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Abstract: Forests fires in northern Iran have always been common, but the number of forest fires
has been growing over the last decade. It is believed, but not proven, that this growth can be
attributed to the increasing temperatures and droughts. In general, the vulnerability to forest fire
depends on infrastructural and social factors whereby the latter determine where and to what
extent people and their properties are affected. In this paper, a forest fire susceptibility index and
a social/infrastructural vulnerability index were developed using a machine learning (ML) method
and a geographic information system multi-criteria decision making (GIS-MCDM), respectively.
First, a forest fire inventory database was created from an extensive field survey and the moderate
resolution imaging spectroradiometer (MODIS) thermal anomalies product for 2012 to 2017. A forest
fire susceptibility map was generated using 16 environmental variables and a k-fold cross-validation
(CV) approach. The infrastructural vulnerability index was derived with emphasis on different types
of construction and land use, such as residential, industrial, and recreation areas. This dataset also
incorporated social vulnerability indicators, e.g., population, age, gender, and family information.
Then, GIS-MCDM was used to assess risk areas considering the forest fire susceptibility and the
social/infrastructural vulnerability maps. As a result, most high fire susceptibility areas exhibit minor
social/infrastructural vulnerability. The resulting forest fire risk map reveals that 729.61 ha, which is
almost 1.14% of the study areas, is categorized in the high forest fire risk class. The methodology is
transferable to other regions by localisation of the input data and the social indicators and contributes
to forest fire mitigation and prevention planning.

Keywords: forest fire; social vulnerability; artificial neural network (ANN); k-fold cross-validation
(CV); multi-criteria decision making (MCDA)

1. Introduction

Forest fires are a natural hazard that significantly affects Iran’s forest areas due to their widespread
environmental, economic, and social impacts. Forest fires are also considered as the leading force
damaging forest resources, and they happen periodically in different severities [1]. Additionally,
forest fires have increased due to an increase in the global temperature, the population, and human
activities in forest areas [2]. In our study area, upward trends in both the number of forest fire events
and burned areas are confirmed from 2012 until 2017. Forest fires cause some permanent alterations
to forest areas, such as a reduction of plant communities and biodiversity, which can accelerate the
deforestation processes [3]. However, there are also some advantages of forest fires, e.g., the elimination
of harmful microorganisms, fungi, insects, and herbal disease, and soil enrichment by the nutrients and
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minerals released from the remaining ash [4]. However, there is no doubt that forest fires are a potential
risk with economic and social consequences for the population who live in the forest areas [1]. A forest
fire, like any natural hazard, demonstrates the potential threat from a natural process [5]. Northern
Iran has approximately 1.2 million hectares and more than 300 hectares have burned annually. Most of
these fires happen on the ground surface and affect young trees more often than old ones [6]. Thus,
small trees and regeneration are largely affected and consequently, forest fire is considered as one of
the main reasons of deforestation and desertification in northern Iran. Despite the high forest fire
frequency in this area, there are no comprehensive susceptibility and risk analysis studies. Our study
of the forest fire susceptibility in the northern forests of Iran is therefore timely and necessary. The use
of the most recent spatial modelling approaches shall improve our knowledge on this problem and the
results shall support fire management in this area.

The term risk is applied frequently for predicting uncertain future events of extreme consequences.
Risk mapping focuses on low-probability, high-consequence adverse events that are stochastic in
space. Risk assessment should be conducted when the predicted results are uncertain, but can be
estimated [7]. Forest fire risk is assessed based on a scale of the probability that forest fires will occur
and have destructive impacts on the population [8]. In other words, forest fire risk can be defined as
the probability of devastating consequences, or likely losses (deaths, injuries, properties), caused by
an interplay of forest fires and vulnerable communities in a given area [9]. Moreover, considering
the indicators of social vulnerability to natural hazards is a relatively small part of both social and
spatial research, especially in administrations worldwide [10]. In the present study, the forest fire risk
mapping is used for identifying locations which bear the chance of loss, determined from estimates of
forest fire susceptibility and social/infrastructural vulnerability.

The main aim of the present study is the forest fire risk mapping using environmental, social and
infrastructure variables. For this goal, we required both socially vulnerable and susceptible areas
to forest fires. Thus, a forest fire susceptibility map, or hazard map (in a more general expression),
was generated considering sixteen relevant factors (i.e., topographic, meteorological, and human-made
factors). In addition to the environmental variables, the human activity is also considered, as
the conditioning factor plays a vital role in the forest fire susceptibility. Data from geographic
information systems (GIS) and remote sensing (RS) is required for any natural hazard susceptibility
mapping [11–15]. In addition to using relevant input data, an appropriate methodology is needed
for useful hazard mapping. Vulnerability mapping concerning natural hazards is a multi-faceted
procedure. Several aspects of vulnerability, including infrastructural and social indicators, should be
considered in the final vulnerability map [16]. Generally, a clear understanding of the social issues
of forest fire susceptibility, susceptibility and management are required to evaluate the damages to
valued assets and resources and human life losses caused by forest fires [17,18]. Management of forest
fire protection and estimating the responding costs is also paramount [19]. Although environmental
variables (e.g., topography, temperature, vegetation) help assess the potential occurrence of forest
fires, they are not sufficient for predicting where and to which extent forest fires can impact people or
damage constructions [20,21]. Therefore, an ideal effort for forest fire prevention and risk mitigation
must not only consider environmental variables, but also the different levels of social vulnerability of
communities within residential areas in the study area. The social vulnerability can be determined
from social systems and census data [22].

Demand for mapping the risky areas has grown as forest fires have increasingly affected populations
and the environment. Universally, the growing frequency and damage from forest fires has resulted
in many new studies. Based on the literature, there are two main methods and techniques for this
aim, namely, data-based (machine learning (ML)) and knowledge-based methods that have been
proposed and evaluated. Several studies used knowledge-based methods for forest fire susceptibility
mappings, such as fuzzy logic [23,24], the analytic hierarchy process (AHP) [25,26] and the analytical
network process [27]. However, ML methods such as logistic regression [5], artificial neural networks
(ANN) [28–30], and Random Forest [31] are also conventional for mapping the susceptible areas of
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forest fires. Predicting the susceptible areas of any natural hazard has always been considered as
an environmental management need [32]. Researchers attempt to turn this need into a systematic
methodology based on well-established models and mathematical theories. They have also been
increasingly developing/applying multivariate data analysis methods from both data mining and ML
fields for predicting the susceptible areas of natural hazard based on previous distribution patterns
and relevant factors [33]. In this study, we used the capabilities of an ANN method for predicting areas
which potentially have a higher probability of forest fires. The forest fire inventory dataset includes
the location of ignition and also the burned area. Therefore, the susceptibility map can represent
a measure of the likelihood of ignition and the probability of spreading of forest fires based on the
trained ANN method. At the same time, we generated both social and infrastructural vulnerability
maps based on related vulnerabilities’ indexes. Vulnerability is defined as the potential effect of a threat
and considers the adaptive and endurance capacity of the affected units over time [7]. A wildfire
vulnerability assessment of a forest area considers how populations can respond and adapt to the
threat. Generally, the vulnerability of a place depends on various social indicators that have been
considered by several studies, such as education level, age, unemployment rate, gender, accessibility
to health centres, housing tenancy, and accessibility to government facilities [9,18,34–38]. These social
indicators usually describe social inequities among people, which are presumed to increase a society’s
vulnerability to natural hazards [8]. Although in some areas in the world people living close to forest
areas may be rich, in Iran, and most likely in the majority of cases, this population tends to be poorer.
In the latter case, social vulnerability is relatively high since it is more difficult to recover from the
impact of a hazard [39]. These people are also more sensitive to the threat of any natural hazards, such
as forest fire occurrences, because socially vulnerable residents are generally less able to deal with
threats from nature [18]. We used 22 social indicators and 11 infrastructural indicators for mapping
both social and infrastructural vulnerabilities.

