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Abstract: In many fire-prone watersheds, wildfire threatens surface drinking water sources with
eroded contaminants. We evaluated the potential to mitigate the risk of degraded water quality
by limiting fire sizes and contaminant loads with a containment network of manager-developed
Potential fire Operational Delineations (PODs) using wildfire risk transmission methods to partition
the effects of stochastically simulated wildfires to within and out of POD burning. We assessed
water impacts with two metrics—total sediment load and frequency of exceeding turbidity limits
for treatment—using a linked fire-erosion-sediment transport model. We found that improved fire
containment could reduce wildfire risk to the water source by 13.0 to 55.3% depending on impact
measure and post-fire rainfall. Containment based on PODs had greater potential in our study system
to reduce total sediment load than it did to avoid degraded water quality. After containment, most
turbidity exceedances originated from less than 20% of the PODs, suggesting strategic investments to
further compartmentalize these areas could improve the effectiveness of the containment network.
Similarly, risk transmission varied across the POD boundaries, indicating that efforts to increase
containment probability with fuels reduction would have a disproportionate effect if prioritized along
high transmission boundaries.

Keywords: water supply; erosion; wildfire containment; Potential fire Operational Delineations;
Monte Carlo simulation; transmission risk

1. Introduction

Improved wildfire containment is an attractive strategy to mitigate the risk of degrading water
quality beyond limits for treatment because of the potential to limit fire sizes and impacts to tolerable
levels without the need to completely exclude fire from the landscape. Recent efforts to make
containment planning more proactive, focus on zoning the landscape into fire management units called
Potential fire Operational Delineations (PODs) using existing high probability control features such as
roads, rivers, and fuel transitions [1,2]. Beyond the inherent value of engaging managers in the process
to identify and critique potential control features, the resulting POD areas become relevant spatial units
for pre-fire analysis of endogenous and transmitted wildfire risk to inform response strategies that
are appropriate for the predicted direction and magnitude of fire effects to water supplies and other
natural resources and human assets [2]. While there has been substantial progress engaging managers
in the bottom up approach to develop and employ PODs and their associated response strategies [2-8],
less attention has been paid to evaluating the risk mitigation effectiveness of containing wildfire within
these units and what functional improvements should be made to the size and spatial arrangement
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of the containers to maximize their protection benefit for water supplies and other values, such as
wildlife, that depend on the scale of fire activity.

Wildfire is often harmful to water quality because reductions in surface cover and infiltration
cause increases in surface runoff and erosion that can mobilize and transport contaminants into surface
drinking water sources [9-12]. While the specific contaminants and concentrations of concern may vary
by watershed and water system [12-14], water quality degradation generally becomes problematic
when large quantities of sediment are mobilized by intense rainfall causing contaminant concentrations
to exceed thresholds for effective water treatment (e.g., [15]). Post-fire sediment loads are influenced by
fire size and burn severity, topography, soil properties, and rainfall intensity [10,16,17]. Previous efforts
to account for fire effects on watersheds and water supplies account for some of these factors [18,19],
but the use of relative fire effects measures makes it difficult to evaluate whether a given fire will
degrade water quality. This shortcoming has been addressed in recent years with increasing use of
spatially explicit erosion and sediment transport models to make quantitative predictions of sediment
yield from modeled wildfires (e.g., [20-24]). Sediment yield models have been widely used to examine
the risk mitigation effectiveness of area-wide fuel treatments meant to reduce burn severity [23-26]
but they have not yet been used to evaluate the performance of fire containment strategies to reduce
area burned.

Some water systems have discrete features, such as terminal reservoirs, that could be targeted for
protection within a single POD, but many municipal watersheds in the western USA are hundreds to
thousands of square kilometers in size and therefore require some level of internal compartmentalization
to protect water supplies. In theory, the size and spatial arrangement of PODs could be designed
to mitigate the risk of water quality degradation by both containing fires with potential for large
growth and subsequent contaminant loads near their ignition sources and ensuring that within-POD
burning does not result in adverse consequence. Managers consider both values at risk and presence
of control features when delineating PODs, which often results in smaller PODs near developed areas
and larger PODs in the backcountry [2,4]. However, it is not clear that the size and configuration
of manager-delineated PODs will reduce risk of wildfire-related water quality degradation. Several
attempts have been made to automate the processes of identifying suitable control features and
aggregating them into PODs [27,28] using roads, streams, watershed boundaries, and spatial models of
suppression difficulty and potential for control [29-31], but data-driven approaches have yet to inform
the desired size and spatial configuration of PODs to mitigate a particular risk.

Recognizing the importance of fire size, location, and burn severity for watershed response,
several previous studies have employed Monte Carlo wildfire simulation to characterize watershed
exposure and water supply risk [19,32-34]. Their results suggest that most risk to water supplies
is associated with a small subset of total fire activity. Moreover, the source locations of damaging
wildfires tend to cluster in certain parts of the landscape, which implies containment benefits will
depend strongly on location. Simulated fire ignition locations and fire extents can be intersected
with relevant management units to partition fire impacts from burning within the unit of origin and
transmission to the surrounding landscape [2,35,36]. Analyzing risk transmission across a network
of PODs could help to identify locations with high source risk that would benefit from investment
in activities to improve containment probability, such as roadside fuels reduction. Areas with fuels
conducive to fast fire spread tend to transmit the most fire [36], which will result in high water supply
risk when adjacent areas have high erosion potential and/or short transport paths to water supplies.
Analysis of water supply risk from self-burning could also identify high risk PODs that would benefit
from further compartmentalization.

