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Abstract: Savannahs are mixed woody-grass communities where low-intensity surface fires are
common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of
surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of
synthetic aperture radar (SAR) C-band Sentinel-1A images. Pre-fire and post-fire dual polarized
(VH, VV) C-band backscatter values were examined for 30 burn events. For all events, a systematic
backscatter decrease from pre-fire to post-fire conditions was observed, with mean backscatter
decreases of 1.61 dB and 0.99 dB for VH and VV, respectively. A total of 90% and 75% of the burn
events showed a decrease in VH and VV backscatter greater than 0.43 dB, the overall absolute
radiometric of Sentinel-1A products. The VH data were, overall, 1.7 times more sensitive to surface
fire effects than the VV data. C-band data are likely sensitive to a reduction in grass biomass typical
of surface fires, as well as in grass/soil moisture levels. Early season fires had higher backscatter
decreases due to greater early season moisture conditions. For region with more than 30% woody
cover, the effect of fire on the C-band backscatter was reduced. Denser woody communities tend
to produce lower grass fuel load and less intense surface fires, and limit the penetration of C-band
microwaves to the ground where most savannah fires and associated effects occur. This research
provides evidence that C-band space-borne SAR is sensitive to the effects of surface-level fires in
southern African savannahs. The unique availability of frequent and spatially detailed C-band data
from the Sentinel-1 SAR constellation provide new opportunities for burned area mapping and
systematic monitoring in savannahs systems, for instance, for fine-scale fire propagation studies.
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1. Introduction

Globally, fires occur more in savannahs than in any other biome [1,2]. They emit large quantities
of aerosols and greenhouse gases [3] and are an important vegetation disturbance [4]. Fire is an integral
part of African savannah ecosystems [5,6] and include natural fires (lightning) and a majority of
anthropogenic fires, ignited for instance for land clearing, enhancing livestock productivity, bush control,
and arson or accidents [7–9]. The fire intensity and frequency may alter the long-term woody/grass
cover ratio, woody height profile, and short- to long-term surface albedo [10–13], with potentially
cascading effects on water and nutrient cycling, biodiversity, resource availability (e.g., grazing or
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fuelwood), energy balance, and climate variability [14–17]. Spatially and temporally explicit maps of
burned area are needed to estimate aerosols and gaseous emissions for modelling climate variability,
carbon budgets, pollutant transport, and air quality [3,18–20], and to improve our understanding of
fire processes and impacts on ecosystem services [21,22]. Improved knowledge on fire occurrence may
support the development of policies, management strategies, and operations to enhance its effective
use, control, and protection against fire [23–25].

The extent of burned areas can be mapped using remote sensing by detecting fire-induced changes
including the deposition of char and ash, removal of standing vegetation and debris, and changes to
the vegetation structure [26]. Burned area products over large areas have been produced from a range
of optical wavelength satellite remote sensing data [27], especially from coarse spatial resolution and
high temporal frequency sensors, such as NOAA AVHRR [28], MODIS [29], SPOT Vegetation [30],
or ENVISAT MERIS [1], and more recently using medium spatial but low temporal resolution Landsat
imagery [31,32]. It is well established, however, that optical wavelength burned area detection
algorithms are limited by cloud obscuration and optically thick smoke [2]. Synthetic aperture radar
(SAR) can sense through clouds and smoke and SAR data have been used to assess the extent of fires in
different forest systems including tropical forests [33–35], boreal forests [36–38], temperate forests [39],
and Mediterranean landscapes [40–42]. SAR systems operating within the microwave domain (from
X- to P-band) are sensitive to tree structure, thus, they are useful for mapping burned areas in dense
forests where canopy fires severely affect tree canopy structure. In addition, SAR may also provide a
useful tool to document post-fire recovery processes such as tree regrowth [43–45]. Although L-band
is more sensitive to tree structural changes [46], C-band data (e.g., ENVISAT ASAR, RADARSAT) were
often used for the detection of burned areas in forest biomes due to the lack of frequent L-band SAR
time series to date.

Savannah vegetation consists of mixed woody-grass communities, with a semi-continuous grass
layer and a woody cover varying from 10% to 60% [47]. African savannah fires are predominantly surface
fires (as opposed to canopy fires) that burn mostly grasses, shrubs, and woody debris accumulated
over the growing season and in preceding fire-free growing seasons [48]. Surface fires remove the grass
layer while woody canopies are minimally affected, as fires only rarely reach the tree canopy [49–51].
African savannah fires are generally of lower intensity but occur at higher frequency than in tropical,
boreal, or temperate forests, due to the higher rates of regrowth of the main grass fuel source [52].

Menges et al. [53] investigated the effect of fire on microwave backscatter in a predominantly
savannah landscape in Australia using a single airborne multi-frequency (C-, L-, P-band) dataset.
They concluded that of the three SAR frequencies considered, only the C-band was affected significantly
by fire effects. Comparing unburnt and burnt patches using C-band VV imagery (VH or HV was not
available), they showed that the SAR backscatter decreased by 0.62 dB and 1.21 dB for woodland and
grassland, respectively. The burning of the senesced grass layer may decrease the C-band backscatter
as this frequency is sensitive to changes in small-size scatterers of a similar size as grass foliage [46].
Since fire-driven tree and shrub structural changes are limited, L- and P-bands are less effective for
detecting fire-related changes in savannas. Cross-polarized VH or HV C-band SAR backscatter may be
more sensitive than the VV polarized data used by [53] due to its higher sensitivity to changes in grass
volume scattering [54].

The availability of frequent high-spatial-resolution C-band (5.6 cm) Sentinel-1A (launched 2014)
and Sentinel-1B (launched 2016) SAR satellite data [55] have opened up new SAR burned area
monitoring opportunities, especially in savannahs. The interferometric wide swath Sentinel-1 mode
data are acquired in dual polarimetric configuration with VV and VH polarizations and a spatial
resolution of approximately 5 × 20 m. The two Sentinel-1 satellites have a six-day equatorial revisit,
which is comparable to the revisit provided by combination of Sentinel-2A, Sentinel-2B, and Landsat-8
optical wavelength data assuming 50% cloud cover at the time of overpass [56]. Prior to Sentinel-1,
frequent (every 2 weeks) global coverage SAR data with a high level of spatial detail (<1 ha) and of
free access were not available. As a result, the potential of satellite C-band SAR data for the systematic
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monitoring of the occurrence of surface fires needs to be more widely assessed. Indeed, only one
recent investigation used Sentinel-1 (together with Sentinel-2) time-series data to monitor burnt areas
in tropical evergreen forests, including open forests with tall grasses [35].

