. Flight time, speed, maneuverability, and payload are important, but sensor
hardware integration, quality of software, spare parts availability, and ease of repair are equally, if not
more, consequential to successful data collection. Custom or boutique UAS often promise improved or
specific performance capabilities but frequently lack available spare parts and are often beset with
hardware and software issues. Better flight performance and larger payloads also require larger UAS,
which are cumbersome to transport, an important consideration in dynamic and time sensitive field
settings. We place a premium on small, cheap, reliable systems, which often means working with
consumer-grade technology provided by established companies.

We found that software issues were common in nearly all of the systems that we tested to varying
degrees. At one point, three different software applications, two being third-party, were required
to execute pre- and during-fire data collection within a single mission. How software interacts is
unknown after any updates to the myriad of systems, and mission workflows must then be retested
in entirety. Automatic software updates are often applied without notification and would frequently
change system behavior. Considering the resources needed to plan data collection, coordinate with fire
operations, meet acceptable burn conditions (weather, fuel moisture, time of season, etc.), and have
needed resources available, the chance of hardware or software failure must be minimized. Often,
this level of coordination and timing only comes together for a few days out of one or more years.
Thus, the importance of a dependable UAS cannot be understated with emphasis on the system (e.g.,
platform, sensors, software, planning).

During our prescribed burn campaigns, the UAS experienced extremes ranging from heat from
fire, freezing temperatures, heavy smoke and dust, high winds, attacks from territorial birds, and nearly
all forms of precipitation. Given the likelihood of such situations in field conditions, we recommend
building redundancy, such as having duplicate UAS available with exactly replicated hardware and
software configurations. We also recommend platforms with weather resistance. The sensors described
in this study cost more than the UAS and, if cost is an issue, we recommend having duplicate platforms
over sensors as the probability of platform malfunction is usually greater.

For the use of UAS in prescribed fire experiments, plot locations must strike a balance of achieving
desired experimental results while also operating within the context of prescribed burn operations.
Field-based fire research generally needs to be opportunistic and in harmony with burn objectives.
The majority of prescribed burn units in the US are fired in one day, and coordination and timing with
the operations team throughout the day is of utmost importance. Unless multiple UAS teams are
available, each research plot must be positioned in order to allow enough time to collect data at a plot,
disassemble, and then reassemble at a new launch location before burn operations are ready to fire the
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next plot. Alternatively, it may be logical to fly multiple plots from one location. This strategy can
significantly reduce the flight time for data collection though. We chose to travel the fire perimeter to
locations near each plot where the UAS was viewable by the pilot. The pre-planning for these logistics
can be complex as operational firing plans change based on weather conditions, particularly wind
directions. Plot layouts designed for a single spread direction due to fuel or topography arrangement
often do not follow expectations if winds shift. For example, a plot could be burned at either the
start or end of burn operations, depending on wind directions, with large subsequent changes in fire
behavior. Successful implementation of UAS in prescribed burn experiments requires flexibility to
weather conditions while also ensuring that research efforts do not impede firing or holding operations.

In our study, plots were selected and fired to reach steady state fire spread and produce a coherent
fireline before reaching the plot edge. In practice, heterogeneous fuels and shifting winds meant
ignition at variable distances and directions in relation to the plots, including through the plot in one
instance (Sycan plot 1). Timing UAS takeoff in conjunction with ignition in these conditions proved
to be difficult, requiring consideration of different tradeoffs. If takeoff is too early, then battery life
will be expended without gathering useful data; conversely, if takeoff is too late, fire may enter the
plot before data collection begins. The time to prepare a UAS for launch is also variable depending
on multiple devices booting, cameras initializing, and achieving a GPS fix. A vantage point where
the UAS pilot can view burn operations is optimal for timing, but often not likely due to fire, smoke,
and tree interference. Prompt, succinct, and informative radio communication is vital, which usually
necessitates a radio liaison communicating between pilots, visual observers, operational personnel,
and the actual plot ignitor. Ideally, personnel with the necessary fire qualifications and sufficient
familiarity with the research and plot design are inserted into the operational command structure to
facilitate the necessary coordination.

5. Conclusions

UAS can give an unprecedented perspective for data collection in active fire environments
at favorable spatial and temporal scales if the software, hardware, and fire operations conflicts are
resolved or minimized. Robust data collection workflows must constantly evolve while still maintaining
coherent scientific rigor due to the rapid and ongoing development of UAS and sensor technology.

With the new perspective provided by UAS, we are able to image complex fire behavior that
necessitated updated algorithms capable of characterizing such behavior. Fire behavior is missed
between sample intervals requiring dynamic analytical unit sizes. The nature of this relationship is
largely dependent on RoS and the temporal and spatial resolution of the sensor. Characterizing this
relationship in a generalized fashion is likely possible with additional research and could potentially
inform other pre- and post-fire sampling methods for the ultimate goal of comprehensive datasets of
the fire environment.

The collection of such comprehensive datasets that characterize fuels, fire behavior, weather, and,
if possible, emissions and fire effects, are essential for evaluation of models and for cross-disciplinary
knowledge gains in the broader field of wildland fire science. Research projects that attempt to create
such datasets are substantial endeavors. UAS could be a unifying remote sensing platform that collects
such datasets in a safe and relatively inexpensive manner. Ultimately, UAS provide complementary
capabilities that enhance our ability to understand how fires burn.
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