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Abstract: Understanding the combustion dynamics of fuels, and the generation and propagation
of smoke in a wildland fire, can inform short-range and long-range pollutant transport models,
and help address and mitigate air quality concerns in communities. Smoldering smoke can cause
health issues in nearby valley bottoms, and can create hazardous road conditions due to low-visibility.
We studied near-field smoke dynamics in a prescribed fire of 3.4 hectares of land in a boreal black
spruce forest in central Alberta. Smoke generated from the fire was monitored through a network
of five field-deployable micro sensor systems. Sensors were placed within 500-1000 m of the fire
area at various angles in downwind. Smoke generated from flaming and smoldering combustions
showed distinct characteristics. The propagation rates of flaming and smoldering smoke, based
on the fine particulate (PM; 5) component, were 0.8 and 0.2 m/s, respectively. The flaming smoke
was characterized by sharp rise of PM, 5 in air with concentrations of up to 940 pg/m?3, followed by
an exponential decay with a half-life of ~10 min. Smoldering combustion related smoke contributed
to PM; 5 concentrations above 1000 ug/m3 with slower decay half-life of ~18 min. PM; 5 emissions
from the burn area during flaming and smoldering phases, integrated over the combustion duration
of 2.5 h, were ~15 and ~16 kilograms, respectively, as estimated by our mass balance model.

Keywords: air quality; smoke dynamics; fine particulate matters; flaming combustion; smoldering
combustion; micro sensor system; smoke propagation model; prescribed fire

1. Introduction

Smoke created from wildland fires causes air quality concerns for communities across North
America. Depending on the location, duration, and volume of wildland fires, public health can be
subject to moderate to severe risks at nearby and/or distant locations for short to extended periods.
Emissions from the burning of biomass in wildland areas primarily generate carbon dioxide (CO5),
carbon monoxide (CO), particulate matters (PM), volatile organic compounds (VOC), nitrous oxides
(NOy), ammonia (NHj3), small amounts of sulphur dioxide (50O,), and methane (CHjy) [1,2]. It has
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been reported that almost 90% of carbon emitted from wildland fires are of the form of CO, [3-5].
The emitted CO; is estimated to contribute up to 40 ppm of the global CO, budget [1]. VOCs emitted
from wildland fire, although a small fraction of the total emission, may be associated with adverse
health effects and can be a source of ozone formation in warmer summer conditions in the presence of
solar radiation. Fine particulate matter with aerodynamic diameters of less than 2.5 um (PM; 5) emitted
from wildland fires can enhance the ambient concentration levels by orders of magnitude, and is
generally regarded as the most important concern from wildfire smoke [6]. In Alberta, the last five
years’ average of wildland fires is above 200,000 hectares/year, with 883,411 hectares of land burned
by 989 fires in the year of 2019 [7]. These fires frequently cause elevated levels of particulate matter
at population centres that are well above levels recommended by the Alberta Ambient Air Quality
Guideline [8,9].

Fuel typesin a typical boreal forest are categorized as canopy, shrub, non-woody vegetation, woody,
litter-lichen-moss, and ground fuels [10,11]. Fire behaviour and emission factors during a wildland
fire strongly depend on the distribution of fuel types in the fuel-bed, fire-weather, and atmospheric
conditions. Combustion of fuels of lower moisture content and larger surface to volume ratio (often
less than 1 cm in diameter) produce a significant initial flaming phase where fuel temperature rises
from 500 °C to 1900 °C [11-13]. Plants and organic fuels release volatile combustible gases during
this phase and create a sustained fire front that spreads with the wind. Flaming combustion is
succeeded by a residual smoldering combustion (RSC) phase when emissions of combustible gases
are reduced, with a subsequent reduction of temperature and fire spread rate [14,15]. Large diameter
woody fuels, duff, organic soils, and rotten logs are typical examples where fuel consumption occurs
predominantly by smoldering. The smoldering combustion of organic soils (peat) and duff in Black
Spruce dominated Boreal peatlands is a slower moving process compared to flaming [16]. Relative
humidity, temperature, and wind speed also play roles in the dynamics of combustion and the spread
of fires. In Boreal peatlands under normal moisture conditions, low severity peat burns typically
release 2-3 kg C/m? during wildfires in the smoldering phase, a value that increases to 10-85 kg C/m?
under dry conditions [17].

Smoke generated by the flaming and smoldering phases of fire differ significantly in their
characteristics. The flaming phase is characterized by higher combustion efficiency, typically measured
as modified combustion efficiency (MCE) [3]. Smoke plumes generated during the flaming phase are
very buoyant due to their high temperature and are lofted to higher atmospheric levels, where they
are responsible for long range transport of pollutants [18-20]. Intense heat induced aerodynamics
in the flaming phase may also result in modification of the local meteorological wind and temperature
fields [21]. The smoldering phase of combustion is characterized by a lower MCE that produces higher
fractions of CO, organic aerosols (OA), CHy, and non-methane organic compounds (NMOC) [22].
Smoke generated during smoldering is highly visible due to higher content of condensed vapor and
particulates [11]. Absence of flaming induced intense heat results in smoke propagating near ground
level, sometimes concentrating on valley bottoms or depressions. Smoke from smoldering has been
attributed to air quality concerns and severe low-visibility traffic hazards [11,23,24].