The goal of this study is to provide a proof of concept model to evaluate the effectiveness of a
containment network at mitigating risk of source water quality degradation. The general approach
should also be relevant for assessing risk to other resources that depend on disturbance size. We utilized
Monte Carlo wildfire simulation, erosion, and sediment transport modeling to quantify the potential
water supply impacts from a set of simulated wildfires with and without containment. We analyzed
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risk and risk mitigation with two measures of water supply impact—total sediment load and frequency
of exceeding turbidity limits for treatment—to highlight how considering the scale-dependent effects
of wildfire changes the perceived mitigation value of fire containment. Risk transmission was analyzed
to identify possible improvements to the containment network with measures of transmitted risk
highlighting those PODs and POD boundaries that could benefit from activities to improve containment
probability and measures of self-burning indicating areas in need of further compartmentalization.

2. Materials and Methods

2.1. Evaluation Framework

The evaluation framework was designed to contrast the water quality impacts of uncontained
wildfires and wildfires contained within the POD of origin in terms of total sediment load and
average post-storm suspended sediment (Figure 1). Total sediment load is similar to the commonly
used net value change measures in risk assessment [37,38] insomuch as more is interpreted as bad
and any marginal reduction decreases risk. However, using change in total sediment load as a
measure of risk has the potential to falsely assign mitigation benefit to containment when either
the load from the uncontained wildfire is already below a meaningful threshold of water quality
degradation or containment reduces erosion but the resulting load is still above the treatment threshold.
Average post-storm suspended sediment concentration is used here to estimate whether fires will
degrade water quality beyond limits for water treatment and whether degradation outcomes change
with containment. This measure of risk better approximates the threshold-dependent nature of water
quality degradation owing to the size of the receiving waterbody and the water system sensitivity
to contaminants.

RANDIG

ges=see=sash ,

E Uncontained | ! RUSLE

1 Fire H— ( ] - ~

i| Perimeters |1 Hillslope Erosion

l I N A

1 .

i| contained I cover 'l Rainfall

PODs [+ Fire - |! i | Erosivity

| Perimeters :_T H

LT ———— I Soil | Length

FlamMap !| Erodibility E and Slope

1
N\ ’ )
Burn ||
Severity
Hillslope and
Waterbody éedlme.nt Channel
Volume ERErRing Transport
Storms

Post-storm sediment

yield

suspended
sediment

Figure 1. The evaluation framework focuses on total sediment yield and average post-storm
suspended sediment as measures of water quality degradation risk. Variable inputs are in light
grey. Stochastically simulated wildfire perimeters were combined with estimates of burn severity to
model post-fire erosion and sediment transport to the water supply both with and without containment.
Sediment yield was converted to average post-storm suspended sediment concentration using the
receiving waterbody volume and the annual frequency of sediment generating storms.
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Our evaluation framework focuses on the key uncertainties in wildfire-water quality degradation
risk related to the extent of the watershed burned and post-fire rainfall (Figure 1). As further described
in following sections, many plausible wildfire perimeters were simulated with the Monte Carlo ignition
and spread model RANDIG [35,39], which were then clipped to their POD of origin to approximate
a strategy of improved containment. Post-fire erosion was then simulated for each perimeter using
crown fire activity predicted with FlamMap 5.0 [40] as a proxy for burn severity to modify the cover and
soil variables in the Revised Universal Soil Loss Equation (RUSLE) [41]. We accounted for uncertainty
in post-fire rainfall by modeling erosion for three rainfall scenarios ranging from common to extreme.
We estimated annual sediment loads to the water supply based on the predicted proportion of sediment
transported off hillslopes and through channels using Sediment Delivery Ratio (SDR) models [42,43].
Post-storm suspended sediment concentrations were estimated by assuming average storm sediment
loads are diluted in the mean daily flow volume of the river during the May to October thunderstorm
season, which is associated with most post-fire erosion and water quality degradation in the study
region [15,16]. All analyses were completed with R version 3.5.3 [44] except where noted otherwise.

2.2. Study Area

The study area encompasses 3021 km? of the Front Range Mountains in Colorado, USA (Figure 2).
The Front Range has a history of large and severe fires that have caused extreme erosion, reservoir
sedimentation, and water quality degradation [15,45-48]. The names of the focal municipal water supply
and other geographic features within the study area are withheld for security reasons. The extent
of the study area was defined to include the contributing area to a municipal pipeline diversion
(1254 km?) and a network of PODs developed by the local National Forest and their partnering state
and local fire management agencies (an additional 1767 km?). PODs that intersected a 5 km buffer
around the watershed were included to analyze fires that spread into the watershed from nearby areas.
Elevation ranges from 1559 to 4135 m above sea level across the study area. The climate is continental
with warm dry summers and cold winters. Most erosion in this region results from intense rainstorms
during the summer and early fall [16,49]. The study area is primarily forest (71.7%, most of which
is dominated by conifers) and the remainder is a mix of shrubland (9.0%), sparsely vegetated alpine
(8.9%), and grassland (8.7%) [50]. Land ownership is split between the USDA Forest Service (55.3%),
private (18.8%), National Park Service (18.1%), local government (6.4%), and state (1.4%).