GIS-based multi-criteria decision analysis (GIS-MCDA) was used for both weighting and data
aggregation. GIS-MCDA is a useful modelling methodology in the spatial sciences that can consider
data with their spatial information [40]. Capabilities of GIS and MCDA have been well combined
to solve a wide range of spatial problems [41]. The integration of MCDAs with the capabilities
of GIS provides a smart spatial modelling methodology for identifying the relative significance of
indicators [42]. AHP is one of the most commonly used methods in GIS-MCDA approaches [43].
This method supports the weighting process based on experts’ judgments, which are organized in
pairwise comparison matrices. The high knowledge of experts plays a crucial role in preparing useful
pairwise comparison matrices [44].The resulting vulnerability maps indicate the elements-at-risk.
However, the forest fire susceptibility mapping results in a map depicting hazardous areas [9]. A simple
map overlay within the GIS environment was used to generate the risk map. Overlaying the social
vulnerability map with the hazard map is a common approach for risk map generation that is used in
several studies [8,18,45,46]. Our study considered both social vulnerabilities and the map of natural
hazards susceptibility, resulting in a more comprehensive risk assessment of forest fire in the study
area. Risk analysis provides scientists and managers with a better understanding about the location
and potential effects of forest fires on the economy, society and the environment [7]. Risk mapping
can transparently address the management of issues, which are existing in the forestry areas and the
mitigation of adverse consequences of forest fires.

2. Material and Methods

The workflow of this study for the forest fire risk mapping is as follow:

� Preparing the conditioning forest fire factors.
� Defining and preparing the social/infrastructural vulnerability factors localised for the case

study area.
� Preparing a forest fire inventory map from the hotspots of MODIS enhanced using field survey

GPS polygons.
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� Applying the artificial neural network (ANN) method for the spatial prediction of forest fire
susceptibility mapping.

� Applying the GIS-MCDA method for the social/infrastructural vulnerability mapping.
� Validating the performances of the ANN method using the receiver operating characteristics

(ROC) curve and the root mean square error (RMSE).

The methodologies (see Figure 1) and the experimental results are organized in the following
sections. Further descriptions and discussions regarding the resulting maps can be found in the
discussions and conclusion section.
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Figure 1. Methodology scheme and workflow.

2.1. Study Area

The case study was the forestry area of Amol County in the Mazandaran province of northern
Iran (Figure 2). Our study area has an expanse of 646 km2 and is essential for its natural forests and as
one of the common recreational centres of the country. The study area attracts tourists from all over the
country. The altitude ranges from 100 m in valleys to approximately 2500 m above mean sea level in
mountainous areas in the southern part. Other topographical and environmental characteristics are
described in Table 1. The study area is potentially vulnerable to forest fires, which are considered as
a common problem in the region. There are more than 20 villages in the study area, mostly in valleys
and some located in remote forest areas. The most common activity among the population is animal
husbandry. However, there are also orchards, including walnuts and apple gardens, and even some
agricultural activities.
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2012 and 2017.

2.2. Data Used in the Analysis

To generate the forest fire susceptibility map of our study area, 16 relevant factors including
environmental variables were considered as forest fire occurrence data.

The relevant topographic factors are slope aspect, slope, altitude, plan curvature, landform, and the
topographic wetness index (TWI). The meteorological factors are annual temperature, potential solar
radiation, and wind effect. The considered vegetation factor was the normalized difference vegetation
index (NDVI). The NDVI factor was created for the high vegetated summer period, applying
Landsat-8 Operational Land Imagery (OLI) 30 m resolution, retrieved from the USGS archive (http:
//earthexplorer.usgs.gov). The human-made factors are the distance to the nearest village, land use,
and the distance to roads and recreational areas. The hydrological factors are annual rainfall and the
distance to streams (see Table 1).

The topographic factors were derived from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) (NASA, California Institute of Technology, USA) Global Digital
Elevation Model (GDEM) with an approximate resolution of 30 m. Related topographic factors
are considered as important forest fire factors that impact the fire’s separate pattern in forests [47].
These factors have been widely used for forest fire susceptibility mapping [48]. The slope factor is
essential because increasing in slope angle results in fire spreading more quickly [27]. Since usually
north-facing slopes are colder and moister than those of south, the risk of forest fire on south-facing
slopes is higher [49]. The presence of higher moister at higher altitude shows the importance of this
factor [50]. The factor of wind effect was generated by three different factors, including the degree
of wind direction, wind speed (m/s), and altitude layer [51]. The solar radiation varies from nearly
0.3 KWH/m2 to more than 1.8 KWH/m2 and this range is classified in five classes based on natural
breaks. In terms of human-made factors, various distance measures were considered. The distances
and intervals for the classified layers were defined based on their importance regarding forest fires,
the radius of human activities, the literature, and expert experiences [24] (see Figure 3).

http://earthexplorer.usgs.gov
http://earthexplorer.usgs.gov
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Table 1. Forest fire relevant factors, classes by corresponding areas, and percent of the burned areas in
each class.

Factors Class # of Pixels in
Domain Area (ha) % of

Domain
Area of Forest

Fires (ha)
% of Forest

Fires Source

Slope aspect (1) Flat 413 32.66 0.05 0.23 0.04

ASTER
DEM

(2) North 163,477 12,929.5 20.017 78.87 15.74
(3) Northeast 157,185 12,431.86 16.25 74.90 14.95

(4) East 111,057 8783.56 13.60 59.27 11.83
(5) Southeast 64,513 5102.32 7.9 35.55 7.09

(6) South 59,425 4699.96 7.27 53.12 10.6
(7) Southwest 69,288 5480.03 8.48 65.06 12.98

(8) West 89,748 7098 10.98 83.87 16.71
(9) Northwest 101,549 8031.57 12.43 50.21 10.02

Slope (%)

ASTER
DEM

(1) 0–5 52,438 4147.35 6.42 49.13 9.8
(2) 5-10 131,189 10,375.82 16.06 129.72 25.89

(3) 10–15 165,158 13,062.45 20.22 160.07 31.95
(4) 15–20 132,343 10,467.09 16.20 68.49 13.67
(5) 20–30 172,740 13,662.11 21.15 55.58 11.09
(6) 30< 162,787 12,874.92 19.93 37.93 7.57

Altitude (m)

ASTER
DEM

(1) 500> 267,103 20,609.83 31.76 272.50 54.39
(2 500–1000 221,070 17,057.90 26.28 139.98 27.93