There are knowledge gaps in understanding fuel consumption during flaming and smoldering
combustion for different types of fuels. This results in large uncertainties in estimating effective
emission factors for individual species in wildland fire generated smoke [3,25]. Observation of
smoke from airborne and tower based measurements exclude the smoke propagation near the ground
level. Ground level measurements, especially in near-field regions of a wildland fire, are inherently
challenging due to logistical constraints. Apart from safety involved in accessing to the close vicinity
of an active fire area, operational constraints (e.g., requirements of power and controlled ambience for
equipment, installation, safety of operation) of most air-pollutant analyzers prohibit their deployment
in near-field wildland fire studies. Smoke generated from smoldering, in many cases, are analyzed
in laboratory environments to supplement field measurements [3]. As a result, although the evolution
of flaming and smoldering phases of fire are extensively reported in literature, smoke dynamics during
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and immediately after the spread of a firefront in relation to fuel types are not well understood. Better
identification and characterization of flaming and smoldering smoke can enhance the modeling of
wildland fire smoke propagations in micro level as well as macro level long range transports [25].

Recent developments in low-cost air monitoring sensors have opened up new possibilities
of expanding the coverage of air monitoring to remote areas in a cost-effective approach [8,26].
These sensor systems, typically of the size of a shoebox, have energy consumptions of 5-10 watts,
and cost significantly less than conventional analyzer systems. In this paper, we describe the deployment
of custom-built low-footprint field deployable air monitoring micro systems in a prescribed fire of
boreal forest in central Alberta, undertaken in May 2019, to study fuel-smoke dynamics through
near field real-time measurements. Our analysis of PM, 5 measurements by a network of five micro
sensor systems identifies and characterizes smoke from both flaming and smoldering phases of the fire.
We show that smoke intensity can have strong spatial distributions, and smoke from smoldering
origin may have a sustaining presence in the near-field regions of a fire. We demonstrate the practical
use of low-cost sensor systems to parameterize fine particulate matter emissions from flaming and
smoldering phases of combustion estimated through a mass balance model.

2. Materials and Methods

2.1. Study Area

The prescribed fire was conducted on 3.4 hectares of land on boreal forest in central Alberta
(Pelican Mountain unit 5). The forest area was predominantly covered by black spruce, with canopy
closure of over 50%. The ground consisted of thick organic soil covered mostly with feathermosses with
a minor presence of Sphagnum mosses. A well-mixed boundary layer with predominant southerly
winds at speeds varying in ranges of 5 km/h up to 23 km/h (10 m above ground level open wind
speed) with occasional gusts were measured by a sonic anemometer placed in the south of the area.
The timing of the fire was late afternoon on 11 May 2019. Fire was ignited through a helicopter-borne
torch along the ignition line at the south perimeter of the area. The fire behavior and the spread to
the north direction was recorded through in-situ measurements. Details can be found in Thompson
et al. [27]. Five micro-stations were deployed at downwind locations of the prescribed fire zone.
Four micro-stations were placed approximately at distances of 500 m from unit 5 at northeast, north,
northwest, and west-northwest directions, respectively. One micro-station was placed at approximately
1 km distance in northwest direction. Micro-stations were transported to deployment sites through
helicopters, and exact locations of deployments were subject to site accessibility. All micro-stations
were deployed approximately twenty-four hours before the prescribed fire to monitor the background
air quality in the area. Figure 1 shows the micro-station deployment locations.

Sensor Locations
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Figure 1. (a) Image of Pelican Mountain unit 5 prescribed fire area, micro-station deployment locations
are marked; (b) location coordinates of unit 5 and the sensor systems, cross mark (x) in the figure refers
to the assumed center of the fire area from where all distances are measured.
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2.2. Micro Sensor Systems

Smoke dynamics during and after the prescribed fire was monitored by a network of five field
deployable, low-footprint, sensor equipped micro air monitoring systems. These systems, referred to
as micro-stations in this paper, were custom made by Alberta Environment and Parks for emergency
deployments and remote area monitoring [8]. The shoebox-sized micro-stations can be conveniently
transported and placed on tripods at remote forest locations. They are designed to run on solar
power, with a battery back-up time of up to 72 h. The micro-stations were equipped with sensors for
detection of airborne particulate matter (PM) with aerodynamic diameters of up to 1, 2.5, and 10 pm
(PM;, PM; 5, and PM;, respectively). Some micro-stations were also equipped with additional
sensors for monitoring of ozone, carbon dioxide, formaldehyde, and volatile organic compound (VOC).
All micro-stations had ambient temperature and humidity sensors. Plantower PMS6003 and QS1005
sensors were used for PM detection. These sensors have a manufacturer specified consistency error of
+10 pg/m? with resolutions of 1 pg/m3. Aeroqual SM50 ozone sensors were used with a resolution of
12-bit for analog signals. Sensor deployment details are provided in Table 1.