In this study, the effect of surface fire in savannah systems in the Kruger National Park (KNP),
South Africa, on C-band Sentinel-1 images were examined. Thirty burned areas across the park that
occurred at different times in 2015 were considered to provide a comprehensive study set. The burned
areas were identified using a 500 m MODIS-based burned area dataset, and then more accurately
delineated using 30 m Landsat 8 data to enable appropriately detailed comparison with the Sentinel-1
data. Changes in the Sentinel-1 VV and VH C-band backscatter were examined to investigate the
effect of fire disturbance on the backscatter of Sentinel-1 images. Temporal backscatter dynamics
were analyzed in the context of rainfall and phenology that were impacted by the exceptional 2015
KNP drought. The seasonality of pre-fire to post-fire differences, and also the effect of woody cover,
were examined as C-band SAR data are known to be sensitive to soil moisture and vegetation moisture
and to woody structure [57,58].

2. Materials and Methods

2.1. Study Area

The KNP is the largest public protected area in South Africa (1.95 million ha) and is located in the
north-eastern corner of the country bordering Mozambique and Zimbabwe (Figure 1). It is the largest
conservation area in South Africa and is considered to be one of the most pristine semi-arid savannahs
in the region. Human presence and activities in the park are mostly related to conservation tourism.
Environmental conditions in the park (rainfall, geology, woody cover/bushiness) are diverse, and fire
is common, making it an ideal site for the purpose of this study. The KNP climate is subtropical with
two contrasting seasons, a dry season from April to September (mean daily minimum and maximum
temperatures of 10 ◦C and 27 ◦C) and a wet and hot season from October to March (mean daily
minimum and maximum temperatures of 23 ◦C to 34 ◦C). Mean annual precipitation (MAP) has an
increasing north–south gradient from 350 to 700 mm [59]. Rainfall events are spatially and temporally
heterogeneous and are generally due to convective thunderstorms. Elevation ranges from about 260 m
above sea level in the east to 840 m in the south-western areas of the park. The dominant geology
includes nutrient-rich basalts in the eastern plains and nutrient-poor granites and gneisses in the
west. The hydrological network is structured around six perennial rivers (Limpopo, Luvuvhu Letaba,
Olifant, Sabie, Crocodile) draining eastward into the Indian Ocean with a dense network of seasonally
flowing tributaries. Woodlands and grasslands dominate the park vegetation with a canopy cover
ranging from 10% to 60%, and more than 80% in thin riparian zones [60]. Grass-dominated versus
woody-dominated regional vegetation patterns are controlled by rainfall and geological gradients with
finer scale variations, driven by geomorphology (catenas) and disturbance history, e.g., large herbivores,
mainly elephants [61,62], and fire [63,64]. In granitic areas, woody communities are dominated by
moderately dense broad leaf deciduous trees in deep sandy uplands and dense thicket to open savanna
in lowlands [65]. The vegetation in the basaltic landscapes forms large tracks of palatable grassland
with low density of shrubs and scattered larger fine leaf trees.

In the park, various fire management policies have been implemented since 1941 [66], from no
management intervention at all (natural fires only) to a command-and-control fire strategy aimed
at prescribed burning of fixed management areas every three years. Since 2002, an outcomes-based
integrated fire management policy is in place. The strategy allows managers, depending on range
conditions, to burn patch mosaics, which, together with natural fires (lightning), aim to maintain
biodiversity and vegetation heterogeneity. Between 2000 and 2010, 60% of the park was burned every
three to five years and 5% every two years (Figure 1).

The photographs in Figure 2 show examples of typical pre-fire and post-fire surface conditions in
South African savannahs; char and ash are deposited through the burning and removal of dry grasses
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and debris, and the tree or shrubs above the flame height are minimally affected. Wind and rain may
blow away the char and ash to reveal the understory and soil.Fire 2019, 2, x FOR PEER REVIEW 3 of 24 

 

 
Figure 1. (A) The Republic of South Africa on the African continent, (B) Savannah (light grey) and 
grassland (dark grey) biomes that cover 65% of South Africa, (C) Kruger National Park (KNP) (park 
boundary as red dashed line) showing the fire return frequency between 2000 and 2010 (red every 2 
years, yellow 3–5 years, rest > 5 years) after [5], blue dots show the location of the KNP weather 
stations. The 24th degree of South Latitude (bold black line) demarks the limit between the drier 
northern and the wetter southern parts of the park and corresponds approximately to the 500 mm 
mean annual precipitation isohyet. 

The photographs in Figure 2 show examples of typical pre-fire and post-fire surface conditions 
in South African savannahs; char and ash are deposited through the burning and removal of dry 
grasses and debris, and the tree or shrubs above the flame height are minimally affected. Wind and 
rain may blow away the char and ash to reveal the understory and soil. 

Figure 1. (A) The Republic of South Africa on the African continent, (B) Savannah (light grey) and
grassland (dark grey) biomes that cover 65% of South Africa, (C) Kruger National Park (KNP) (park
boundary as red dashed line) showing the fire return frequency between 2000 and 2010 (red every 2
years, yellow 3–5 years, rest > 5 years) after [5], blue dots show the location of the KNP weather stations.
The 24th degree of South Latitude (bold black line) demarks the limit between the drier northern and
the wetter southern parts of the park and corresponds approximately to the 500 mm mean annual
precipitation isohyet.
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Figure 2. Example of southern African savannah fire effects in the dry season. (A) Burned area in the 
background versus unburned area in the foreground, (B) unburned area close-up, (C) burned area 
close-up, (D) contrast between a burned patch to the right and non-burned grass patch to the left 
(photos Renaud Mathieu). Note that surface fires remove the grass layer. 
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Sentinel-1A was launched in April 2014, and, following the commissioning phase, started to 
acquire data over the KNP in March 2015. A total of 19 interferometric wide (IW) swath Sentinel-1A 
C-band images acquired in the afternoon over the KNP (16.30 overpass local time) from 20 March 
2015 to 14 January 2016 were considered. The images were available in dual polarimetric mode (VV, 
VH) and at 10 × 10 m pixel spacing (Level-1 ground range detected). The images were sensed typically 
every 12 days, although some consecutive images had 24- or 36-day intervals. The look angle (i.e., the 
angle between the slant range and SAR instrument nadir) ranged from 37.8° (near range) to 43.7° (far 
range) and the mean angle per image date changed by less than 1° over the time series. These angles 
are relative to the KNP boundaries, which extend, at most, 80 km from the west to the east. This 
configuration provides a good compromise between small incidence angles, which enable more 
penetration of woody canopies and large incidence angles, which are more sensitive to herbaceous 
and woody vegetation structure [67]. A Sentinel-1A system calibration assessment was performed by 
the German Space Agency using corner reflectors and transponders, and the overall absolute 
radiometric accuracy of Sentinel-1A products for the mission time was assessed to be 0.43 dB (1σ) for 
all modes (Stripmap, IW and Extra Wideswath), and across look angles [68]. 