(3) 1000–1500 175,496 13,541.38 20.86 33.66 6.72
(4) 1500–2000 131,112 10,116.68 15.59 51.22 10.23
(5) 2000–2500 44,074 3400.77 5.59 3.57 0.71

(6) 2500< 2064 159.25 0.24 0

Annual
temperature

(◦C)

SMOAC(1) 10> 30,663 2425.1 3.75 0 0
(2) 10–12 190,487 15,065.7 23.29 3.61 0.72
(3) 12–14 213,835 16,912.3 26.15 92.93 18.55
(4) 14–16 234,441 18,542.0 28.67 162.79 32.48
(5) 16< 148,230 11,723.6 18.1 241.12 48.25

Annual rainfall
(mm)

SMOAC
(1) 400–450 40,288 3186.40 4.92725 0 0
(2) 450–500 129,427 10,236.4 15.8290 0 0
(3) 500–550 138,521 10,955.7 16.9412 30.56 6.10
(4) 550–600 311,886 24,667.2 38.1439 146.55 29.25

(5) 600< 197,534 15,623.0 24.1585 323.83 64.64

Wind effect
ASTER
DEM &
SMOAC

(1) 0.73–0.93 203,575 16,100.8 24.9279 161.16 32.25
(2) 0.93–1.09 204,281 16,156.7 25.0143 143.42 28.62
(3) 1.09–1.25 204,979 16,211.9 25.0998 123.72 24.69
(4) 1.25–1.35 203,820 16,120.2 24.9579 72.25 14.42

Plan curvature
(100/m)

ASTER
DEM(1) Concave 153,099 12,108.7 18.73 62.9 12.55

(2) Flat 499,095 39,473.7 61.05 351.45 70.15
(3) Convex 165,204 13,066 20.21 86.59 17.28

Topographic
wetness index

(TWI)
ASTER
DEM

(1) 5–10 89,647 7090.23 10.97 61.82 12.34
(2) 10–15 186,858 14,778.7 22.8 117.62 23.48
(3) 15–20 113,587 8983.66 13.9 61.22 12.22
(4) 20 < 259,476 20,522.1 31.7 174.21 34.72

167,087 13,215. 20.45 86.07 17.18
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Table 1. Cont.

Factors Class # of Pixels in
Domain Area (ha) % of

Domain
Area of Forest

Fires (ha)
% of Forest

Fires Source

Landform

ASTER
DEM

(1) canyon 39,975 3161.64 4.8 16.10 3.21
(2) Gentle slopes 159,331 12,601.5 19.48 63.23 12.62

(3) steep slope 513,481 40,611.5 62.79 375.23 75.02
(4) ridges 104,869 8294.15 12.825 45.75 9.13

Land use
LANDSAT

satellite
image

(1) Forest 748,822 59,224.8 91.4729 491.8 98.03
(2) Non-forest 56,744 4487.91 6.93160 9.87 1.97

(3) Farm 10,619 839.863 1.29717 0 0
(4) village 2442 193.139 0.29830 0 0

NDVI

LANDSAT
8

(1) −0.08–0.1 162,431 12,846.7 19.86 38.03 7.59
(2) 0.1–0.36 153,261 12,121.5 18.74 72.30 14.44
(3) 0.36–0.41 161,025 12,735.5 19.69 103.78 20.73
(4) 0.41–0.43 176,758 13,979.9 21.617 160.03 31.94

(5) 0.43< 164,181 12,985.1 20.07 121.70 25.29

Distance to
stream (m)

ASTER
DEM

(1) 200> 78,797 6232.1 9.636 22.56 4.5
(2) 200–500 106,507 8423.7 13.02 83.04 16.57
(3)500–800 106,173 8397.2 12.985 97.99 19.57

(4) 800–1200 131,936 10,434.9 16.135 67.93 13.56
(5)1200< 394,243 31,180.93 48.216 229.43 45.79

Distance to road
(m)

SWOAC
[52]

(1) 0–300 141,880 11,221.3 17.352 115.99 23.15
(2) 300–600 116,931 9248.14 14.30 107.178 21.49

(3) 600–1200 172,493 13,642.5 21.096 99.06 19.77
(4) 1200–1800 129,926 10,275.9 15.890 88.82 17.73

(5) 1800< 256,426 20,280.9 31.36 89.40 17.78

Recreation area
(m)

SWOAC
[52](1) 0–300 32,430 2689.05 3.881 13.87 2.77

(2) 300–700 72,251 5985.99 9.006 0.098 0.019
(3) 700< 751,341 59,830.23 87.021 468.21 97.20

Potential solar
radiation

SWOAC
[52]

(1)
282.943–983.084 64,516 5102.61 7.89 98.04 3.9

(2)
983.084–1.189.376 21,641 1711.60 2.646 1.26 0.25

(3)
1.189.376–1.339.406 54,780 4332.58 6.699 2.47 0.49

(4)
1.339.406–1.501.939 113,723 8994.4 13.90 59.65 11.9

(5)
1.501.939–1.877.015 562,996 44,527.71 68.85 339.51 67.71

Distance to
village (m)

(1) 0–300 33,175 2623.83 4.05 0.094 0.018

SWOAC
[52]

(2) 300–600 33,140 2621.06 4.053 13.85 2.76
(3) 600–1200 82,832 6551.23 10.13 16.99 3.39

(4) 1200–2400 203,181 16,069.71 24.84 73.72 14.71
(5) 2400> 465,328 36,803.0 56.90 396.28 79.1

Acronyms stand for: the state wildlife organization of Amol County (SWOAC) [52], the state meteorological
organization of Amol County (SMOAC) [53]. (ASTER DEM) The advanced spaceborne thermal emission and
reflection radiometer (ASTER) onboard the national aeronautics and space administration’s (NASA’s) Terra spacecraft
provides digital elevation model (DEM) [54].
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Figure 3. Sixteen input forest fire factors used in the artificial neural network (ANN) method:
(a) normalized difference vegetation index (NDVI), (b) distance to village, (c) topographic wetness
index (TWI), (d) annual rainfall, (e) land form, (f) altitude, (g) distance to stream, (h) plan curvature,
(i) slope aspect, (j) land use, (k) wind effect, (l) annual temperature, (m) slope degree, (n) distance to
road, (o) potential solar radiation, (p) recreational areas.