Table 1. Micro-station deployment details. Distances are measured from an assumed center location of
the fire-area, shown in Figure 1.

Micro-Station Serial Location Latitude Longitude Distance (m)
uS 303-100 North 55.7219 -113.573 415
uS 303-200 NwW 55.7214 -113.578 474
uS 303-300 NE 55.7211 -113.566 567
uS 401-100 WNW 55.7296 -113.581 529
uS 401-200 NwW 55.7245 -113.584 973

2.3. Data Analysis and Models

2.3.1. Smoke Propagation

We used a mass balance model to describe the smoke dynamics and its relations to the types of fuel
consumption. Smoke dynamics were monitored through measurements of PM, 5 at the five locations
where micro-stations were deployed. Time-series concentration profiles showed occurrences of three
smoke wavefronts when sharp enhancements in PM; 5 concentrations were recorded simultaneously
at two or more stations. Decrease of PM; 5 concentrations at varying rates of decay followed the three
smoke wavefronts at all micro-station locations.

To understand the time-series PM; 5 concentration profile in relation to smoke dynamics, we start
with equating the influx and outflow of PM; 5 at an imaginary vertical box in a direction perpendicular
to smoke propagation at a measurement location (see Figure 2). Neglecting transverse dispersion,
and assuming that excess PM; 5 mass accumulates with uniform density along an effective length of 4,
the dynamic balance can be represented as,

AnAd = (gA— nAv)At, 1)

where,

q = flux of PM, 5 in the incoming smoke (u1g/m?/s),

v = propagation velocity of smoke plume wavefront (m/s),

n = effective concentration of PM, 5 within the vertical three dimensional box (ug/m?),

An = n(ty) — n(t;) = increase in PM; 5 concentration within the box during an interval At (ug/m3 ),
At =ty — t; = time interval (s)

A = area of the imaginary cross section at the measurement location (m?), and

d = effective length of virtual box where excess PM, 5 distribution is considered to be uniform (m).
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Figure 2. A schematic diagram for modeling the smoke dynamics. The sensor is assumed to be placed

on the left face of the vertical imaginary box. Incoming smoke flux g4 and propagation direction v are
shown by arrows.

The left hand side of Equation (1) represents total increase of mass within an imaginary air volume
with cross section of A and a depth of d beginning from the measurement location to downwind.
The two terms in the right hand side represents the inflow and outflow of PM; 5 mass during a time
interval At, respectively. At a steady state condition, the two terms in the right hand side would cancel
each other, and the resulting increase in concentration will be zero.

Equation (1) leads to the differential equation,

1
L2 = (g (o), @

S R 7
n(t) = nge”d" + v(l e d ), 3)

where, n = ng at time, t = 0.
For instances when a smoke wavefront has just past through a micro-station location, q(t) = 0,
and Equation (3) converts to,
n(t) = nge”a". 4

The rate constant term v/d in Equation (4) in units of (second)~! is a measure of propagation speed
of smoke wavefronts on a relative scale. The corresponding half-life of smoke decay is given as:

_mn2

T v/d’

©)

2.3.2. Gaussian Profiling of Smoke Dispersion

Smoke generated from the prescribed fire at Pelican Mountain unit 5 were monitored through
four micro-stations deployed at distances of 500 m and a fifth micro-station further downwind at 1 km.
The four micro-stations deployed in near-field region cover an arc angle of 128 degrees in the downwind
and collectively captured the entire smoke plume. Data collected by these four micro-stations can thus
be used to simulate the plume profile.

For each wavefront, a set of peak PM; 5 concentrations at the four locations were fit into a Gaussian
profile to simulate the smoke distribution along the arc length of the propagation wavefront. Arc radius
for the Gaussian fit was taken as the average distance of individual micro-stations from an approximate
center location of the burn area (see Figure 1). Distances were calculated from geospatial coordinates.
The smoke wavefront analysis thus assumed that the observation points are equidistant from the centre
location of the fire area and all of the smoke originated from this location. Peak PM; 5 concentrations
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measured at the three distinct smoke wavefronts where two or more micro-stations observed elevated
levels were then fit into Gaussian function in a polar distribution. Details are given in Appendix A.