The MODIS 8-day 500-m normalized difference vegetation index (NDVI) product [69] was used 
to examine vegetation phenological changes with temporal changes in the Sentinel-1A backscatter 
values. The long-term mean and standard deviation (STD) NDVI values for 2000 to 2015, and for the 
2015 data corresponding to the SAR data used in this study, were extracted, taking care to remove 
the low quality and cloud flagged NDVI values. A 2015 500-m MODIS-based burned area dataset, 
produced by the CSIR (South Africa) and disseminated by the active fire information system (AFIS) 
(https://southernafrica.afis.co.za/) was used to identify all the burn events, which occurred during 

Figure 2. Example of southern African savannah fire effects in the dry season. (A) Burned area in the
background versus unburned area in the foreground, (B) unburned area close-up, (C) burned area
close-up, (D) contrast between a burned patch to the right and non-burned grass patch to the left
(photos Renaud Mathieu). Note that surface fires remove the grass layer.

2.2. Remote Sensing Data

Sentinel-1A was launched in April 2014, and, following the commissioning phase, started to
acquire data over the KNP in March 2015. A total of 19 interferometric wide (IW) swath Sentinel-1A
C-band images acquired in the afternoon over the KNP (16.30 overpass local time) from 20 March
2015 to 14 January 2016 were considered. The images were available in dual polarimetric mode
(VV, VH) and at 10 × 10 m pixel spacing (Level-1 ground range detected). The images were sensed
typically every 12 days, although some consecutive images had 24- or 36-day intervals. The look angle
(i.e., the angle between the slant range and SAR instrument nadir) ranged from 37.8◦ (near range)
to 43.7◦ (far range) and the mean angle per image date changed by less than 1◦ over the time series.
These angles are relative to the KNP boundaries, which extend, at most, 80 km from the west to the east.
This configuration provides a good compromise between small incidence angles, which enable more
penetration of woody canopies and large incidence angles, which are more sensitive to herbaceous and
woody vegetation structure [67]. A Sentinel-1A system calibration assessment was performed by the
German Space Agency using corner reflectors and transponders, and the overall absolute radiometric
accuracy of Sentinel-1A products for the mission time was assessed to be 0.43 dB (1σ) for all modes
(Stripmap, IW and Extra Wideswath), and across look angles [68].

The MODIS 8-day 500-m normalized difference vegetation index (NDVI) product [69] was used
to examine vegetation phenological changes with temporal changes in the Sentinel-1A backscatter
values. The long-term mean and standard deviation (STD) NDVI values for 2000 to 2015, and for the
2015 data corresponding to the SAR data used in this study, were extracted, taking care to remove
the low quality and cloud flagged NDVI values. A 2015 500-m MODIS-based burned area dataset,
produced by the CSIR (South Africa) and disseminated by the active fire information system (AFIS)
(https://southernafrica.afis.co.za/) was used to identify all the burn events, which occurred during the
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year 2015. It merges the MODIS MCD45A1 [2] and the MCD64A1 [70] 500 m burned area products
over South Africa, and has been shown to improve the detection of burned areas, particularly of
small burns [71]. The MODIS burned area products report the 500 m location of burning and the
approximate date of burning with a median temporal reporting precision of 1 day [72]. The MODIS
1 km active fire detection product MCD14ML was also used that provides the center of each 1 km
MODIS Terra or Aqua day or night observation flagged by the MODIS active fire detection algorithm
as a fire, and includes a fire detection confidence score (0 to 100) [73]. Landsat 8 operational land
imager (OLI) 30 m images were used to more accurately delineate the 500 m MODIS burned areas.
Collection 1 Landsat 8 OLI Tier 1 images, which are geometrically corrected to ≤12 m root mean square
error geodetic accuracy, and include a per-pixel cloud and shadow mask [74,75], were used. Each OLI
image covers approximately 180 × 185 km and were available typically every 16 days over the KNP.

2.3. Ancillary Data

To understand potential moisture effects, daily rainfall data from 24 weather stations scattered
across the KNP [76] were used (Figure 1). For some of the analyses, the rainfall was partitioned into 12
stations in the northern and southern sections (divided along 24◦S, see Figure 1), and for other analyses,
the rainfall data derived from the weather station closest to the burn event were used. Also, depending
on the analysis, the daily rainfall data were aggregated at different time scales: The 8-day MODIS
NDVI product reporting period, or the 7, 5, 3, or 1 days prior to each SAR image acquisition.

A KNP 1-ha scale woody cover (0%–100%) map was used to analyze the potential effect of woody
vegetation cover on SAR burned area detection. The map was generated by random forest classification
of L-band dual polarized (HH, HV) fine-resolution (9.4 × 3.2 m) ALOS PALSAR scenes acquired in
2010 and using 80,000 ha of LiDAR tracks acquired in 2012 for training and validation [77]. The woody
cover map was produced at a 25 m pixel size and with an RMSE accuracy of 10.3% and a relative RMSE
accuracy of 29.3%. The map was aggregated at a 100 m pixel size (1 ha) to further reduce noise and
better match landscape variation of woody patches along catenae.

2.4. Methods

2.4.1. Burned Area Selection and Refinement

Burned areas were inventoried by examination of the MODIS burned area product data.
Burned polygons were assigned to a single fire event, following the same approach as [78], if they
were spatially contiguous or in close proximity (no more three 500-m pixels to each other) and occurred
within one day of each other. In addition, only burned areas containing at least one high-confidence
(confidence >50) MODIS 1 km active fire detection flag were retained. A total of 31 burn events were
identified from February to December 2015 (Figure 3). The first February burn event was excluded
as it occurred before the first KNP Sentinel-1A image was acquired. The 30 remaining burn events
were categorized as belonging to the early fire season (i.e., before June, nine burn events), during the
main fire season (June to August, 19 burn events), or the late fire season (after August, two burn events).
This seasonality classification was derived from fire temporal frequency data derived for southern Africa [5].