2.3. Data Generation for Training and Testing

In this subsection, we summarise the generation process of our training and test data. The polygons
of the forest fires in the study area were generated based on GPS data (obtained from the state wildlife
organization) along with the hotspots of Moderate Resolution Imaging Spectroradiometer (MODIS)
(NASA, Goddard Space Flight Center, Maryland, USA). Using MODIS fire detection data is common,
and used in several current studies, to specify the location and the time of forest fires [55–57].
Our investigation resulted in 34 forest fire GPS polygons that were evaluated by the MODIS sensor
during the 2012–2017 timeframe (see Figure 1). Of these forest fire polygons, we randomly selected
70% (12,195 pixels) as training data and 30% (5226 pixels) for the validation section using ten-fold
cross-validation (CV) (see Figure 4). We used the ten-fold CV approach to deal with the randomness
adverse effects on the forest fire susceptibility modelling [58]. The forest fire polygons were randomly
divided into ten folds of approximately 1742 pixels. Technically speaking, if we have the dataset D and
divide it randomly into k number of the same folds of D1, D2, . . . , Dk. Then, the model is trained k times
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and each time t ∈ (1, 2, . . . , k). For the time of t, the model is run with the dataset of D lacking of the
subset of Dt, and validated with Dt [59]. Thus, three of the folds were chosen each time for validation
and other seven folds were used for training the model. This process was repeated for every fold in
our inventory dataset of the forest fire. Although most researchers used ten folds, the number of folds
in the spatial applications is often selected by the user without any empirical evidence. The authors of
Reference [60] used a three-fold CV approach. Whereas, in Reference [61] they selected a five-fold for
their training and validation aims. We selected ten folds for the cross validation because of the large
volume of our inventory dataset. Therefore, the outputs of the forest fire susceptibility modelling in
this study were based on the ten-fold CV that resulted in the highest accuracies in both the training
and the validation sections (see Sections 3.1 and 4.1).
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3. Workflow

3.1. Forest Fire Susceptibility Mapping Using Artificial Neural Network (ANN)

The ANN method is considered to be one of the most commonly used ML methods to assess
susceptible areas of forest fires [28]. Generally, ANNs mimic human brain performance, and they can
solve complex nonlinear problems with multiple numbers of components and variables [62]. ANNs also
can find patterns and discover the trends of complex issues [63]. In the present study, to create an index
for assessing forest fires, a model was used with the ANN method using a multilayer perceptron (MLP)



Fire 2019, 2, 50 12 of 27

architecture and trained with the backpropagation algorithm (BPA), which is considered as the most
common algorithm for the ANN method. The MLP architecture consists of several hidden layers
between the input and output layers. The number of hidden layers of a neural network depends on
the complexity of the problem [64]. For our case, the feed-forward network was made up of an input
layer with 16 neurons (input factors), one hidden layer (28 neurons) and one output layer as a network
structure of 16-28-1 (see Figure 5). The number of 28 hidden layers was determined through 3-fold CV
on a range of (12, 18, 28 neurons).
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The training dataset consists of forest fire and non-forest fire areas containing sixteen inputs, namely,
slope aspect, slope degree, altitude, plan curvature, landform, TWI, annual temperature, potential solar
radiation, wind effect, NDVI, distance to village, land use, distance to road, recreational areas, annual rainfall,
and distance to stream. Mapping forest fire susceptibility using the described ANN method consists of
a three-stage process, namely, training, allocation, and testing the values of each pixel of an input layer
were presented to the neural network along with the values of the training dataset. Each of the fifteen
neurons in the input layer (y1, y2, . . . , y16) characterized an attribute of the input data and transferred the
signal to the corresponding connected neurons (z1, z2, . . . , z9) in our hidden layer. The total input signal to
the zx neuron (in the hidden layer) can be defined as Equation (1) [65].

z(in)x =
16∑
1

uix yi + ux (1)

where, uix is the weighted value that came from the ith input neuron and ux is the corresponding bias
value. The activation of each neuron in this layer is computed separately and transferred to the next
neuron, which is the output neuron. Equation (2) presents how the output neuron O catches the values
from the hidden layer.

O(in) =
28∑
1

z j w j + wo (2)

where, zj is the jth resulting value from Equation (1), wj is the weight and wo is the corresponding bias
value [66]. The calculated output value from the ANN method is compared with the forest fire pixel
values, which are considered as the target value t. The comparison is done for every terrain unit until
the overall error between t and the derived output value o is acceptable (minimum). The forest fire pixel
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values, which are considered as the target value t, were not used for training data earlier in the process.
The momentum parameter avoids divergence during the process, and has a useful role in increasing
the speed of convergence [67]. All weightings were updated by the backward process during each
cycle in order to minimize the error. The common activation functions used for the ANN method are
hyperbolic tangent and the logistic functions. For our case, the logistic function (see Equation (3)) was
selected, as the output of the function is an interval value varying from 0 to 1, which is more preferable
for a susceptibility map.

f(xi ) = (1 + e−xi)
−1 (3)

The transfer function f was a nonlinear sigmoid function that was used to the weighted sum
of the input data before the next layer. Different learning rates were applied from 0.1 to 0.9 and the
learning rate of 0.9 got a higher accuracy in forest fire susceptibility mapping. Several iterations were
tested, and 1000 iterations were selected as the optimal one in terms of both of accuracy and cost.
Finally, the hazard map was generated from the output values of the ANN method. The pixels with
values close to 1 have a higher probability of forest fires occurring and pixels with low values indicate
safer areas.

3.2. Social/Infrastructural Vulnerability Indexes

Choice of Indicators

There are several social indicators, such as education level, age, gender, and access to government
facilities and health services, that can indicate the level of a community’s ability to be deal with and
recover from natural hazards like forest fires [18,38]. In this research, 22 social vulnerability indicators
were selected based on the living standards and local conditions in our study area (see Table 3).
The dataset was obtained from the Iranian Bureau of Statistics 2017 census. Our study area consists of
20 villages with an estimated population of 2887. The least populated village only has 11 inhabitants,
and the most populated one has a population exceeding 1650. Since all villages belong to the same
county, they have approximately equal access to government support and facilities. However, there are
some indicators that vary between villages, e.g., the percent of the vulnerable population under 14 years
of age or 65 and older, and the percent of the unemployed people.

In this study, we also consider several susceptible areas and valued infrastructural assets and
resources within the study area that are prone to forest fires (see Table 4). There are also some people
who live temporarily (seasonal) or permanently in these areas. Roads and forest parks, for instance,
are frequented by visitors from all over the country and, mainly, from Tehran during the summer time.
On the other hand, since the occupation of most people in our study area is the livestock sector, there are
several barns in the depths of the forest areas, most of which are illegal. These barns are used to keep the
livestock during the fall and winter. As they are usually established in remote areas, it is more likely that
they are surrounded by or even engulfed in a fire during a forest fire event. Thus, eleven infrastructural
vulnerability indicators were also selected based on the situation of our study area. To consider the
spatial information of both the social and infrastructure indicators, the datasets need to be transferred
to a GIS environment and aggregated to layers. However, the indicators are represented by different
measurement scales (i.e., percentage and number) [68]. Thus, before being aggregated, they were
transformed into a continuous scale of common units with a linear standardisation method.

3.3. Aggregation of Different Indicators Using Geographic Information System Multi-Criteria Decision
Making (GIS-MCDM)

A GIS-MCDA [69] approach was used to account for the relative significance of each indicator
regarding forest fires in our study area. The weightings of social vulnerability and infrastructure
vulnerability were calculated separately. If all of the indicators are believed to have the same importance,
an equal weighting value should be used to obtain the total vulnerability [16]. Although different
indicators (e.g., age, employment and education) might have approximately equal importance when
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we consider the general context of vulnerability, their significance depends on the type of natural
hazard. MCDAs are practical approaches for a wide range of complex decision-making systems.