2.3.3. PM, 5 Emission from Combustion of Fuels

Emission of PM; 5 mass from the fire was estimated through calculation of mass flow at ground
level during propagation of the smoke-waves. Ground level flow of PM; 5 mass at peak intensity of
a smoke-wave (wavefront) was calculated as:

)
Q= on(l)Hdl, (6)
I

where,
Q = flow of PM, 5 at the wavefront (ug/s),
v = smoke propagation velocity (m/s),
I = length along the arc of the smoke wavefront (m), /; and I, are the lower and upper limits
describing the smoke wavefront distribution,

n(l) = PMj, 5 density as a function of arc length (ug/m3),
H = height of smoke plume from ground.

Total PM, 5 mass in a smoke-wave can then be calculated as:

to+T
f n(t)dt, @)
2

0

M T e—
M5 0 (8

where,

Mppp .5 = mass of PM; 5 in smoke-wave,

n(t) = PM; 5 density as a function of time (ug/m3),

1(t)max = peak PMy 5 intensity at the smoke-wave (ug/m?),
typ = onset of smoke-wave detection at sensor location, and
T = duration of smoke-wave recorded at sensor location (s).

Calculation of PM; 5 mass in smoke-waves and their relation to overall emissions from combustion
of fuels are provided in Appendix B.

3. Results

3.1. Background Ambient Conditions

Background ambient conditions were measured for approximately twenty-four hours before
the fire. Concentrations of PM; 5 were low throughout the period of background measurements.
Measured PMj; 5 concentrations for the five micro-stations are shown in Figure 3. Some occasional
spikes of PM, 5 concentrations for up to 35 pg/m3 were recorded for the micro-station located at
the north of unit 5. PM, 5 levels recorded at other locations were negligible, and below the sensor
minimum detection level (MDL) in most of the cases. The overall background PMj, 5 level corresponds
to good air quality conditions on the site with no nearby emission sources.
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Figure 3. PM; 5 background concentrations before prescribed fire. Enhancements on the far right
indicates the time of fire.

Ambient temperature and relative humidity at all micro-station locations showed typical diurnal
cycles. Overnight temperature reduced to around 0 °C with gradually heating up to 25 °C in the early
afternoon. Relative humidity reached above 90% around dawn and went down towards 15% in the early
afternoon. At the time of the fire, air temperature and humidity were in the shoulder regions of
faster evening period changes. The prescribed fire of 3.4 hectares of land did not result in noticeable
variations in ambient temperature and relative humidity at locations of sensor deployments (500-1000 m
away). However, it is worth mentioning that the prescribed fire occurred at the shoulder period of
typical diurnal cycle with rapid changes in ambient temperature and relative humidity before dusk,
and as a result, modest changes in ambient parameters resulting from the fire may have been embedded
in a stronger diurnal effect. Temperature and relative humidity variations are shown in Figure 4.
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Figure 4. (a) Ambient temperature variation at different sensor locations for a period of 24 h near
the prescribed fire area; (b) relative humidity variations.

3.2. Smoke from Fire

The fire was ignited at 17:49:03 local time. Smoke generated from the fire was monitored by
tripod mounted micro-stations deployed at downwind locations. PM; 5 concentrations, recorded
on a minute resolution, show time variation and spatial distribution of smoke intensities. Strongest
smoke intensities were recorded at micro-station uS 303-100 site located 425 m north of the fire area
(see Figure 1). Moderate levels of smoke intensities were recorded in the northeast (uS 303-300) and
northwest (uS 303-200) locations at 567 and 474 m, respectively. A micro-station located at a further
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distance of 973 m in the northwest (1S 401-200) recorded a smaller spike of PM; 5 with additional time
delay of 4 min. The micro-station located at the west-northwest direction (1S 401-100) at a distance of
529 m from the fire area did not record any elevated level of PM, 5 during or after the fire, implying
that the smoke propagation was confined within northwest to the east. Plots of PM; 5 concentrations
against time recorded at the five micro-stations are shown in Figure 5.

1200 T
¢ ><<—> 303-100 (North)
303-200 (NW)
1000 1 303-300 (NE) ||
Flaming | 401-100 (WNW)
. 401-200 (NW)
Duration |
800 > | .
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= |
E I
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0 |
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o
400 I .
|
Ignition I
200 - | b
i
0 L/\'\ ] - L I B—— 1
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Time May 11, 2019

Figure 5. Time series PM; 5 concentrations at sensor locations downwind of the prescribed fire. Elevated
concentrations from flaming and smoldering smokes can be seen during smoke wavefronts A, B, and C,
respectively. The symbol in the time axis indicates the time of ignition of fire.