Landsat 8 OLI 30 m images were used to more accurately delineate the 500 m MODIS burned areas.
The delineation was undertaken by segmenting the images into burned and unburned segments using
a simple segmentation approach, and then interactively cleaning and refining the burned areas visually.
We assumed that the Landsat 8 pixels mapped as burned included only limited unburned material
(and were not generally mixed pixels). The Otsu segmentation approach was applied to the Landsat
8 near infrared band. The method selects a local threshold value in a bimodal pixel distribution by
minimizing the intra-class variance, thereby enabling a two-class segmentation [79]. The threshold was
identified for each burn event separately, and to reduce pixel confusion, digitized regions of interest
around each fire were used to spatially constrain the pixels on which the method operated. The binary
segmentations were converted to a vector layer, and then interactively ‘cleaned’ of erroneous burned
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patches (e.g., water surfaces and topographic shadow), with the help of the Landsat 8 color composites.
Figure 4 illustrates some example Landsat 8 OLI images and the resulting refined burned area vectors.Fire 2019, 2, x FOR PEER REVIEW 6 of 24 
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Figure 3. MODIS 500-m burned areas detected in the Kruger National Park (red dashed line) in 2015.
The burns are colored to show their approximate seasonality.

For the 30 burn events, the mean area (as measured by Landsat data) was 3500 ha
(standard deviation STD 5300 ha), with a minimum and a maximum area of 255 ha and 29,500 ha,
respectively. The mean fire duration (as measured by MODIS data) was 10.5 days (STD 4.8 days),
with a minimum and maximum duration of 4 and 20 days, respectively.

2.4.2. Sentinel-1 Data Processing

The Sentinel-1A images were processed using the ESA sentinel application platform (SNAP)
software (v4.1.1, http://step.esa.int). The following processing steps were undertaken in SNAP:
Radiometric calibration to sigma nought (defined as the average value of the scattering cross-section
per unit area [80]), topographic backscatter normalization, terrain correction using the “Range Doppler
Terrain Correction” algorithm, and the shuttle radar topography mission (SRTM) 1-arc second (30 m)
digital elevation model (DEM). The 10 × 10 m SAR images were multi-looked and aggregated to 100 m
pixel size (1 ha) and converted from intensity to decibels (dB) [81]. The 100 m pixel size reduced the
speckle noise to an average equivalent number of looks (ENL) of 53. The latter ENL value was calculated
by dividing the mean square backscatter intensity by the variance (e.g., ENL = mean2/variance) over
homogeneous grassland and wooded areas selected and averaged from two wet season and two dry
season multi-looked images.

2.4.3. Pre-Fire and Post-Fire SAR Backscatter Analysis

The ability of the Sentinel-1A data to discriminate between burned and unburned areas was
assessed by measuring backscatter (dB) differences between the Sentinel 1A pre-fire and post-fire
images acquired as close as possible before the start and the end of each burn event, respectively.
Only Sentinel-1 pixels completely within the boundary of the Landsat burn vector boundaries were
analyzed to ensure that only “pure” fire affected pixels were considered. The mean time lag between
the pre-fire image and the actual start of the fire and the actual end of the fire and the post-fire image

http://step.esa.int
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for the 30 burn events was 7 and 8 days, respectively. The latter time lag is reasonably short and should
not be sufficient to allow for any significant vegetation regrowth. In a few instances, a Sentinel-1
image was acquired between the fire start and end dates. In these cases, the backscatter difference was
calculated using two sets of image pairs, considering the areas burned during the first pair and also
those affected during the second pair, but we still considered these as single burn events.Fire 2019, 2, x FOR PEER REVIEW 7 of 24 
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The following post-fire minus pre-fire backscatter differences ∆VV and ∆VH were derived per
burn event:

∆VV = VVpost- f ire −VVpre- f ire (1)

where

VV =

∑
i, j ∈ burn VV(i, j)

n
(2)

∆VH = VHpost- f ire −VHpre- f ire (3)

where

VH =

∑
i, j ∈ burn VH(i, j)

n
(4)

∆ratioVH/VV =
∆VH

∆VV
(5)

where i, j is a 100 m Sentinel-1 pixel location in the burn event burn in a post-fire or pre-fire image, n is
the number of pixels in the burn event, VV and VH are the polarized backscatter values for the pixel,
and VV and VH are the mean backscatter for all pixels falling within one burn event for the VV and VH
polarization, respectively. The ∆ratioVH/VV measures the ratio of the mean VH and VV differences and so
provides insights into the relative sensitivity to fire-induced changes of the VH polarization with respect
to the VV polarization. The total number of burn records at 100 m for all burn events was 106,000.

The differences were analyzed considering each of the burn events, and stratified by fire season.
We also considered a correction factor calculated to quantify and partially correct for non-fire-related
environmental changes, which may impact backscatter changes occurring between the pre-fire and
post-fire Sentinel-1 dates. This allowed us to better quantify the magnitude of backscatter changes
solely due to the effects of the surface fires propagating through savannahs, i.e., excluding other types
of environmental changes. Considering the fact that anthropogenic land use activities do not exist
within the park (e.g., agriculture), non-fire-related changes can only be attributed to phenological
changes, i.e., woody plant leaf shedding or display, as well as grass senescence or growth, and soil
and vegetation moisture changes. Plant leaf shedding or display is mostly determined by day-length,
which can be considered similar across the park [82], while the remaining factors are mostly controlled
by climatic conditions, essentially rainfall and evaporation. Consequently, we applied the correction
factor (Equations (6)–(8)) considering two climatic zones in the park, the dryer northern section
(350–500 mm/yr) and the wetter southern section (500–700 mm/yr), separated by the 24th parallel
of Latitude South, which marks the 500 mm/yr MAP isohyet (Figure 1). These climatic areas were
broad in terms of geographic extent; thus, the correction factor was more suited to correct for temporal
phenological changes. The corrections were applied as:

∆VV_corr = ∆VV − regioni(VVpost- f ire −VVpre- f ire) (6)

∆VH_corr = ∆VH − regioni(VHpost- f ire −VHpre- f ire) (7)

∆ratioVH/VV_corr =
∆VH_corr

∆VV_corr
(8)

where ∆VV and ∆VH are defined as Equations (1) and (3), respectively and regioni is the mean difference
in the polarized backscatter for all the pixels of the KNP north of 24◦S (i = 1) and all the pixels of the
KNP south of 24◦S (i = 2).