The set of X = (x1, x2, . . . , xn) was considered with n number of selected social indicators.
Experts compared each pair of indicators (xi and xj) in X. A value (aij) can also result from the
ratio of their weightings [70]. If the social indicator xi is preferred to xj, then aij > 1 and, conversely,
if xj is preferred to xi then aij < 1. A verbal description of the importance, introduced by Saaty to
compare various indicators in a pairwise manner, is given in Table 2. The values vary from 1, for equal
importance, to 9, for extreme importance. For i and j = 1,2, . . . ,n, and any aij > 0 we have aji = 1

ai j

(reciprocal property). The resulting indicator weightings (w1, w2, w3, . . . ,wn) have two conditions,

namely: 0 ≤ wk ≤ 1 and
n∑

k=1
wk = 1

Therefore, the pairwise comparisons are structured in a matrix, and the matrix’s elements are
between 1/9 and 9. The AHP method can integrate both quantitative and qualitative dimensions of
a decision-making problem [71]. The method is also able to differentiate between our indicators and to
support the comparison of the performance of them with few calculations [72].

1 a12 . . .
1

a12
1 . . .

. . . . . . 1

a1i . . . a1 j . . . a1n
a2i . . . a2 j . . . a2n

. . . . . . . . . . . . . . .
1

a1i
1

a2i
. . .

. . . . . . . . .
1

a1 j

. . .
1

a1n

1
a2 j

. . .
1

a2n

. . .

. . .

. . .

1 . . . ai j . . . ain
. . . 1 . . . . . . . . .
1

ai j

. . .
1

ain

. . .

. . .

. . .

1
. . .
1

a jn

. . .
1
. . .

a jn
. . .
1


(4)

Table 2. The scale of Intensity of Importance (IOI) [73].

IOI Description

1 Equal importance
3 Moderate importance
5 Strong or essential importance

7 Very strong or demonstrated
importance

9 Extreme importance
2,4,6,8 Intermediate values

Reciprocals Values for inverse comparison

If λmax is the maximum eigenvalue, the consistency ratio (CR) of the resulting weightings is
determined by CR = λmax − n/RI(n− 1) [74]. Where RI is the average random index, which for n =

2, 3, 4, 5, 6, 7 and 8, RI = 0.00, 0.52, 0.89, 1.11, 1.25, 1.35 and 1.40, respectively. A CR < 0.10 indicates
an acceptable consistency throughout the whole AHP process [75,76]. Using this process, we calculated
the pairwise comparison matrices for the decisions of our chosen field experts, who represented the
national university, the state wildlife organization, and the meteorological organization (their names
and affiliations are mentioned in the acknowledgments). Both the comparison matrices of social
vulnerability and infrastructure vulnerability passed the consistency test with overall CR scores of
0.055 and 0.024, respectively. Weightings are shown in the last column of Tables 3 and 4.
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Table 3. Social vulnerability indicators and resulting analytic hierarchy process (AHP) weights for
each indicator.

Indicators Sub-Indicators AHP Weights

Education

Speaking the official language (Persian) as a second language with limited
Persian proficiency (%) 0.045

Population that does not have any level of formal education or instruction
(%) 0.051

Population that does not have access to school\high school (%) 0.040

Housing

Houses older than ten years (%) 0.041
Houses without steel or concrete skeleton (%) 0.059

Houses with an area less than 75 (%) 0.007
Houses without garbage collection service (%) 0.006

Age

Population under 14 years or 65 and older (%) 0.064

Female

Female population (%) 0.035
Female-headed households (%) 0.047

Health services

The population that does not have access to health centres (%) 0.072
The population that does not have access to a family doctor (%) 0.021

The population that does not have access to a lab and pharmacy (%) 0.025

Facilities

Households without access to the public electricity network (%) 0.073
Households without access to drinking water from the public system (%) 0.050

Households without access to the public gas pipeline network (%) 0.033
Households without access to the sewerage system (%) 0.007
Households without access to the internet network (%) 0.034

The population that does not have access to the public transportation
system (%) 0.012

Fire station 0.201
Police station 0.034

Occupation

Unemployed population (%) 0.040

Table 4. Infrastructural vulnerability indicators and resulting AHP weights for each indicator.
All distances measures are based on meters.

Indicators Sub-Indicators AHP Weights

Industrial area

Mines 0.033
Livestock and poultry farming (nests) 0.242

The national power line 0.035

Recreational area

Forest parks with some amenities such as shelters for
temporary stays in the woods 0.103

Restaurants and buffets 0.067
Motels and Inns 0.095

Roads

The main road from Tehran to northern Iran mainly
used for transporting essential goods and tourists 0.060

Gravel roads mainly used by the local population
and illegal hunters 0.041

Agricultural area

Orchards, including walnut and apple gardens 0.136
Irrigated agriculture 0.088

Rain-fed agriculture mainly wheat and barley 0.097
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4. Results

4.1. The Predictive Performances and Resulting Hazard Map

In this subsection, we sought to spatially represent regions on the study area associated with
high susceptibility of forest fire. The ML component of the ANN method was used for susceptibility
modelling and mapping. For this goal, the output values of the ANN method were derived through
GIS spatial analysis and data aggregation models. As we trained the ANN method with burned area
polygons which including also ignition locations, the resulting susceptibility maps represent a measure
of the likelihood of ignition and the probability of spreading of forest fires based on considered
conditioning factors. Figure 6 shows the results of the forest fire susceptibility map from the applied
ML method. Concerning the spatial distribution, the probability of forest fires is higher in northern and
central areas where local people and tourists have accessibility to low-elevation forests. The natural
breaks classification method (or Jenks optimization) used in this study generates classes of similar values
separated by breakpoints. This is a common and effective method for categorizing the susceptibility
mapping results when we interpret values close to each class boundary (e.g., values between “Low”
and “Moderate” probability) [77]. Table 5 depicts the area and the percentage of each class of the
resulting forest fire map. The RMSE [78,79] was used to assess the model performance and Equation
(5) depicts the calculation:

RMSE = (
1
N

n∑
i=1

(ei − ei)
2)

0.5

(5)

where, ei and ei are the ith observed and results of the ANN method, respectively. The best derived RMSE
value based on the ten-fold CV was 0.145. Generally, small values of the RMSE show better performance
of the prediction model [80]. However, in order to validate the resulting forest fire susceptibility map,
we conducted a validation process based on the 5226 forest fire pixels (see Section 2.3) that were not
used for training in the utilized ANN method. The validation step aims to ensure the accuracy of the
resulting hazard map [76]. The spatial success of the hazard map was examined through the receiver
operating characteristics (ROC) curve, which is a common method for characterizing the quality of
deterministic and probabilistic prediction methods. This curve shows the trade-off between the false
positive rate and the true positive rate, by plotting the false positive rate on the X axis and the true
positive rate on the Y axis [24]. If the area under the curve (AUC) is close to one, this indicates that
the prediction model has a high quality. Our ROC curve consists of 5226 pixels reflecting known
and observed (by MODIS) forest fires in the study area. Figure 7 shows the results of comparing the
observed forest fires with the forest fire susceptibility map. The results of the ROC method for our
hazard map indicated accuracies fluctuate around 74% and the highest one based on the ten-fold CV
was an accuracy of more than 80%. This result was used to further analysis of the risk map generating.
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Table 5. The AHP weights for the resulting maps and corresponding classes with the absolute area and
the relative percentage of the region compared to the whole study area.