PMj; 5 time-series data in Figure 5 reveals important information about fuel-fire behaviour during
the prescribed fire. Smoke wavefront reached the north micro-station 8 min after the ignition of
the fire, and contributed to a sharp rise in PM, 5 concentration. The concentration level increased from
abaseline level of less than 5 pg/m? to a peak concentration of 940 ug/m? in 6 min, followed by a gradual
decay of intensity. A moderate rise in PM; 5 level to 110 ug/m3 with a delay of 14 min from the time
of ignition was observed at the northeast location. Spikes in PM; 5 concentrations in the north and
northeast locations within 15 min of the fire-ignition are indicative of smoke generation from flaming
combustion of canopy fuels. Combustion of canopy fuels occurred during the time when the fire
front swept through unit 5 (the burn area) from the ignition line in the south towards the northern
perimeter in about six minutes [27]. The timespan of canopy fuel combustion is in agreement with
the time period when continued enhancements in PM; 5 concentrations were recorded at the north and
northeast micro-stations. Time duration for the smoke to reach at these two locations are measures
of propagation speed of the smoke wavefront, referred as wavefront A in Figure 5. Differences
in intensity levels in PM, 5 concentrations from the same smoke wavefront at the two locations is due
to the spatial distribution of the smoke over its width. Further analysis on smoke propagation and
spatial distribution are given in next sections.

The presence of two more smoke wavefronts, occurring long after the canopy fire had ended, are
shown in Figure 5 as wavefronts B and C, respectively. The smoke wavefront B appeared at locations
at the north and the two northwest locations (near and further) approximately 30 min after the end
of the canopy fire. The smoke wavefront C, observed at the north and northeast locations, occurred
45 min after the canopy fire had ended. At the time of observation of smoke wavefronts B and C,
only residual smoke was emitting from the burn area, and firefighters were in operation to extinguish
the remaining spot fires. However, it is of interest to note that the peak PMj 5 intensities in smokes B
and C were comparable or exceeded that occurred immediately after the fire (smoke wavefront A).
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3.3. Smoke Decay Half-Life

The smoke wavefronts in Figure 5 show similarities in their pattern of slow decay of intensities
following a relatively sharp increase of PM; 5 concentrations to the peak level. The decay rate for
the three wavefronts, however, show considerable differences among themselves. We fit Equation (4)
to each of the smoke waves to characterize their nature of decay, shown in Figure 6. The curve-fitting
parameters, standard deviations of the decaying parameter, and uncertainty estimates are given
in Table 2. Decay half-life for smoke A, B, and C were calculated to be 9.7 + 1.7, 2.7 + 0.5,
and 17.8 + 0.8 min, respectively. An almost two-fold increase of half-life in smoke C compared
to that in A is an indication of smaller propagation rate of the former. The small half-life of only 2.7 min
for smoke wavefront B is likely due to a rapid shift in wind direction as discussed in the next section.

Smoke wavefront A Smoke wavefront B Smoke wavefront C
1000 1000 1000,

900.» === curve fit| | = curve fit ° = curve fit
® data ® data ® data

800

800

600 600

400 400

PM2.5 (ug/m3)
PM2.5 (ug/m3)

200 - 200

0 5 10 15 20 0 2 4 6 8 10 0 10 20 30 40 50 60 70 80
Time (minute) Time (minute) Time (minute)

(@) (b) (©

Figure 6. (a) Curve fitting of decay profile of PM; 5 concentration during the smoke wavefront A
(shown in the time-series plot of Figure 5); (b) cure fitting for smoke waveform B; (c) curve fitting for
smoke waveform C. Time in x-axis is measured from the peak intensity of smoke-waves.

Table 2. Smoke wavefront decay half-life.

Curve Fitting

v/d Oy/d Ty ATy

no
Smoke Wavefront (ug/m® (min-1)  (min-1) (min) (+min) R-square
A 824 0.07 0.016 9.73 1.75 0.71
B 910 0.26 0.059 2.71 0.51 0.97
C 901 0.04 0.002 17.76 0.85 091

3.4. Smoke Wavefronts

Spatial distribution of PM; 5 at the three smoke wavefronts were obtained by fitting Gaussian
profiles on the micro-station data points (see Materials and Methods). Plume distributions on
polar coordinates are shown in Figure 7. It is apparent that predominant downwind directions
was north-northeast during smoke wavefronts A and C, with a brief shift of direction towards
north-northwest during the wavefront B. The center of the polar plots represents the center of the burn
area (see Figure 1). Symbols in the plots show micro-station locations with corresponding PM; 5
readings. Assumption of equal distance of micro-stations from the fire area was taken for a simplified
Gaussian fit. Details of the numerical fit and spatial distribution of the smoke plume over arc-angles
are shown in Appendix A.
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Figure 7. (a) Wavefront profile of smoke A modeled through Gaussian fit; (b) wavefront profile for
smoke B; (c) wavefront profile for smoke C. Centers in the polar plots represent the center of the fire
area and radius represent distances in meters. 90 degrees in polar coordinates represent the north.
Symbols show measured data.