Woody cover heterogeneity in savannahs varies at multiple scales and is patchy because of
small-scale variation of abiotic factors (e.g., topographic position, water) and disturbances (e.g., fire,
herbivory) [83]. To analyze the effect of woody cover on burned area backscatter, the 100 m sentinel 1A
C-band backscatter values were compared to the mean woody cover derived from the ALOS PALSAR
1-ha scale woody cover map.
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3. Results

3.1. Backscatter and Environmental Temporal Dynamics

The long-term (2000–2015) MODIS NDVI, 2015 MODIS NDVI, and 2015 rainfall data for the
park are shown in Figure 5. The long-term MODIS NDVI reflects the well-known phenological cycle
characterizing southern African savannahs. Vegetation starts greening at the end of October with
the first rains, to reach a maximum between January and March in the middle of the wet season.
From April onwards the landscape dries up—grasses senesce and woody plants (mostly deciduous)
shed their leaves—and the NDVI reaches a minimum in early September before the new rains of the
following cycle. In 2015, the NDVI greening profile was below the long-term mean for most of the year.
In November–December, the NDVI remained low because the first rains arrived late (mid-November
instead of mid-October), and these were interrupted by an exceptional El Niño southern oscillation
(ENSO) event. The regional 2015–2016 cycle experienced well below-average rainfall and an intense
drought [84]. Early rainfall from mid-October to early December resulted in a slight NDVI increase
(from 0.28 to 0.35), mostly in the wetter southern section of the park, which then collapsed well below
the one standard deviation long-term mean line when the drought started in early December. The wet
season of the previous cycle 2014–2015 already experienced below average NDVI, also as result of
a low rainfall (Figure 5). Interestingly, several large rainfall events in August and early September
resulted in a brief episode of NDVI increase.Fire 2019, 2, x FOR PEER REVIEW 10 of 24 
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Figure 5. Comparison of the long-term mean MODIS normalized difference vegetation index (NDVI)
(2000–2015), 2015 mean MODIS NDVI, and 2015 mean rainfall data for all the Kruger National Park.
The dotted black lines show the long-term mean MODIS NDVI ± one standard deviation calculated
every eight days 2000–2015. The mean rainfall shows the mean daily rainfall in the eight days
corresponding to the eight-day MODIS NDVI periods.

The mean Sentinel-1 VV and VH backscatter data computed for the northern (>24◦S) and southern
(<24◦S) sections of the KNP are shown in Figure 6, with the mean total rainfall data for the seven
days prior to each Sentinel-1 image acquisition. The mean 2015 backscatter profile generally follows
the rainfall and NDVI greening patterns; for example, the decreasing backscatter trend from April
to July corresponds with the senescing/drying periods captured in the 2015 NDVI decreasing trend
(Figure 5). After the month of October, the backscatter does not increase significantly despite the early
season rainfalls in November, indicating the start of the drought conditions. Overall, across the study
timeframe, the backscatter range of variation was quite limited with a range of only 2 dB in both
polarizations, in accordance with the drier conditions shown in the 2015 NDVI dynamic.
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Figure 6. Mean VH and VV backscatter values for the 19 Sentinel-1A C-band images acquired from
20 March to 14 January 2016 over the Kruger National Park. The colored areas indicate plus and minus
one-time standard deviation around the mean. The mean backscatter values are computed for the
northern (>24◦S) and southern (<24◦S) sections of the park as shown in Figure 1. The mean total
rainfalls for the seven days preceding each Sentinel-1 acquisition are also shown as black bars.

3.2. Pre-Fire Versus Post-Fire Backscatter Changes

Figure 7 shows the variability of pre-fire to post-fire backscatter differences ∆VV and ∆VH for all
100 m burn records (N = 106,000) measured in the 30 KNP burn events in 2015. The mean difference
was a backscatter decrease of 2.36 dB (standard deviation STD = 2.01 dB) and 1.45 dB (STD = 1.41 dB),
in the VH and VV polarizations, respectively. From the total 106,000 pixels, 2.95% exhibited a positive
change in VH and VV (mean = 0.72 dB and STD = 0.74 dB, mean = 0.69 dB and STD = 0.64 dB for VH
and VV, respectively), 3.18% a positive change in VH and a negative change in VV (mean = 0.35 dB
and STD = 0.31 dB, mean = −0.52 dB and STD = 0.4 dB for VH and VV, respectively), 7.2% a negative
change in VH and a positive change in VV (mean = −0.95 dB and STD = 0.71 dB, mean = 0.33 dB and
STD = 0.3 dB for VH and VV, respectively), and 86.7% a negative change in VH and VV (mean = −2.68 dB
and STD = 1.93 dB, mean = −1.70 dB and STD = 1.33 dB for VH and VV, respectively).

The mean backscatter differences between the post-fire and pre-fire images for each of the 30 burn
events are shown in Figure 8. All of the burn events exhibit a mean post-fire backscatter decrease in
both polarizations, with greater VH than VV decreases (Figure 8A). The mean backscatter decrease
considering all 30 burn events was −1.96 dB (STD = 1.0 dB) for the VH polarization and −1.17 dB (STD =

0.76 dB) for the VV polarization. A total of 29 (96.7%) and 27 (90%) burn events had a decrease in VH
and VV backscatter greater than 0.43 dB, the overall absolute radiometric accuracy of the Sentinel-1A
products [68]. This value provides a general reference against which the significance of the Sentinel-1
backscatter change can be assessed, i.e., a change below 0.43 dB may not result from a target change on
the ground. In addition, a Wilcoxon signed-rank test showed a significant difference between the pre-fire
and post-fire backscatter value (p-value < 0.01 for both polarization VH and VV). We calculated the
ratio ∆ratioVH/VV to compare the relative effect of fire on the backscatter of both polarizations. We only
included pixels that exhibited a backscatter decrease in both polarizations, as this was the main observed
dynamic in the burnt areas. In addition, we further discarded pixels that had a backscatter decrease below
0.2 dB in the VV polarization since low backscatter change values tended to generate an abnormally high
ratio. The mean ratio of the VH and VV difference (Figure 8B) was always ≥1.2 and over the 30 burn
events, had a mean of 1.9 (STD 1.33), indicating that the cross-polarized Sentinel-1 band (VH) is close to
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being twice as sensitive to fire-induced changes as the co-polarized (VV) band. When considering the
results by fire season, the largest backscatter decreases for both polarizations were observed in the late
season (N = 2, mean = −5.06 and −3.50 dB with also the highest STD, 3.56 and 2.97dB for VH and VV,
respectively) and then in the early season (N = 9, mean = −2.04 and −1.39 dB with 1.56 and 0.91dB STD
for VH and VV, respectively). In the main fire season, i.e., the driest months between June and September,
intermediate decreases (N = 19, mean = −1.59 and −0.82dB with the lowest 0.82 and 0.43 dB STD for VH
and VV, respectively) were observed. The Wilcoxon signed-rank test was significant for the early fire
season (p-value = 0.03 and 0.05 for VH and VV, respectively) and the main fire season (p-value = 0.02 and
0.05 for VH and VV, respectively), but not significant for the late fire season, which, in 2015, included only
two fires (p-value = 0.67 and 0.33 for VH and VV, respectively).
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indicative of record density from low (light blue) to high (dark blue).