2.3. Potential Fire Operational Delineations

PODs were developed by fire and resource management specialists from the local National Forest
and external fire management partners from other federal, state, and local agencies. The PODs range
in size from 502 to 23,672 ha with a mean of 4316 ha and a median of 3516 ha. The PODs tend to be
smallest near human settlements due to both the increased presence of control features and greater
need for fire containment around communities. PODs larger than 10,000 ha are clustered in the higher
elevation, western portion of the of the study area where much of the land is publicly owned and the
transportation network is sparse. PODs also tend to be large along the major river canyon that runs
west to east across the study area (Figure 2) due to limited presence of high probability control features
other than the river and highway in the canyon bottom.

The rugged topography, rocky soils, and dense forests of the study area are major constraints on
firefighter and equipment accessibility and operability. Accordingly, managers preferentially chose
roads as the control features to bound PODs; of the 1386 km of POD edge, 985 km are roads (71.0%),
167 km are trails (12.0%), 150 km are ridges (10.8%), 46 km are streams (3.3%), and the remaining 40 km
are fuel transitions, lakes/reservoirs, or lacking defined control features (2.9%). Many of the trails and
ridges selected as control features are in barren or sparsely vegetated areas of the alpine, so roads
make up an even larger proportion of POD edges in the fuel types where wildfire transmission is a
concern. Numerous observational studies have documented that roads benefit fire control by serving
as hard fire breaks that either stop fires passively or in combination with suppression firing or holding
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activities [30,51-53]. The frequent use of roads in this POD network suggests containment probability
should be high along most boundaries under low to moderate fire weather and many boundaries have
potential for containment under more extreme conditions with well-coordinated suppression tactics.
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Figure 2. Map of the study area featuring the focal watershed and PODs that intersect a five km
buffer around the watershed. Landcover is from LANDFIRE [50]. Barren is sparsely vegetated alpine.
The inset maps the location of the study area in the USA.

2.4. Fire Occurrence

We used the Monte Carlo fire simulation program RANDIG, which is a command-line version of
the FlamMap minimum travel time module [39], to model a plausible set of 5000 large fire growth
events across the study area. The inputs to RANDIG include raster surfaces of fuels, topography,
and ignition density, and a set of fire scenarios describing the fuel moisture, wind speed, wind direction,
spot probability, and burn duration for the simulations and their probabilities of occurrence. The intent
of our model parameterization is to approximate the distribution of potential area burned during the
initial growth period of large fires owing to variation in wind direction and wind speed. We focused on
the early growth period of fires to align with the desire to contain most fires before they leave the POD
of origin. Modeling fire growth over longer periods would increase fire size and thus the avoided area
burned and water quality impacts but would also introduce greater uncertainty about final fire extent
as more potential containment features are encountered and weather conditions are likely to moderate.

Raster fuels and topography data representing landscape conditions circa 2014 were acquired
from LANDFIRE [50] including canopy cover, canopy bulk density, canopy base height, canopy height,
surface fire behavior fuel model [54], elevation, slope, and aspect. Fuels were adjusted in lodgepole
pine (Pinus contorta var. latifolia) forests by lowering the canopy base height by 20% and changing the
fire behavior fuel model to high load conifer litter (TL5 from [54]) to better match recent observations of
extreme fire behavior in these forests [55]. The other spatial input is a raster surface of ignition density,
which influences the relative probability of fire ignition across the modeling domain. Spatial point
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locations of historical fires from Short [56] were generalized into a raster surface of ignition density
using a kernel density function with a search distance of 10 km in ArcGIS 10.3 [57].

Fuel moisture, wind speed, and wind direction for the fire scenarios (Table 1) were informed
by data from a Remote Automated Weather Station [58] located in the northern half of the study
area at 2500 m above sea level. Fuel moisture and wind speed percentiles were calculated with
FireFamilyPlus 4.1 [59] and wind speed was converted from a 10-min to 1-min average based on Crosby
and Chandler [60]. Most large fires in this region occur in early summer during drought years or in the
fall when fuel moisture is extremely low. These conditions were approximated using the historical 3rd
percentile fire season (1 April-31 October) fuel moistures, which are 2, 3, 6, 30, and 60 percent for the
1-h, 10-h, 100-h, herbaceous, and woody fuels, respectively. Fuel moisture was held constant across all
wind scenarios because it exhibits little meaningful variation below the 10th percentile. Wind scenarios
were designed to approximate the joint probability distribution of wind speeds and directions that
are problematic for fire growth. The 50th, 90th, and 97th percentiles of 1-min average wind speeds
are 19.3, 33.8, and 43.5 kph (at 6 m). We generalized these into three levels of wind speed (16.1,
32.2, and 48.3 kph) and their associated spotting probabilities (0.02, 0.05, and 0.10) that we assigned
relative probabilities of occurrence of 0.90, 0.07, and 0.03. Previous large fires in this landscape are
associated with strong westerly winds and our analysis of the historical record found that 74.1% of
all winds greater than or equal to 16.1 kph were from the northwest, west, or southwest, which have
relative probabilities of occurrence equal to 0.29, 0.48, and 0.23. We combined the three levels of wind
speed and spotting probabilities with the three variations of wind direction into a total of nine fire
scenarios (Table 1). Burn duration was set to four hours for all scenarios, which was determined by
incrementally adjusting burn duration in 30 min time steps until the largest simulated fire was within
+5% of 20,000 ha, which we judge as a reasonable upper bound for fire size during a single burn period
in this landscape based on other fires in the region [46].

Table 1. Fire scenarios used to simulate fires in RANDIG. Burn duration was set to 240 min and fuel
moisture was held constant at the 3rd percentile of the historical record.