4. Discussion

Images of the prescribed fire captured from an observation site on the ground at a distance of
approximately 200 m east from the burn area are shown in Figure 8. The image on the left was taken
immediately after the ignition occurred and smoke became visible from the observation site. Location
of smoke in the image represents the ignition line along the south perimeter of unit 5. The image
in the middle was taken three minutes after the ignition of the fire. The spread of fire front in the north
and generation of intense smoke from flaming combustion is visible in the image. Flames on the canopy
are also visible. Vertical lifting of smoke due to the flaming generated intense heat is indicated
by an arrow in the image. The image on the right was captured when canopy fire had completed,
and smoke generated from smoldering combustions were emitting from the burn area. The smoldering
smoke can be characterized by its dense white appearance and a horizontal propagation [15].

Flaming

Figure 8. (a) Smoke from ignition line of fire (17:50); (b) spread of fire towards north (17:52); flaming
smoke, and vertical lofting direction is shown by arrow; (c) horizontal propagation of smoldering
smoke (17:57).

Results and analysis of the sensor data implies that the smoke generated during
the flaming combustion and the succeeding smoldering phase traveled downwind predominantly
in north-northeast directions with a temporary shift in north-northwest (see Figure 7). Deployment
of micro-stations at different distances and at different downwind angles resulted in non-concurrent
occurrences of smoke wavefronts. The appearance of smoke wavefronts at the micro-station locations
are summarized in Table 3. The propagation speed of smoke wavefronts at the sensor locations are
shown in Figure 9. Uncertainty in propagation speed estimates for smoke wavefronts at the three
locations are shown by error bars. Details of uncertainty calculation are provided in Appendix C.
Smoke wavefront A reached the micro-station locations at north and northeast of the fire area with
estimated propagation speeds of 0.9 and 0.7 m/s, respectively. Smoke wavefronts B and C, on the other



Fire 2020, 3, 30 11 0f 17

hand, reached the locations at north, northwest, and northeast with propagation speeds on the order of
0.2 m/s.

Table 3. Smoke propagation details.

303-100 303-200 303-300
Smoke Time of Distance  Prop. Rate Time of Distance  Prop. Rate Time of Distance  Prop. Rate
Wavefront  Travel (min) (m) (m/s) Travel (min) (m) (m/s) Travel (min) (m) (m/s)
A 8 415 0.86 14 567 0.68
B 30 415 0.23 36 474 0.22
C 45 415 0.15 51 567 0.19

Smoke Propagation Speed

L ¢ Smoke A|
i Smoke B
$ Smoke C
08 |
)
~—
E %
~ 06 |
©
O
16}
Q.04 |
(2]
L []
02F |
T [}
*303-100 *303-200 *303-300
0 | 1 | | | | | | 1
400 420 440 460 480 500 520 540 560 580 600

Distance (meter)

Figure 9. Smoke propagation speed at sensor locations versus distances. Distances of sensor locations
at north (1S303-100), northwest (uS303-200), and northeast (1S303-300) are marked in the figure.
Uncertainties in propagation speed estimates are shown by error bars.

The apparent differences in propagation speeds of smoke wavefronts, irrespective of their distances
from the fire area, signify the fact that smoke propagation dynamics for wavefront A is different
from those for B and C. Smoke plume A occurred shortly after the fire ignition and propagated to
the north and northeast locations at a faster rate, with travel times of 8 and 14 min, respectively.
The shorter half-life associated with the smoke as calculated in Section 3.3 is consistent with a faster
propagation rate for the smoke wavefront. The rise time of PM, 5 concentrations for smoke A at
the location in the north is in agreement with the duration of the fire front sweeping through the burn
area. These facts suggest the origin of plume A to be the flaming combustion where canopy fuels were
predominantly consumed. The intense heat generated by the flaming combustion phase of fire is likely
to add convective effects in the plume propagation.