Resulted Maps AHP Weights Classes Area (ha) Area (%) AHP Weights

Forest fire 0.53 Very low 26,665.96 41.31 0.05
susceptibility Low 23,257.7 36.03 0.08

Moderate 14,399.16 22.31 0.22
High 215.28 0.33 0.64

CR = 0.03
Social vulnerability 0.29 Very low 62,998.69 97.41 0.6

Low 508.63 0.78 0.15
Moderate 177.87 1.52 0.26

High 983.73 2.27 0.42
CR = 0.03

Infrastructural 0.16 Very low 29,377.66 45.43 0.078
vulnerability Low 28,688.23 41.36 0.15

Moderate 6445.09 9.96 0.26
High 149.32 3.23 0.5

CR = 0.007 CR = 0.005
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Figure 7. The receiver operating characteristics (ROC) curve and sensitivity value for the resulting
hazard map.

4.2. Social/Infrastructural Vulnerability Mapping

To obtain social and infrastructural vulnerability maps, the weightings derived from the AHP
method were used for data aggregation within a GIS environment. A buffer zone of 200 m was used
for residential areas, and different multibuffers were used for infrastructural indicators based on their
importance regarding forest fires. All indicators were prepared as GIS layers and then aggregated
with a weighted overlay technique. Figure 8a and b present the vulnerability maps resulting from
social and infrastructural indicators, respectively. The social vulnerability map was classified into five
classes of vulnerability using the natural breaks classification method. The infrastructural vulnerability
map, on the other hand, was classified into four categories of vulnerability using the same method of
classification. The natural breaks classification method and the number of classes for categorisation
were selected based on literature and expert knowledge. Table 5 shows the area of the respective
classes for both the social and infrastructural vulnerability maps.
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4.3. Generation of the Risk Map

Forest fires will have adverse impacts on different types of elements-at-risk. Thus, it is crucial to
consider the forest fire threat for different sectors [9]. Moreover, all related stakeholders should be
involved in a comprehensive forest fire risk mapping [81]. For this reason, we considered 16 relevant
forest fire factors, 22 social vulnerability indicators, and 11 infrastructural indicators, to ensure the
inclusion of the most important factors that play a role in the forest fire risk assessment in our study
area. The hazard map was generated using an ANN method because we had access to sufficient
inventory data for training and testing matters. However, social and infrastructural vulnerability maps
were created using a GIS-MCDA method, which is one of the more common methods for vulnerability
and susceptibility mapping in a wide range of disciplines [82]. Mapping areas with a high probability
of forest fire risk can be carried out by aggregating the hazard map and the social/infrastructural
vulnerability maps. The GIS-MCDA approach was, again, used to specify the relative significance
of indicators and to aggregate the forest fire susceptibility, infrastructural vulnerability, and social
vulnerability to generate the final risk map. By using the AHP method, we calculated the weights
resulting from the pairwise comparison matrices for the three resulting maps and the corresponding
classes. The pairwise comparison matrices were filled by the same experts who were mentioned in
Section 3.3. All resulting maps were prepared as GIS layers and then overlaid with the respective AHP
weights, which were almost 54% for the forest fire susceptibility, 30% for the social vulnerability, and
16% for the infrastructural vulnerability layer (see Table 5). The final forest fire risk map was classified
by natural breaks (‘Jenks’) and is represented in Figure 9 via four classes. This classification method
yields classes that are based on natural groupings of the pixel values. Class breaks are specified in
a way that the resulting groups are most similar and the differences between classes are maximized.
Area and percentage of the forest fire risk map classes are represented in Table 6. The forest fire risk
map reflects both the forest fire susceptibility (including the likelihood of ignition and the probability
of spreading) and social/infrastructural vulnerability. The forest fire risk map shows that the slope
aspect factor played a key role in the susceptibility of spreading, consequently raises the forest fire
risk. For the other aspects, the susceptibility of a forest fire occurring is high due to the impact of
other conditioning factors. Therefore, the applied ANN method could be trained well with all factors
based on the inventory forest fire data and succeeded in predicting high forest fire susceptible areas.
High temperature and low rainfall in the northern regions of the study area obviously increased
the susceptibility of the forest fire ignition and spread. Although steep areas are generally more
susceptible for forest fires, the human activity close to the main road (even with more moderate slopes
in the northern parts) had a primary effect on the susceptibility and the risk map. The interaction of
settlement areas (high social vulnerability) and infrastructural vulnerable areas with the high and
moderate forest fire susceptibility resulted in high risk regions in the forest fire risk map (see Figure 9).

Table 6. Area and percentage of forest fire risk classes compared to the whole study area.

Resulted Map Classes Area (ha) Area (%)

Forest fire susceptibility Very low 24,930.87 38.62
Low 23,919.53 37.06

Moderate 14,958.09 23.17
High 729.61 1.14
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5. Discussion and Conclusion

Mapping the forest fire risk posed to human life and properties is an essential component of
emergency land management, forest fire prevention, mitigation of adverse impacts, and response and
recovery management [83]. As already discussed in the introduction section, forest fire susceptibility
maps have often been used to priorities investments in forest fire prevention, and also for preparation
planning. However, even considering social vulnerabilities leads to more effective forest fire
risk management [84]. Since such risk maps can illustrate the location of the elements-at-risk,
besides communities who have a lower capacity to deal with the fire and the spatial correlations
between communities and fires, they are also more useful for land managers and firefighters for
emergency planning in combating fires in real time. Therefore, a comprehensive forest fire mitigation
and disaster management plan should concentrate on areas where there is an overlap between
populations and their more vulnerable properties and a higher forest fire risk. In this regard, the forest
fire susceptibility map of our study was generated using environmental variables. We considered
the most available factors and prepared them as input data for the model. Training and testing
data were generated using field survey GPS polygons and MODIS hotspot data. The field survey
was done by the SWOAC [52]. According to the literature, a wide range of approaches have been
used to predict areas with potential susceptibility to forest fires. Thus, different methods have been
applied by various researchers to explore the potential role of relative factors that point to fire events.
In this research, we generated a model using an ANN method with an MLP architecture that was
trained with the BPA through ten-fold CV. The main limitation that we faced in this study was the
dataset used. The fire inventory was from MODIS with a resolution of 1000 m while the resolution of
the condition factors was 30 m. The dataset from the SWOAC includes the polygons with detailed
borders. However, this documentation does not include small forest fires. Therefore, for the cases
of the extensive wildfires, we considered the GPS polygons rather than those of from MODIS. Still,
for the small events, the MODIS dataset was applied. Thus, the dataset of the MODIS is more accurate
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in terms of the number of the forest fires. The GPS dataset is more reliable regarding the shape of the
polygons of burned areas because of the low resolution of MODIS. Consequently, the integration of
both sources resulted in a more reliable inventory dataset of the location and the extension area of the
wildfires. Nevertheless, the resolution of the resulting inventory dataset was not the same as that of
the input data. Therefore, this difference in the resolution resulted in some uncertainties, which are
difficult to quantify.