Scenario  Wind Speed (kph at 6 m) Direction (deg) Spot Probability Scenario Probability
1 16.1 225 0.02 0.259
2 16.1 270 0.02 0.431
3 16.1 315 0.02 0.210
4 32.2 225 0.05 0.020
5 322 270 0.05 0.034
6 322 315 0.05 0.016
7 48.3 225 0.1 0.009
8 48.3 270 0.1 0.014
9 48.3 315 0.1 0.007

2.5. Fire Behavior and Severity

Crown fire activity [61] was modeled as a proxy for burn severity with FlamMap 5.0 [40]
by mapping surface fire, passive crown fire, and active crown fire to low, moderate, and high
severity, respectively. Crown fire activity is commonly used to estimate burn severity for watershed
modeling [24,33,62] because it captures the trend of increasing fire intensity along the gradient of
surface to active crown fire behavior. Fuel moisture was set to the same 3rd percentile fuel moisture
described in the fire occurrence section. The same topography and modified fuels rasters were also
used as the landscape inputs to FlamMap. To simplify the analysis, we modeled burn severity for the
middle wind speed scenario (32.2 kph at 6 m) and used the wind blowing uphill option to represent a
consistent worst-case scenario for all aspects.

2.6. Post-Fire Watershed Response

Post-fire erosion and sediment transport to the water diversion was predicted with a system
of coupled hillslope erosion, hillslope sediment transport, and channel sediment transport models
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(Figure 1) that has been calibrated to make reasonable predictions of post-fire sediment yields within the
study region [24]. The NHDPlus raster and watershed network products [63] were used to represent
the topological connections between upland sediment sources and the water diversion point via
sub-catchment drainage paths to the flowline network and the series of intervening flowlines between
each catchment and the diversion. First, gross hillslope erosion was modeled for each fire with a raster
Geographic Information System implementation [64] of RUSLE [41]. Sediment transport to streams
was predicted using an empirical model of post-fire hillslope sediment delivery ratio from the western
USA [42] to estimate the proportion of sediment generated in each pixel that makes it to the flowline
network. Third, the total sediment from each catchment was routed down the flowline network to the
diversion point using a simple model of channel sediment delivery ratio [43] adapted for the channel
types in the study area.

2.6.1. Hillslope Erosion

RUSLE predicts gross erosion (Mg ha~! year!) as the product of factors for rainfall erosivity (R),
soil erodibility (K), length and slope (LS), cover (C), and support practices (P) [41]. Rainfall erosivity is
calculated as the product of storm maximum rainfall intensity and kinetic energy per unit area [41].
First year post-fire erosion was modeled at three levels of May to October rainfall erosivity—403,
887,5168 M] mm ha~! h~!—representing the 2, 10, and 100-year recurrence interval rainfall erosivity
(hereafter “rainfall erosivity”) for the regional climate [65,66]. The May through October period was
selected because most post-fire erosion in this region occurs in response to high intensity summer
rainfall [16]. LS was calculated from a 30 m resolution digital elevation model [63] following the
methods of Winchell et al. [67] with a maximum limit on flow accumulation of 0.9-ha imposed to
approximate the original hillslope length guidance in Renard et al. [41]. Baseline K came from the Soil
Survey Geographic Database where available and the State Soil Geographic Database to fill missing
data [68]. Post-fire erosion was simulated by modifying the K and C factors based on wildfire extent
and burn severity [24,69]. No support practices were considered to model the unmitigated erosion
hazard. Baseline erosion is not a major concern for water quality, so we focused our assessment on the
post-fire increase in erosion. First-year post-fire increase in erosion (A) was calculated with Equation (1)
for each level of rainfall erosivity.

A=RXLSx[(Kp xCp) - (KxCO), @

The subscript b indicates the burned condition for K and C factors. We limited hillslope erosion
predictions to 100 Mg ha™! year~! based on the maximum observed values reported in the study
region [49].

2.6.2. Hillslope Sediment Transport

An empirical model of post-wildfire hillslope sediment delivery ratio (hSDR) from the western
USA [42] was used to estimate the proportion of sediment generated in each pixel that makes it to the
stream network. The NHDPlus flowlines were first extended to include all pixels with a contributing
area greater than 10.8 ha [70] to better approximate the extent of the post-fire channel network. Post-fire
hSDR was then estimated with the annual length ratio model from Wagenbrenner and Robichaud [42].
We applied this model to predict hSDR as a function of the flow path length from each pixel to the
nearest stream channel as the “catchment length” and the flow path length across the pixel as the “plot
length” (Equation (2)). Flow path length to the nearest channel was calculated from a 30 m digital
elevation model [63] in ArcGIS 10.3 [57]. We doubled the predicted hSDR to account for under-sampling
of suspended sediment in the model training data and to roughly calibrate our net sediment yield
predictions to the small catchment yields from the Hayman Fire in Colorado [42]. This increased the
maximum hSDR from 0.27 to 0.54 for areas near streams and it increased the minimum hSDR from
0.05 to 0.10 for locations furthest from streams. We later compare our modeled gross and net hillslope
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sediment yields to relevant field observations in the discussion to demonstrate that this assumption is
reasonable. Channel pixels were assigned hSDR of 1.

log(hSDR) = —0.56 — 0.0094 x (flow path length to channel/flow path length across pixel), (2)

The first-year mass of sediment (Mg) delivered from a catchment to the stream network (TS) was
calculated as the sumproduct of the post-fire hillslope erosion (A), the pixel area, and hSDR for all
burned pixels (N) in the catchment (Equation (3)).