The smoke plumes referred as B and C show much lower propagation speeds as compared to
the initial plume A. These later occurring plumes are attributed to the smoke created in smoldering
phase of the fire, where mainly ground fuels were the contributors. Due to the absence of intense
heat generated from combustion, smoke generated in this phase are expected to be propagating
predominantly on principles of advection-dispersion. This is indeed observed in Figure 9, where lower
propagation speeds of plumes B and C are seen irrespective of their travel distances. The calculated
value of longer half-life for smoke C in Section 3.3 signifies the fact of advection-dispersion dominated
slow propagation. A small value of half-life in plume B in Section 3.3, as mentioned previously, is
attributed to the shift of wind direction (see Figure 7), thereby causing a faster decay compared to
an advection-dispersion assisted mechanism.
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We calculated total PM; 5 emissions from canopy and surface fuels during flaming and smoldering
phases of the fire, respectively, using a mass balance model (see Section 2.3.3). Assuming a smoke plume
height of 50 m and a uniform PMj, 5 distribution vertically, we calculate the peak flow rate of PM; 5
at the smoke wavefront of flaming combustion (smoke-wave A) as 2.26 x 107 ug/s. Our assumption
of height and plume uniformity is based on aerial photographs from a helicopter (see Appendix C).
Vertical profiling measurements through drones or tall towers (not available) may result in better
precision in estimations in future experiments. The peak flow rate, when integrated for the duration of
the plume, provides the total PM; 5 emission from crown fuels. Using Equation (7), the total PM; 5
mass from combustion of crown fuels that is present in the ground level plume is 15.2 kg, yielding
a mass density of ~4.5 kg/ha. The calculated value, however, does not account for the portion of
the flaming smoke that is lifted at higher atmospheric levels due to intense heat assisted buoyancy
(see Figure 8). Calculated value for smoldering combustion of surface fuels (smoke-waves B and C)
represents a total PM; 5 emission of 16.3 kg from the fire area of 3.4 hectares (~4.8 kg/ha). Details of
the PM, 5 emission calculations from combustion of fuels are provided in Appendix B.

Results in our study show that ground level PM; 5 concentrations in near-field areas of a wildland
fire have strong spatial distributions. Fire originated plume resulted in concentration variations
on the order of 1000 pg/m? within spatial distances of 500 m. Direction of wind variation may also
result in enhancement or depletion of particulates at downwind locations. Similar spatial-temporal
variations for other pollutants are expected. Fuel type and the phase of the fire plays important roles
in ground level pollutants. Effects from flaming combustion of canopy fuels are expected to have
immediate but relatively shorter term effects in near-field areas of fire. Plumes generated during this
combustion phase are likely to be aloft at higher atmospheric levels and contributing to long-range
transport of pollutants (see Figure 8). Smoke created by the smoldering phase of fires, mostly by
the surface fuels, on the other hand, are shown to have a slower ground level propagation and are
likely to result in sustained enhancements in particulate levels in ambient air. Although fuel loading
from ground fuels contributing to smoldering in our study is estimated to be only 35% of total fuel [27],
they contributed to higher particulate concentrations in air in downwind locations and for longer
durations of time. This may be a key consideration in cases of wildland fires or preventive prescribed
fires that may occur in close vicinity of communities.

5. Conclusions

We have analyzed the dynamics of smoke propagation in a prescribed wildland fire at Pelican
Mountain, central Alberta. A network of five field deployable micro-sensor systems were used to
measure near-field real-time smoke intensities. Our analysis identifies differences in propagation and
dispersion characteristics of smoke generated from flaming and smoldering phases of combustion.
Smoke created from combustion of canopy fuels showed propagation rate of ~0.8 m/s and a shorter
presence in the near-field region of the fire area. Smoke decay half-life of 9.7 + 1.7 min was estimated
for the flaming phase of combustion. The smoldering phase of the fire contributed by ground fuels,
on the other hand, were characterized by a slower propagation rate of ~0.2 m/s, and showed prolonged
existence in the nearby region well after the end of the intense canopy fire. Decay half-life of smoke
from smoldering phase was estimated to be 17.8+0.8 min. Emissions of 15.2 and 16.3 kilograms of
PM, 5 during the flaming and smoldering phases of the fire from an area of 3.4 hectares over the period
of combustion were estimated. Our method of identification and characterization of flaming and
smoldering smoke from real-time measurements can inform plume transport models and address air
quality concerns from wildland fires.
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Appendix A Smoke Wavefront Profiling

Smoke wavefronts were modeled through a Gaussian fit using the equation:

PM,5(0) = ae (%)’ (A1)

Fitting parameters are shown in Table A1. Modeled PM; 5 concentration profiles overlaid on
measurement data are shown in Figure Al.

Table A1l. Parameters for Gaussian fit for smoke wavefront.

Curve Fitting

Smoke Wavefront a b c R-square
A 1761 7142 21.72 1
B 1717 105.9 21.15 1
C 2410 68.74 22.24 1

Smoke Wavefront A Smoke Wavefront B 2500 Smoke Wavefront C
r : ] I : :

curve fitting curve fitting

® 303-300 (NE) 1600 - ® 303-300 (NE)
= 303-100 (North) : ggg-;gg((us\rlt)h) 2000}
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Figure A1. (a) Gaussian fitting of smoke wavefront A; (b) smoke wavefront B; (c) smoke wavefront C.
Symbols indicate measured data at the four sensor locations at the time of peak intensities.