The model was developed and trained based on the previous forest fire events between 2012
and 2017, and the relevant factors contributing to the forest fire. The performance of the model was
evaluated by the RMSE, and the resulting forest fire susceptibility map was validated using the ROC
curve. Both of these measures showed acceptable accuracies of the results of the model. The resulting
forest fire susceptibility map with the highest accuracy revealed that the southern part of our study
area is more susceptible to forest fires in the future. This matter illustrates that the factors of annual
rainfall and annual mean temperature play an important role by creating extreme dryness, which is
a crucial factor determining forest fires [85]. The areas with high forest fire susceptibility also have
a close spatial correlation with the previously recorded forest fire events.

Although environmental variables contributing to the forest fire played an essential role in the
assessment of susceptible forest fire areas, they are not the only reason for both forest fire susceptibility
and risk. As some of the forest fires in in our case study are reported to be a result of human activity
and the local people in particular SWOAC [52], considering the areas and some specific sites of human
activity such as recreational areas can help to have a better understanding of the results of the forest
fire susceptibility and risk. The distance from population concentration is considered to be relevant
to human activity. Therefore, the closer regions to the settlements and population concentration can
indicate a higher presence of human activity and consequently more susceptibility and risk of forest
fire [31]. Thus, the population density and social vulnerability indicators were used, which were gained
from different sources and, mostly, from census data. We also consider the areas with infrastructural
valued assets and resources that are recognized as public/private properties. All indicators were
weighted and ranked using expert knowledge and pairwise comparison matrices. Mostly, local experts
were asked to contribute to this study, and they are mentioned in the acknowledgements section.
The reason for selecting local experts to weight the indicators is that they are more familiar with the
existing situation in our study area. These experts have different field backgrounds, like geography,
geomorphology, meteorology, and wildlife. The selection of social vulnerability indicators may have
some limitations, and the authors cannot be sure to have considered all relevant indicators that
determine social vulnerability. However, we tried to localise the information that defines vulnerability
in our case study. The social vulnerability generally depends on different characteristics, e.g., the country
that the study area is located in, government support, and social features. Thus, the indicators may vary
among different nations. The average life expectancy of houses, for instance, is a range between 10 and
15 years in our case study area. As this measure depends on the materials and different standards
that are used for buildings, it may vary in other countries and even states. However, the concept of
social vulnerability is a stable concept, and a large segment of the indicators are the same in different
communities (e.g., age, gender and occupation). As we used the most relevant factors regarding forest
fires and a large number of social/infrastructural vulnerability indicators, the performed methodology
can easily be generalized and adapted to different locations like Australia, California, and Spain – i.e.,
fire-prone areas. Thus, the transferability of the method only requires minor changes and localization
regarding social vulnerability indicators.

The novelty of our study is using both data-based ML and knowledge-based multi-criteria decision
analyses for producing the forest fire risk map. Although there are several instances of using these
methodologies separately for risk map generation, we provide an integration of using both methods
for this aim. The reasons for using different methods for forest fire susceptibility mapping and the
production of social/infrastructural vulnerability maps were described in Section 4.3. Our results
emphasize the importance of considering a social/infrastructural vulnerability assessment when
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creating forest fire risk maps. Both resulting susceptibility and vulnerability maps were overlayed and
analysed to understand how they correspond.

We propose that our future research can consider biodiversity and its contributing role in forest fires.
For the detection of different tree species, convolutional neural networks can be applied. This method
is a deep learning method, but it consists of a more significant number of various layers and requires
a massive amount of training data. We also want to use other ML methods such as support vector
machines and random forest for forest fire susceptibility modelling and mapping purposes.
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44. Franěk, J.; Kresta, A. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12,
164–173. [CrossRef]

45. Alexakis, D.; Sarris, A. Environmental and human risk assessment of the prehistoric and historic archaeological
sites of western Crete (Greece) with the use of GIs, remote sensing, fuzzy logic and neural networks.
In Proceedings of the Euro-Mediterranean Conference, Limassol, Cyprus, 29 October–3 November 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 332–342.

46. Gaither, C.J.; Poudyal, N.C.; Goodrick, S.; Bowker, J.; Malone, S.; Gan, J. Wildland fire risk and social
vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. For. Policy
Econ. 2011, 13, 24–36. [CrossRef]

47. Kolden, C.A.; Abatzoglou, J.T. Spatial Distribution of Wildfires Ignited under Katabatic versus Non-Katabatic
Winds in Mediterranean Southern California USA. Fire 2018, 1, 19. [CrossRef]

48. Lautenberger, C. Mapping areas at elevated risk of large-scale structure loss using Monte Carlo simulation
and wildland fire modeling. Fire Saf. J. 2017, 91, 768–775. [CrossRef]

49. Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine
learning approach. Fire Saf. J. 2019, 104, 130–146. [CrossRef]

50. Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of
the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [CrossRef]
[PubMed]

51. Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the minudasht forests,
golestan province. Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [CrossRef]

52. SWOAC. A National Project of Mazandaran Province; SWOAC: Mazandaran, Iran, 2018.
53. SMOAC. A National Project of Mazandaran Province; SMOAC: Mazandaran, Iran, 2018.
54. Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and accuracy

assessment. ISPRS J. Photogramm. Remote. Sens. 2003, 57, 356–370. [CrossRef]
55. Castruccio, S.; Nadzir, M.S.M.; Dominick, D.; Thota, A.; Crippa, P.; Mead, M.I.; Latif, M.T.; Nadzir, M.S.M.

Impact of the 2015 wildfires on Malaysian air quality and exposure: A comparative study of observed and
modeled data. Environ. Res. Lett. 2018, 13, 044023.

56. Cusworth, D.H.; Mickley, L.J.; Sulprizio, M.P.; Liu, T.; E Marlier, M.; DeFries, R.S.; Guttikunda, S.K.; Gupta, P.
Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India.
Environ. Res. Lett. 2018, 13, 044018. [CrossRef]

http://dx.doi.org/10.1080/15230406.2015.1029520
http://dx.doi.org/10.1111/1540-6237.8402002
http://dx.doi.org/10.1093/jurban/79.3.308
http://www.ncbi.nlm.nih.gov/pubmed/12200499
http://dx.doi.org/10.1016/j.jag.2006.01.003
http://dx.doi.org/10.3390/ijerph15010140
http://www.ncbi.nlm.nih.gov/pubmed/29337915
http://dx.doi.org/10.1553/giscience2017_01_s27
http://dx.doi.org/10.1016/j.catena.2013.11.014
http://dx.doi.org/10.1016/S2212-5671(14)00332-3
http://dx.doi.org/10.1016/j.forpol.2010.07.009
http://dx.doi.org/10.3390/fire1020019
http://dx.doi.org/10.1016/j.firesaf.2017.04.014
http://dx.doi.org/10.1016/j.firesaf.2019.01.006
http://dx.doi.org/10.1007/s00267-012-9961-z
http://www.ncbi.nlm.nih.gov/pubmed/23086400
http://dx.doi.org/10.1007/s12665-014-3502-4
http://dx.doi.org/10.1016/S0924-2716(02)00164-8
http://dx.doi.org/10.1088/1748-9326/aab303