TS = SUM(A; x 0.09 ha/pixel x hSDR;)li=1toi=N, 3)

2.6.3. Channel Sediment Transport

Sediment was routed through the NHDPlus flowline network to the diversion by adapting the
channel sediment delivery ratio (cSDR) model of Frickel et al. [43] to the channel types in the study
watershed [24]. In montane streams of this region, sediment retention is generally highest in low
order channels because of high roughness and limited transport capacity and very low in the high
order channels with high transport capacity [45]. Observations of post-fire sediment transport in
a similar watershed in Wyoming suggest transport of fine sediments in suspension should be very
efficient in high order channels even during base flow conditions [71]. These trends are approximated
in our model by assigning ¢SDRs of 0.75, 0.80, 0.85 and 0.95 per 10 km of stream length to 1st, 2nd,
3rd, and 4th or higher-order streams, respectively. Sediment retention in lakes and reservoirs was
accounted for by assigning as a ¢SDR of 0.05 to the terminal flowline in each waterbody. The annual
mass of fire-related sediment (Mg) delivered to the water diversion (TD) was calculated as the sum of
sediment delivered to streams for all upstream catchments multiplied by the product of cSDRs for the
intervening flowlines (Equation (4)).

TD = SUM(TS; X [PRODUCT(cSDRy)lk = 1 to k = P])j = 1toj = O, )

The subscript j is the index for the O upstream catchments and the subscript k is the index for the
P intervening flowlines between catchment j and the pipeline diversion.

2.7. Water Supply Impacts

The first metric of water supply impact is the total wildfire related sediment delivered to the
diversion (Mg). The second metric is the per-fire average post-storm suspended sediment concentration
(SSC). Wilson et al. [66] found that a threshold rainfall intensity of 7 mm h™! best predicts when
post-fire hillslope erosion will occur in this region. This intensity is exceeded on average four times
per year in the study watershed. We make the simplifying assumption that the first-year post-fire
sediment load from the coupled erosion and sediment transport model is divided equally among four
storms. We estimate that 35% of the hillslope erosion predicted by RUSLE is part of the fine-grained
inorganic and organic components that contribute to suspended sediment based on observations of soil
particle sizes generated from post-fire hillslope erosion and transported in suspension after summer
thunderstorms in the region [71,72]. Post-fire water quality is usually degraded for short periods
(hours to days) following rainstorms in this region [48,73], so we calculate post-storm suspended
sediment concentrations using the average storm load of fine sediment and the daily flow volume past
the diversion point, which averages 1.48 x 10° L per day for the May to October period (gage-adjusted
estimates from [63]). Suspended sediment concentration is rarely monitored directly, so limits for
treatment are more commonly expressed in turbidity. For this analysis, we use the high end of
100 Nephelometric Turbidity Units (NTU) reported in the literature [15,74] to be conservative in our
judgement of exceeding limits for treatment. A conversion equation (Equation (5)) developed from
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post-fire monitoring of the Fourmile Canyon Fire was used to predict turbidity (NTU) from SSC
(mg L") [15].
NTU = (SSC - 2.84)/1.166, ®)

2.8. Containment Effectiveness Evaluation and Prioritization

To quantify the effectiveness of containment, we focused on the difference between the total water
impact measures with and without containment including watershed area burned, sediment delivered to
the diversion, and number of turbidity threshold exceedances. The difference between impact measures
for the uncontained and contained scenarios is the avoided transmitted risk [36]. Total sediment load
is a continuous value whereas turbidity exceedance is a binary outcome. Water quality degradation
was only considered transmitted when the outcome changed from below 100 NTU for within POD
burning to above 100 NTU for the entire fire footprint. To prioritize improvements along the potential
control lines that bound PODs, we calculated risk transmission across the POD edges based on their
proportional engagement with the fires that originate in their respective PODs; that is, the outcomes
associated with fire spreading to the surrounding landscape were divided among the lines based on
their intersected length. It is anticipated that the primary mitigation action would be fuels reduction
along the control lines, so transmission risk was normalized by length to compare the relative benefit
of hardening control lines.

3. Results

3.1. Fire Occurrence

Historical fire ignitions from the FOD [56] were concentrated in the lower and middle portions
of the focal watershed and along the southern boundary of the study area (Figure 3a) reflecting both
variation in fire season length and human use of the landscape. The 5000 wildfires simulated with
RANDIG ranged in size from 0.09 to 20,868 ha with a mean of 1961 ha and a median of 1469 ha.
We selected the 3040 fires that burned at least part of the focal watershed for further analysis. Their size
distribution did not vary substantially from that of the full simulation set. The excluded fires either
did not grow large enough to intercept the focal watershed, or the predominant wind direction caused
them to spread away from it. The middle and lower portions of the watershed are predicted to burn
most frequently due to both the greater ignition density and the presence of fuel types that promote
faster spread (Figure 3b). The high elevations in the western half of the study area are predicted to
burn infrequently due to low ignition density and sparse fuels. The southeast corner of the study area
near the water diversion has low burn probability because the fuels have not yet recovered from a
recent wildfire.