Appendix B PM; 5 Emission from Combustion of Fuels

Flow rate of PM; 5 at ground level are calculated using (6) as:

)

)
Q= on(l)Hdl = vmmnf n(l)Hdl, (A2)
ll ll

where, Upean is the mean propagation velocity of smoke observed at two sensor locations. Profiles
in Figure A1 were used to calculate the integrated PM; 5 mass flow at the smoke wavefront. Mean
arc radius was taken as 496 m. Mass of PM, 5 at smoke-waves are calculated using Equation (7)
(Tables A2—-A4). Total emission of PMj; 5 based on combustion phases (fuel types) are summarized
in Table A5.
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Table A2. PM,; 5 Emission calculation from ground level smoke-wave A.

Sensor Serial v (m/s) Vmean (m/s) izn(l)dl (ug/m?) Flow at Wavefront Q (ug/s) Total Emission Mpyy, . (kg)
1
303-300 0.68
303-100 0.86
5 7
303-200 0.77 5.87 X 10 226 x 10 15.2
401-100

Table A3. PM; 5 Emission calculation from ground level smoke-wave B.

Sensor Serial v (m/s) Vmean (m/S) izn(l)dl (ug/m?) Flow at Wavefront Q (ug/s)  Total Emission Mpyy, , (kg)
1
303-300
303-100 0.23
5 6
303-200 0.22 023 557 x 10 6.41 x 10 3.0
401-100

Table A4. PM, 5 Emission calculation from ground level smoke-wave C.

Sensor Serial v (m/s) Vmean (M/S) f izn(l)dl (ug/m?) Flow at Wavefront Q (ug/s)  Total Emission Mpyy, , (kg)
1

303-300 0.19
303-100 0.15
5 6
303-200 0.17 8.22 x 10 6.99 x 10 13.3
401-100

Table A5. Total PM; 5 Emission from flaming and smoldering.

Combustion Phase Smoke-Wave PM; 5 Mass M (kg) Total Emission (kg)
Flaming A 15.2 15.2
. B 3.0
Smoldering C 133 16.3

Appendix C Estimations of Uncertainties

Smoke propagation rate:

Smoke propagation rates for wavefronts A, B, and C at the three sensor locations were calculated
from assumption of smoke being originated from a center location of the fire area (see Figure 1).
In addition, temporal resolutions of sensors were on the order of 1 min. Uncertainties introduced by
these two parameters were estimated as:

Uy(%) = ZHAL O q00),
4
Us (%) = vt”v;t_vt x 100, (A3)

uTotal(%) = \/ uI2 + utZ/

where, U; and U; are uncertainties introduced due to distance and time of smoke propagation,
respectively; and Uty is the overall uncertainty in propagation speed estimations. Velocities v, a;
and o4 5¢ correspond to cases where distance and time of smoke travel are considered as [ + Al and
t + At, respectively.

Uncertainties in parameters are shown in Table A6, and the resulting uncertainties in propagation
velocity for the three sensor locations are given in Table A7.
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Table A6. Uncertainties in smoke travel time and distance.

Micro-Station Serial Location Distance 1 (m) Al (m) At (s)
uS 303-100 North 415 50 30
uS 303-200 NW 474 80 30
uS 303-300 NE 567 80 30

Table A7. Uncertainty calculations in smoke propagation.

303-100 303-200 303-300
Smoke Wavefront  Uj (%) Ug(%)  Urgu(%) Up(%)  Un%) Uppar (%) Uy (%) Up (%)  Urgar (%)
A 12,0 59 13.4 14.1 34 14.5
B 12,0 1.6 12.2 16.9 14 17.0
C 12.0 1.1 12.1 14.1 1.0 14.1

Plume Height Estimation:

Unit5 sensors

Figure A2. Aerial picture of smoldering smoke propagating in north-northeast direction, taken at 18:31
local time. Sensor deployment locations at ~500 m from the fire area (unit 5) are shown by the dashed
line. Mostly horizontal propagation of smoke confined to ground level, especially in the near-field
range can be observed.

The existence of smoke in near-filed locations of the fire area, and directions of their propagation
during and after fire occurrence were observed through ground level and aerial photographs. An aerial
photograph at 18:31 local time (~40 min after flaming combustion was complete) is shown in Figure A2.
Direction of propagation of smoke in the Figure is in agreement with our model analysis for smoke
wavefront C. Based on the laminar nature of flow of smoke in the near-field region of fire area
in Figure A2 and on-site observations (see Figure 8c), we estimated the plume height from smoldering
combustion to be twice the height of the canopy (2 X 25 m = 50 m). A similar estimate was taken
for ground propagating component of flaming smoke for consistency. It is worth mentioning that,
accurate estimation of emissions from combustion through our model would require a comprehensive
vertical profiling of smoke distribution through drone or LiDAR based measurements (out of scope of
this experiment due to resource and logistical needs). The emission values calculated from Appendix B
thus represent preliminary estimations for future work. To our belief, the emission estimates in our
work represent conservative values, and may underestimate actual fuel emissions by up to 50% (plume
height of 100 m would represent a two fold increase of present emission estimates).
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