Fire 2019, 2, 50 26 of 27

57. Cattau, M.E.; Marlier, M.E.; DeFries, R. Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for
reducing fires on oil palm concessions in Indonesia from 2012 to 2015. Environ. Res. Lett. 2016, 11, 105007.
[CrossRef]

58. Gilks, W. Markov Chain Monte Carlo in Practice; Chapman and Hall/CRC: London, UK, 1995.
59. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques;

Morgan Kaufmann: Burlington, MA, USA, 2016.
60. Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve

the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [CrossRef]
61. Wiens, T.S.; Dale, B.C.; Boyce, M.S.; Kershaw, G.P. Three way k-fold cross-validation of resource selection

functions. Ecol. Model. 2008, 212, 244–255. [CrossRef]
62. Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire Risk Assessment Using Neural Network and

Logistic Regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [CrossRef]
63. Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M.; Simic, A.; Snyder, J. Landslide detection and

susceptibility mapping using lidar and an artificial neural network approach: A case study in the cuyahoga
valley national park, Ohio. Landslides 2016, 13, 467–484. [CrossRef]

64. Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification
of remotely-sensed multi-spectral imagery. Int. J. Remote. Sens. 1995, 16, 3033–3058. [CrossRef]

65. Neaupane, K.; Achet, S. Use of backpropagation neural network for landslide monitoring: A case study in
the higher Himalaya. Eng. Geol. 2004, 74, 213–226. [CrossRef]

66. Bi, R.; Schleier, M.; Rohn, J.; Ehret, D.; Xiang, W. Landslide susceptibility analysis based on ArcGIS and
Artificial Neural Network for a large catchment in Three Gorges region, China. Environ. Earth Sci. 2014, 72,
1925–1938. [CrossRef]

67. Pascale, S.; Parisi, S.; Mancini, A.; Schiattarella, M.; Conforti, M.; Sole, A.; Murgante, B.; Sdao, F. Landslide
susceptibility mapping using artificial neural network in the urban area of senise and san costantino Albanese
(Basilicata, Southern Italy). In Proceedings of the International Conference on Computational Science and Its
Applications, Ho Chi Minh City, Vietnam, 24–27 June 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 473–488.

68. De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria
approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [CrossRef]

69. Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65.
[CrossRef]

70. Entani, T.; Sugihara, K. Uncertainty index based interval assignment by Interval AHP. Eur. J. Oper. Res. 2012,
219, 379–385. [CrossRef]

71. Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application
in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [CrossRef]

72. Vidal, L.-A.; Marle, F.; Bocquet, J.-C. Using a Delphi process and the Analytic Hierarchy Process (AHP) to
evaluate the complexity of projects. Expert Syst. Appl. 2011, 38, 5388–5405. [CrossRef]

73. Saaty, T.L.; Vargas, L.G. Prediction, Projection, and Forecasting: Applications of the Analytic Hierarchy Process in
Economics, Finance, Politics, Games, and Sports; Kluwer Academic Pub: Boston, MA, USA, 1991.

74. Saaty, T.L. Some Mathematical Concepts of the Analytic Hierarchy Process. Behaviormetrika 1991, 18, 1–9.
[CrossRef]

75. Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York,
NY, USA, 2016.

76. Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. Multi-criteria risk evaluation by integrating an analytical
network process approach into gis-based sensitivity and uncertainty analyses. Geomat. Nat. Hazards Risk
2018, 9, 127–151. [CrossRef]

77. Ghorbanzadeh, O.; Rostamzadeh, H.; Blaschke, T.; Gholaminia, K.; Aryal, J. A new GIS-based data mining
technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for
land subsidence susceptibility mapping. Nat. Hazards 2018, 1, 497–517. [CrossRef]

78. Bui, D.T.; Pradhan, B.; Löfman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh
province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45,
199–211.

http://dx.doi.org/10.1088/1748-9326/11/10/105007
http://dx.doi.org/10.1016/j.ecolmodel.2013.12.012
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.005
http://dx.doi.org/10.1007/s12524-016-0557-6
http://dx.doi.org/10.1007/s10346-015-0587-0
http://dx.doi.org/10.1080/01431169508954607
http://dx.doi.org/10.1016/j.enggeo.2004.03.010
http://dx.doi.org/10.1007/s12665-014-3100-5
http://dx.doi.org/10.5194/hess-22-373-2018
http://dx.doi.org/10.1016/j.progress.2003.09.002
http://dx.doi.org/10.1016/j.ejor.2012.01.010
http://dx.doi.org/10.1016/j.eswa.2018.08.049
http://dx.doi.org/10.1016/j.eswa.2010.10.016
http://dx.doi.org/10.2333/bhmk.18.29_1
http://dx.doi.org/10.1080/19475705.2017.1413012
http://dx.doi.org/10.1007/s11069-018-3449-y


Fire 2019, 2, 50 27 of 27

79. Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A comparative study of different machine
learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India).
Environ. Model. Softw. 2016, 84, 240–250. [CrossRef]

80. Popoola, O.M.; Munda, J.; Mpanda, A. Residential lighting load profile modelling: Anfis approach using
weighted and non-weighted data. Energy Effici. 2018, 11, 169–188. [CrossRef]

81. Abrams, J.; Nielsen-Pincus, M.; Paveglio, T.; Moseley, C. Community wildfire protection planning in the
american west: Homogeneity within diversity? J. Environ. Plan. Manag. 2016, 59, 557–572. [CrossRef]

82. Feizizadeh, B.; Blaschke, T. Landslide risk assessment based on gis multi-criteria evaluation: A case study in
bostan-abad county, Iran. J. Earth Sci. Eng. 2011, 1, 66–77.

83. Haas, J.R.; Calkin, D.E.; Thompson, M.P. A national approach for integrating wildfire simulation modeling
into Wildland Urban Interface risk assessments within the United States. Landsc. Urban. Plan. 2013, 119,
44–53. [CrossRef]

84. Solangaarachchi, D.; Griffin, A.L.; Doherty, M.D. Social vulnerability in the context of bushfire risk at the
urban-bush interface in Sydney: A case study of the Blue Mountains and Ku-ring-gai local council areas.
Nat. Hazards 2012, 64, 1873–1898. [CrossRef]

85. Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J.M. Forest fire danger projections in the
mediterranean using ensembles regional climate change scenarios. Clim. Chang. 2014, 122, 185–199.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.envsoft.2016.07.005
http://dx.doi.org/10.1007/s12053-017-9557-9
http://dx.doi.org/10.1080/09640568.2015.1030498
http://dx.doi.org/10.1016/j.landurbplan.2013.06.011
http://dx.doi.org/10.1007/s11069-012-0334-y
http://dx.doi.org/10.1007/s10584-013-1005-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Study Area 
	Data Used in the Analysis 
	Data Generation for Training and Testing 

	Workflow 
	Forest Fire Susceptibility Mapping Using Artificial Neural Network (ANN) 
	Social/Infrastructural Vulnerability Indexes 
	Aggregation of Different Indicators Using Geographic Information System Multi-Criteria Decision Making (GIS-MCDM) 

	Results 
	The Predictive Performances and Resulting Hazard Map 
	Social/Infrastructural Vulnerability Mapping 
	Generation of the Risk Map 

	Discussion and Conclusion 
	References