3.2. Fire Behavior and Severity

Crown fire activity is predicted to vary across the watershed due to differences in fuels and
topography (Figure 4a). A notable portion of the alpine and some recently burned areas are mapped
as non-burnable cover types (13.7%). Surface, passive crown, and active crown fire are predicted on
25.9%, 39.3%, and 21.1% of the watershed area respectively, which we use as proxies for low, moderate,
and high burn severity. This translates to predictions of low severity effects in grass and shrub fuel
types and moderate or high severity effects in most forests. High severity effects are most common in
forests with high horizontal and vertical continuity on steep slopes. Our prediction that approximately
60% of the watershed should burn at moderate or high severity is in line with the observed severity of
recent large wildfires in Colorado [75].
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Figure 3. (a) Fire Occurrence Database (FOD) records of historical ignitions and interpolated surface of
relative ignition density used in the RANDIG simulations. (b) Burn probability from the simulated

fires that intercept the study watershed.
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Figure 4. (a) Predicted burn severity using crown fire activity categories of surface, passive crown,
and active crown fire as proxies for low, moderate, and high severity fire. (b) Predicted post-fire
erosion with 2-year rainfall erosivity. (¢) Combined Sediment Delivery Ratio (SDR) accounting for both
hillslope and channel transport. (d) Predicted sediment delivery to the water supply diversion with
2-year rainfall erosivity.

3.3. Watershed Response

Like burn severity, the magnitudes of post-fire erosion and sediment transport vary widely across
the watershed owing to variation in topography, soils, and proximity to the diversion. Figure 4
illustrates this for the 2-year rainfall erosivity. The greatest sediment hazard is associated with steep
terrain near the major channels that is predicted to burn at moderate or high severity. Post-fire erosion
and sediment transport potential is generally low in the flatter terrain in the northeast quadrant of the
watershed, the high mountains above major waterbodies, and the recently burned areas. The spatial
distribution of sediment hazard is similar for 10-year and 100-year rainfall erosivity, but the absolute
magnitude increases considerably. Table 2 summarizes the distribution of predicted erosion, sediment
delivery to streams, and sediment delivery to the diversion for the 3040 simulated wildfires that
burned in the watershed. The predicted mean post-fire gross erosion for the simulated wildfires
is 12.3, 20.4, and 46.4 Mg ha™! for the 2, 10, and 100-year rainfall erosivity, respectively. Much of
this sediment should be retained in the watershed, especially where waterbodies interrupt sediment
transport (Figure 4c), so delivery to the diversion averages only 4.2, 7.0, and 15.9 Mg ha~" for the 2, 10,
and 100-year rainfall erosivity, respectively.
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Table 2. Summary statistics of first-year post fire erosion, sediment delivery to streams, and sediment
delivery to the water supply diversion (div.) in Mg ha~! by rainfall erosivity for the simulated wildfires
that burned into the watershed. These are total sediment yields including the coarse and fine fractions.

2-Year Rainfall Erosivity 10-Year Rainfall Erosivity 100-Year Rainfall Erosivity
Statistic Erosion To Streams To div.  Erosion To Streams To div.  Erosion To Streams To div.
Lower decile 2.0 1.0 0.4 4.3 2.1 09 18.5 9.1 4.3
Lower 5.0 26 1.6 9.8 5.0 32 323 16.5 11.0
quartile
Median 9.0 4.7 33 16.5 8.6 6.2 45.2 234 16.8
Mean 12.3 6.2 42 20.4 10.3 7.0 46.4 234 159
Upper 16.8 8.6 6.0 28.1 143 9.9 60.8 30.7 215
quartile
Upper decile 27.7 13.7 8.7 429 20.9 13.6 75.3 36.8 24.7

3.4. Avoided Watershed Area Burned

For improved containment at POD boundaries to avoid water supply impacts, the target fires
must leave the POD of origin under unmanaged conditions. Of the 3040 simulated wildfires that
burned at least part of the focal watershed, 2351 of them (77.3%) burned at least some area outside the
origin POD. Fires occasionally burned more than ten PODs, but of the fires that burned more than
one POD, most burned between two and five PODs (77.9%). This suggests that most fire transmission
during the initial burn period is between a POD and its adjacent neighbors, but some rare events may
burn across multiple POD boundaries.

Containing all fires within their POD of origin would reduce the average watershed area burned
from 1361 to 562 ha per fire, a 58.7% reduction (Table 3). The distributions of watershed area burned
for the contained and uncontained scenarios are shown in Figure 5a. Containing large fires has the
greatest potential to avoid watershed area burned; the 1396 fires that burned more than 1000 ha account
for 93.8% of the avoided area burned. Containment in the POD of origin would eliminate fires that
burn more than 10,000 ha in the watershed, which numbered 26 (0.9%) in the uncontained scenario.
The percentage of fires burning greater than 5000 ha would be reduced from 4.0 to 0.2. Watershed area
burned by fires that originate from PODs that are wholly or mostly outside the watershed should be
reduced to negligible levels under the containment scenario, but these PODs account for only a small
fraction of area burned when fires are allowed to grow freely (Figure 6a). Most fires start in the central
and eastern portion of the watershed (Figure 3) and the predominant west winds means that PODs in
the lower 2/3rds of the watershed are the source of fires that burn the greatest area (Figure 6a). All else
equal, larger PODs are larger sources of fire because they have more ignitions. Containment reduced
watershed area burned from fires that ignited in 61 of the 70 PODs, but some of the largest PODs still
have substantial watershed area burned with containment (Figure 6a) because fires have room to grow
large before encountering a potential control feature.
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Table 3. Summary of water supply impacts across all fires by containment scenario and rainfall erosivity.
A turbidity threshold of 100 NTU was used to compute the number of exceedances.