Figure 9 shows the same results as Figure 8 but considering the differences derived with the
regional correction factors (Equations (6)–(8)) to reduce non-fire-related environmental changes
occurring between the pre-fire and post-fire images, such as woody plant leaf shedding or display,
and changes in soil and vegetation moisture. All of the burn events (except one, burn event 33) still
exhibited a post-fire backscatter decrease in both polarizations (Figure 9A). A total of 27 (90%) and
23 (75%) burn events showed a decrease in VH and VV backscatter greater than 0.43 dB. The mean
backscatter decrease for all fires was reduced by 0.35 dB to −1.61 dB (STD 1.0 dB), and by 0.2 dB to
-0.99 dB (STD 0.77 dB) for the VH and VV polarizations, respectively. This indicates the overall drying
conditions during the fire season. Again, the Wilcoxon signed-rank test showed a significant difference
between the pre-fire and post-fire backscatter value (p-value < 0.01 for both polarization VH and VV).
The mean ∆RatioVH/VV_corr (Figure 9B) was generally ≥1.0, except for the fire event 33, which showed
a pre-fire to post-fire increase of VH backscatter. The ratios of the VH and VV difference (Figure 9B,
mean 1.7, STD 0.78) were similar to the uncorrected ratios (Figure 8B). When examining the results by
fire season, the results were similar than in the previous section, with the largest backscatter decreases
observed in the late season (N = 2, −4.54 and −2.66 dB with also the highest STD, 4.17 and 2.98 dB
for VH and VV, respectively), followed by the early season (N = 9, −1.73 and −1.12dB with 1.43 and
0.83 dB STD for VH and VV, respectively), and the main fire season (N = 19, −1.24 and -0.75 dB with
the lowest 0.71 and 0.39 dB STD for VH and VV, respectively). The Wilcoxon signed-rank test was
significant for the early fire season (p-value = 0.07 and 0.06 for VH and VV, respectively) and the main
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fire season (p-value = 0.03 and 0.05 for VH and VV, respectively), but again, not significant for the late
fire season (p-value = 0.67 and 0.67 for VH and VV, respectively).Fire 2019, 2, x FOR PEER REVIEW 12 of 24 
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Figure 8. (A) Mean pre-fire to post-fire backscatter differences ∆VV and ∆VH for each of the 30 KNP
burn events in 2015, (B) ratio of the mean VH and VV differences ∆ratioVH/VV . Whiskers shows the
standard deviation. The horizontal dashed red line in A shows the Sentinel1-A radiometric accuracy
reported by [68], 0.43dB. The numbers and vertical arrows in (A) refer to the burn events illustrated in
Figure 11. The plain line in (B) shows the mean ∆ratioVH/VV for all 30 KNP burn event.
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Figure 9. (A) Mean pre-fire to post-fire backscatter differences ∆VV_corr and ∆VH_corr for each of the
30 KNP burn events in 2015, (B) ratio of the mean VH and VV differences ∆ratioVH/VV_corr, corrected
for non-fire related environmental changes. Whiskers shows the standard deviation. The horizontal
dashed red line in (A) shows the Sentinel1-A radiometric accuracy reported by [68], 0.43 dB. The plain
line in (B) shows the mean ∆ratioVH/VV for all 30 KNP burn event.

3.3. Relationships between Pre-Fire Versus Post-Fire Backscatter Changes and Rainfall

Most fires occur during dry periods—90% of the fires occur between mid-May and mid-September
when only 5% of the total rain fell in the region. Due to the importance of surface moisture conditions
on radar scattering, we sought to verify the potential effect of rainfall on the backscatter changes
between the pre-fire and post-fire images. The total rainfall before the acquisition of each Sentinel-1A
image (pre- and post-fire) is an indicator of the possible confounding effects of surface moisture on the
backscatter. We hypothesized that ground fires in savannahs decrease the C-band backscatter because
of the burning and physical removal of dry grasses and vegetation debris. However, a rainfall event
prior to the pre-fire image would increase the ∆VV and ∆VH backscatter decrease (by increasing the
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pre-fire image backscatter), whereas a rainfall event prior to the post-fire image would tend to reduce
the ∆VV and ∆VH backscatter decrease (increasing the post-fire image backscatter). A similar amount
of rainfall prior to both dates is likely to balance each other out and have a null effect on the backscatter
difference; although this assumes a similar effect of moisture on the backscatter of a grass layer and
bare ground. We, thus, calculated the total rainfall prior to the post-fire image minus total rainfall prior
to the pre-fire image (RDIFF) and regressed it against ∆VV and ∆VH. Positive rainfall values indicate
higher rainfall during the day(s) prior to the pre-fire image compared to the day(s) prior to the post-fire
image, and negative rainfall values indicate higher rainfall during the day(s) prior to the post-fire
image. A high dependence of ∆VH and ∆VV backscatter changes on rainfall is expected to exhibit a
significant negative relationship. The rainfall data (mm) for each burn event were derived from the
closest weather station. The mean distance weather station to burn event was 12 km. The possible
effect of rainfall over seven, five, three, and one days before the Sentinel-1A acquisition dates (Table 1)
were examined. Given the dry conditions and high infiltration and evaporation rates in the region, it is
unlikely that rainfall would have an influence beyond seven days.

Table 1. Relationships between mean pre-fire to post-fire backscatter differences ∆VH and ∆VV for the
30 KNP burn events and the total rainfall pre-fire S1 minus total rainfall post-fire S1 (RDIFF) where
rainfall data are derived for one, three, five, and seven days before the pre-fire and before the post-fire
Sentinel-1 acquisition dates. Rainfall data are extracted from the weather station data located closest to
the burn events.

Polarization Time Prior to S1
Acquisition Equations R2 r

VH 1 day ∆VH = 0.04RDIFF − 1.96 0.0021 0.046

3 day ∆VH = −0.26RDIFF − 1.81 0.2 0.45 *

5 day ∆VH = −0.08RDIFF − 1.94 0.02 0.16

7 day ∆VH = −0.06RDIFF − 1.89 0.03 0.17

VV 1 day ∆VV = −0.02RDIFF − 1.17 0.0015 0.039

3 day ∆VV = −0.23RDIFF − 1.04 0.33 0.58 **

5 day ∆VV = −0.11RDIFF − 1.14 0.08 0.29

7 day ∆VV = −0.07RDIFF − 1.01 0.07 0.26

Note: S1: Sentinel-1; ** significant p < 0.01, *significant p < 0.02 DF 28.