Watershed Area Burned (Mean ha per Fire)

Self-burning Total Avoided Avoided (%)
562 1361 799 58.7
Sediment to Diversion (Mean Mg per Fire)

Rainfall Erosivity Self-Burning Total Avoided Avoided (%)
2-year 3031 6115 3085 50.4
10-year 4904 10,188 5284 51.9

100-year 10,411 23,273 12,863 55.3
Turbidity Exceedances (Count of Fires)

Rainfall Erosivity Self-Burning Total Avoided Avoided (%)
2-year 1110 1668 558 33.5
10-year 1503 1910 407 21.3

100-year 1922 2210 288 13.0
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(c) Average post-storm turbidity
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Figure 5. Summary of containment effects on distribution of fire-level indicators of water supply risk by
rainfall erosivity including: (a) watershed area burned, (b) first-year post-fire sediment to the diversion,
and (c) first-year post-fire average post-storm turbidity (vertical black line marks the 100 NTU threshold

for treatment).

3.5. Avoided Sediment

Containment reduced the total sediment load to the pipeline diversion by 50.4-55.3% depending
on rainfall erosivity from an average of 6.1-23.2 thousand Mg per fire to an average of 3.1-10.4 thousand
Mg per fire (Table 3). The distributions of sediment delivered to the diversion for the contained
and uncontained scenarios are shown in Figure 5b. Sediment loads vary across several orders of
magnitude due to differences in fire size, erosion and sediment transport potential, and post-fire
rainfall. The effect of containment on sediment load is roughly equivalent to reducing rainfall erosivity
one level (Figure 5b). The spatial distribution of sediment source risk is similar to that of watershed
area burned (Figure 6b). PODs that are partially or wholly outside the watershed are a minimal risk
to water supplies after containment, but fire activity in the larger PODs situated in the middle of the
watershed is still expected to produce large sediment loads.
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Figure 6. Spatial summary of containment effects on distribution of POD-level indicators of water
supply risk for the 2-year rainfall erosivity including: (a) watershed area burned, (b) first-year post-fire
sediment to the diversion, and (c) frequency of turbidity exceedances for fires that originate within
each POD.
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3.6. Avoided Water Quality Degradation

Containment effects on water quality degradation were less substantial than for watershed area
burned and total sediment to the diversion (Table 3; Figure 5c); turbidity exceedances were reduced by
33.5, 21.3, and 13.0 percent for the 2, 10, and 100-year rainfall erosivity, respectively. With containment,
36.5, 49.4, and 63.2 percent of fires are predicted to exceed the 100 NTU threshold for the 2, 10,
and 100-year rainfall erosivity, respectively. Most fires that caused turbidity to exceed limits for
treatment originated in the large PODs in the middle of the watershed (Figure 6¢). The three PODs
with the most turbidity exceedances are all larger than 10,000 ha. Containment only reduced the
number of turbidity exceedances from these PODs from 640 to 568 (an 11.3% reduction) for the 2-year
rainfall erosivity, and containment offered almost no mitigation benefit (1.0% fewer exceedances) for
these PODs under the most extreme rainfall scenario. In contrast, containment reduced turbidity
exceedances by more than 50% in 33 of the 70 PODs under median rainfall conditions. These PODs
range in size from 502 to 14,153 ha with a mean of 3548 ha. Many of these PODs are mostly or wholly
outside the watershed, but some are smaller PODs inside the watershed.

3.7. Prioritizing POD Network Improvements

The limited effect of containment on turbidity exceedances highlights the need to break up the
three large PODs with high source risk in the middle of the watershed (Figure 6¢). These three PODs
are also the top priorities for further compartmentalization based on watershed area burned and total
sediment load from self-burning. With containment, an additional eight PODs were the source of 20
or more turbidity exceedances under median rainfall conditions. Cumulatively, these top 11 PODs
account for 91.4% of the fires that degraded water quality in the contained scenario, so efforts to further
reduce fire sizes in these PODs should have high benefit.

Prioritizing improvements along the potential control lines that bound PODs can be informed
with measures of risk transmission (Figure 7). Total sediment to the diversion was transmitted at the
highest rates along POD edges in the middle portion of the watershed (Figure 7a) where there is high
potential for fires to spread into erosion prone terrain near the diversion (Figures 3b and 4). In contrast,
transmitted water quality degradation was more concentrated along the edges associated with the
smaller PODs in the north central portion of the watershed (Figure 7b). Transmission risk was also
high for several control lines in the eastern half of the watershed that are nearly perpendicular to the
dominant wind direction. Mitigation priorities differed depending on which metric of transmission
risk was used (Figures 7 and 8). The two metrics both identify a similar order of priorities (Spearman’s
p = 0.89) but they have moderate disagreement about the magnitudes of potential risk mitigation
(Pearson’s R = 0.71), especially for the highest-ranking edges (Figure 8). Most notably, few of the POD
edges associated with the three large PODs that are the source of most turbidity exceedances (Figure 6c)
are high priorities for mitigation because containment at these locations infrequently changes the water
quality outcome despite the potential to avoid large quantities of sediment.
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Figure 7. Total transmitted risk for all fires from (a) sediment to diversion and (b) turbidity exceedances
normalized to edge length in kilometers for 2-year rainfall erosivity.
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Figure 8. Edge transmission risk comparison for 2-year rainfall erosivity. Edges ranked in the top
20 using either metric are colored red.