The relationships between ∆VH and ∆VV and RDIFF were not significant for the scenarios
where rainfall was measured one, five, and seven days prior to the image acquisitions for both
polarizations (R2 ~ 0.03–0.001). For the three-day scenario, the relationships were negatively correlated
(R2 ~ 0.33–0.2), but were only significant (p < 0.01) for the VV polarization (Table 1). This result is
driven by one burn event, which was affected by a 10 mm rainfall event three days prior to the pre-fire
image during the late fire season. SAR imagery is known to be sensitive to surface moisture. However,
the period under investigation corresponds to the dry season in Southern Africa, when most fires burn
and when rainfall events are uncommon. From the 30 fire events recorded in KNP, 19 did not receive
any rainfall seven days prior to the pre- or post-fire Sentinel-1A image acquisition, and only three burn
events received more than 5 mm of rainfall seven days prior to the pre- or post-fire Sentinel-1A image
acquisition. Overall, the results indicate that for 2015, rainfall had limited effect on the backscatter
changes. If we could not find evident moisture effects on backscatter change over the burn events,
it cannot be ruled out that moisture effects might be potentially higher in a wetter year.

3.4. Effect of Woody Cover

Figure 10 shows examples of Sentinel-1A images over burned areas in grasslands and in woodier
savannah KNP landscapes. All the burned areas are clearly visible within their surroundings and
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match the Landsat burned areas (red outlines) quite well. The contrast between non-burned and
burned regions is less evident in the woody-dominated landscapes than in the grassland-dominated
landscapes. Burn event 22 is a good example where the fire propagated through a granitic area with a
woody canopy cover around 30%–40% to the north and an area intruded by gabbro sills with a woody
canopy cover around 5%–15% in the south. The boundary between the two geological formations is
very evident and suggests a stronger effect of fire on the C-band backscatter dynamics in grasslands,
or more spatially fragmented and/or less complete combustion in the woodland area.
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Figure 10. Sentinel-1 multi-date backscatter composites over four KNP burn events. The color channels
are displayed as follows: Red layer = VH post-fire image; green layer = VH post-fire image; blue layer
= VH pre-fire image. Grey shades indicate small or no backscatter intensity changes between the two
Sentinel-1 acquisition dates (from black, low backscatter to white, high backscatter). Blue shades indicate
backscatter decrease between the pre-fire and the post-fire image, with the intensity indicating the
magnitude of the decrease (faint blue = low decrease and vivid blue = high decrease). Red boundaries
show the extracted Landsat burned areas and yellow lines show the KNP boundary. The mean pre-fire
to post-fire backscatter differences, and median day, for these burn events—labelled as: burn 22
(early season fire) Woodlands on granite (north) and grasslands on Timbavati gabbro (south); burn 24
(early season fire) East–west gradient moderately dense woodland (gabbro), grassland (basalt), and
moderately dense woodland (rhyolite); burn 15 (main season fire) Moderately dense woodlands on
granite, burn 13 (main season fire) Grassland (basalt)—are shown in Figure 8.

The backscatter differences in individual 1 ha pixels were compared with the corresponding woody
cover for all the burn events in Figure 11. The woody cover was quantized into 10% intervals, with
just one class representing woody cover ≥50%. For both polarizations (Figure 11A,B), greater woody
cover is associated with smaller pre-fire and post-fire backscatter change, with reduced within-cover
class variability. Fire effects on backscatter were higher for the VH than the VV polarization, but this
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effect was reduced at higher woody cover. The woody cover effect on backscatter change tended to
saturate above about 30% cover. The ∆ratioVH/VV was around 1.5 for the lowest woody cover class
and tended to decrease with an increasing woody cover, to reach a ratio below one for the woody
cover classes above 40%. This later result means that the VV polarization is slightly more sensitive to
fire-driven backscatter changes than the VH polarization when the woody cover is denser (Figure 11C).
Similar results were found when the regionally corrected backscatter differences (Equations (6)–(8))
were considered (not shown). A Kruskal–Wallis (H-test) was conducted, which showed that there were
significant differences (i.e., H statistic > χ2 critical value) in ∆VH, ∆VV, and ∆ratioVH/VV differences
between the woody cover intervals (N = 106,000+, H = 24,546, 29,223, 1145 with χ2 critical value 11.07,
for ∆VH, ∆VV, and ∆ratioVH/VV, respectively).
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Figure 11. Quartile box-plots comparing the pre-fire to post-fire backscatter differences (A) ∆VH,
(B) ∆VV , and the cross- and polarized ratio (C) ∆ratioVH/VV calculated within individual 1 ha pixels
(100,000+ pixels across the 30 burn events) as a function of woody canopy cover quantized into 10%
ranges. Plain bold lines indicate the median, and the median (top line) and mean (bottom line) values
are given at the top of each graph.

4. Discussion

A number of environmental factors may have influenced the SAR backscatter reported in this
study and are potential confounding factors for the detection of burned areas. These include changes
in soil and vegetation moisture content, and changes in phenology of the two main life forms, grasses,
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and woody plants. Moisture is present in various forms across KNP with variable persistence. Dew can
form at night, even in the dry season, and so may increase the backscatter of images acquired in the
early morning compared to those acquired in the afternoon. In the current study, however, all the
Sentinel-1 images were acquired in the afternoon. Rainfall infiltrates the soil layer, then evaporates or
is taken up by plants for growth, and across KNP, this mostly occurs as discrete events associated with
short-duration convective thunderstorms [60]. Grass greening and senescence is in response to rainfall
but with high inter-annual temporal and spatial variability depending on the timing and amplitude
of the rainfall events [82]. From April to June (wet to dry transition season) or from September to
October (dry to wet transition season), the backscatter is also influenced by the shedding or display of
tree canopy leaves (most KNP savanna species are deciduous). Leaf display or shedding is spatially
and temporally more homogeneous than grass greening or senescence [82]. Leaf display occurs
generally before the first rains between the end of September and mid-October. However, tree species
and water availability through soil type or landscape position influence spatial variability of tree
phenology [82,85,86].

The gradual Sentinel-1A backscatter decrease (−2 dB) observed from the beginning of April to
early July (Figure 6) is most likely indicative of a general drying across the landscape. After this
date, the backscatter stabilized to its lowest level until early September. The shedding of leaves may
have impacted this pattern. The effect of leaves on SAR backscatter can be complex as they influence
the penetration depth of microwaves, and their interactions with the canopy and underlying layers.
For short microwaves, leaves tend to act as scatterers and attenuators, while for long microwaves,
they act mostly as attenuators [67]. Thus, an increase in tree canopy leaf area index (LAI) has been
associated with an increase in X-band backscatter [87], while leaf-off scenarios have been observed
to increase the L-band backscatter—due to a higher penetration of microwave in the canopy and
interaction with the ground and trunk—compared to leaf-on scenarios [67]. Published data are limited
in savannahs. Positive correlations established between tree foliage biomass and C-band backscatter
in Australia [88,89] suggest that leaf shedding would contribute to further decrease the Sentinel-1
backscatter. In addition, the decrease in foliage elements due to fires resulted in decreased C-band
cross-polarized backscatter by about 2–3 dB over dry Mediterranean forests, but it increased in the
co-polarized frequencies [42]. Studies are recommended to better understand the effect of leaf-on
versus leaf-off on the backscatter, considering the specificities of trees found in savannahs, e.g., broad
versus fine leaves species, and low LAI.

For the KNP 30 burn events, a systematic decrease of the SAR backscatter from pre-fire to
post-fire was observed with a mean backscatter decrease of −1.61 dB and −0.99 dB for the VH and VV
polarizations, respectively. The cross-polarization VH data were found to be nearly twice as sensitive
to fire as the VV co-polarization data (Figures 8 and 9). The large ratio VH/VV values, consistent
across fire events and seasons, suggest that the dominant fire effect detected by pre-fire and post-fire
backscatter change is linked to the removal of grass and a decrease in C-band volume scattering,
which has been observed in other studies [40]. However, the decrease of the ratio VH/VV with the
woody cover (Figure 11C), below one when the woody cover is above 40%, may indicate an increase of
the cross-polarized signal interaction with the woody layer.

The early season fires produced greater backscatter decreases compared to main season fires.
During the early fire season, the landscape is in a drying phase with a decrease of grass and soil
moisture (see NDVI and backscatter profiles in Figures 5 and 6). Although early season fires are
expected to be less intense, and possibly less complete than main season fires [63], the grass removal
by early season fires could have several effects, namely (i) removal of grass scatterers, (ii) decrease
in grass moisture, and (iii) decrease of soil moisture due to fire [53]. Moisture changes were at their
minimum during July–August (Figure 6), so this suggests that the backscatter changes during the main
fire season are likely a result of the removal of grass scatterers and a corresponding decrease in volume
scattering, while early fire season backscatter changes resulted from both changes in grass scatterers
and moisture. Difference of pre-fire grass conditions, including biomass and grass communities with
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varying plant height, leaf structure, and shape, may explain the large variability of ∆VH and ∆VV

backscatter observed at low woody cover (0%–20%, Figure 11), over 3 and 2 dB for the VH and VV
polarizations, respectively. Grass biomass is mostly controlled by rainfall and soil fertility, but is also
linked to the time elapsed since the last burn, since grass biomass accumulates from one year to another
without fire [63]. Higher pre-fire grass biomass would lead to a higher backscatter decrease after a burn
event. In addition, fire removes and changes the vegetation structure and may reveal the underlying
soil [26,90]. Different soils and bare ground conditions may influence the variability of fire-induced
changes on backscatter changes. The post-fire image will have a higher soil background contribution,
which could be affected by variable soil roughness, texture, and stoniness.

The magnitude of backscatter decrease due to fire is influenced by woody cover (Figure 11).
Similar observations were reported with airborne C-band SAR data over a burned area in a tropical
Australian savannah [53]. High woody cover is associated with lower grass biomass due to resource
competition, e.g., water, sunlight [17], and is likely to produce less intense or frequent fires, possibly
with a less complete combustion of the grass layer. In addition, a higher woody canopy cover reduces
gaps and increases the attenuation of microwaves travelling through the canopies, especially with
leaf-on scenarios [91], therefore it reduces the signal reaching and interacting with the ground where
most of the fire effects in savannahs occur, through the removal of grasses and debris. Although fire is
an important driver of long-term woody structure in African savannahs [13,92], backscatter change
attributed to tree damages is limited (see for instance the small backscatter decrease shown in dense
woodlands −0.55 dB for VH and −0.31 dB for VV, below the Sentinel-1 radiometric accuracy for the
latter, Figure 11A,B). Savannah fires are primarily ground fires of lower intensity than canopy fires
occurring in denser forests [52]. Woody savannah species have developed fire-resistant mechanisms,
e.g., thick and/or corky bark, rapid early growth, and vigorous resprouting [51,93]; thus, savannah
fires rarely affect large trees except when they have been previously weakened by animal or insect
damage [62,94]. Damages in the shrubby strata may occur, but would also lead to a decrease of
backscatter, enhancing the detectability of burned patches. A woody cover above 30%–40% might
act as a buffer layer for the microwaves and might be more challenging to detect burned areas with
C-band SAR.

5. Conclusions

The effect of surface fires in southern African deciduous savannahs on the backscatter of
multi-temporal C-band SAR Sentinel-1A data was investigated. We hypothesized that C-band
backscatter would be affected by the removal of grass scatterers in surface fires in savannahs, and that
the C-band VH backscatter would be more sensitive than the VV backscatter. For 30 burn events in
the KNP, we observed a systematic pre-fire to post-fire decrease of backscatter (mean of −1.61 dB and
−0.99 dB for the VH and VV polarizations) considering the 18 Sentinel-1A C-band images acquired
between 20 March and 9 December 2015. Between 90% and 75% of the burn events had a backscatter
decrease greater than the Sentinel-1 radiometric accuracy (0.43 dB), for VH and VV, respectively.
The cross-polarization VH was nearly twice as sensitive to fire-induced changes as the co-polarization
VV data. Pre-fire and post-fire backscatter changes most likely resulted from a reduction in grass
biomass and moisture levels. Early season fires produced higher decreases compared to the main
season fires, possibly due to greater fire-induced moisture changes (e.g., removal of grasses with
higher moisture content). Over 30% woody cover the fire effects on the backscatter of the C-band
Sentinel-1 images were reduced, with a lower decrease of backscatter values between pre- and post-fire
conditions. Denser woody communities tend to produce lower grass fuel load and less intense surface
fires, and limit the penetration of C-band microwaves to the ground where most savannah fires occur.

This research provides evidence that C-band spaceborne SAR is sensitive to surface fire effects in
southern African deciduous savannahs. Additional research will be required to assess how these results
can be used possibly to develop a burnt areas detection algorithm based on Sentinel-1 data, to extract
burnt patches, and assess burnt areas detection rates. Important limitations exist in densely wooded
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areas. However, the availability of high temporal C-band datasets from the Sentinel-1 SAR constellation
(six-day revisit) suggest that this technology can play a greater role in burned area mapping and
monitoring, in particular in combination with optical wavelength moderate resolution Landsat-8 and
Sentinel-2 data that have good burned area discrimination [95] but unlike SAR, cannot work under
cloudy conditions. This may open up opportunities for fine-scale fire propagation studies and a better
understanding of fire processes and drivers. In 2018, for example, both Sentinel-1 platforms acquired
SAR images in the KNP region in average every eight days.
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