4. Discussion

This proof of concept analysis demonstrates the potential for improved early containment of
large fires to lower watershed area burned by 58.7% and to reduce risk to source water between 13.0%
and 55.3% depending on impact metric considered. Proportional reductions in total sediment load
to the diversion ranged between 50.4% and 55.3%, but the potential to avoid exceeding turbidity
limits for treatment was notably lower—varying between 33.5% and 13.0% reduction for the 2- and
100-year rainfall erosivity, respectively (Table 3). The contrasting response of our water impact metrics
to increasing rainfall erosivity (Table 3) reveals that avoiding large quantities of sediment may not
translate to avoiding degraded water quality if the residual sediment load is still large. The sources of
water supply risk and potential mitigation benefits of fire containment varied widely across the POD
network (Figure 6) suggesting the potential to further improve mitigation effectiveness with targeted
divisions to reduce the size of PODs with high risk from self-burning and fuels reduction to improve
containment probability along high transmission boundaries (Figure 7).

Our analysis built on previous studies of wildfire-water supply risk and wildfire risk transmission
to estimate the avoided water supply impacts from improved fire containment within pre-identified
PODs. Omi [18] approached this issue from the related perspective of fuel break construction and
maintenance in California using estimates of avoided area burned and a relative damage index to
value fuel break benefits. Monte Carlo wildfire simulation and watershed effects analyses capture
similar information on exposure and impacts with the added benefit of associating fire outcomes with
their ignition locations and final extents [32,33]. A recent effort to zone the study landscape into PODs
provided the operationally relevant fire containers used to estimate avoided water supply impacts
using risk transmission methods [35,36] as suggested by Davis [76] to estimate the area saved from
burning after encountering a control feature. The avoided area burned and sediment load measures we
modeled are similar to the impact metrics used to value the benefit of containment in previous studies,
but our evaluation of water quality degradation provided a unique opportunity to evaluate whether
the size and spatial arrangement of the PODs are appropriate to mitigate a scale-dependent risk.
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Our results suggest POD-based containment could meaningfully reduce risk of exceeding turbidity
limits for treatment (Table 3), but the large percentage of unmitigated risk implies that the containment
network could be more effective with smaller PODs.

Our estimates of avoided impacts are premised on the simplifying assumption that all fires are
contained within their POD of origin, which is likely realistic for many of our modeled fires but
optimistic for the most extreme fires in the region [35,46]. We chose not to address the probability
of containment in this study because existing models focus on characteristics of the control features,
surrounding fuels and topography, and fire behavior [30,77,78] but do not explicitly consider the
effects of suppression [79]. Managers in this landscape primarily identified roads as control features
because they aid firefighter access [29] and suppression firing [51]. It is also anticipated that proactively
identifying control features and response strategies will lead to timely and well-coordinated tactics
that increase the probability of containment. For example, extensive pre-season planning has been
credited with improving the strategic use of suppression firing and aerial retardant drops to contain
fire in PODs during extreme weather [80]. We did not account for suppression firing in this study,
which can sometimes substantially increase area burned [81] and thus would dampen the contrast
between our containment scenarios. However, managers ideally use backing fire to minimize adverse
effects [80]. Improved modeling of suppression actions and effects would help to refine our estimates
of risk mitigation.

The post-fire erosion and sediment transport modeling used here has several limitations that
are important to acknowledge. First, the linked fire and erosion model system (Figure 1) is subject
to multiple data, model, and model linkage uncertainties that have potential for prediction error as
discussed extensively in previous publications [24,25]. Recent work has shown that water quality at
the basin scale is sometimes minimally impacted despite modeled increases in hillslope erosion [82],
emphasizing the need to test and refine erosion and sediment transport models with empirical
observations at multiple scales [83]. Most of our predicted first-year post-fire hillslope erosion yields
for the 2-year and 10-year rainfall erosivity scenarios (Table 2) are close to the study-wide means of
9.5-22.2 Mg ha~! and the range of individual hillslope observations of 0.1-38.2 Mg ha~! from previous
fires in the region exposed to moderate rainfall [11,17,47,84]. Many of these studies had hillslope
sediment fences fill and overtop, so the reported yields are usually interpreted as a lower bound
estimate of the true erosion rate. For the 100-year rainfall erosivity, only the top decile of modeled
fires exceed the 72 Mg ha™! of rill and interrill erosion reported in the first year after the Buffalo Creek
Fire in response to similarly extreme rainfall (converted from volume estimates of [45] using bulk
density of 1.6 Mg m~3). Despite doubling the efficiency of hillslope transport in this study, only the net
sediment delivery to streams for the upper decile of fires with 10-year rainfall erosivity and the upper
half of fires with 100-year rainfall erosivity (Table 2) approach the small catchment sediment yields of
22.0-38.6 Mg ha™! observed in the first two years after the Hayman Fire [85,86]. This seems reasonable
given the larger size of most catchments in this study. After our rough calibration, our combined
hillslope and channel SDR values (Figure 4c) are close to SDR values estimated with similar travel
time methods [87,88]. None of the simulated fires at any rainfall level (Table 2) are predicted to deliver
sediment to the diversion at a rate close to the whole watershed sediment yield of 52.5 Mg ha~! for the
first year of the Buffalo Creek Fire [45], likely because we did not account for channel erosion.

Our water degradation analysis also layers on additional assumptions that the annual suspended
sediment load is evenly divided among the annual average of four sediment-generating storms
and the storm sediment load is evenly mixed in the average daily flow volume of the river during
the thunderstorm season. Despite these approximations, the resulting turbidities—which averaged
309, 516, and 1181 NTU for the 2, 10, and 100-year rainfall erosivity, respectively—align well with
common observations in the region of post-fire turbidities between 100 and 1000 NTU and occasional
observations >1000 NTU [15,48,89]. The assumption that storm load is an equal division of annual
load does not account for the substantial intra-annual variability in storm characteristics [15,83,90],
seasonal trends in runoff and erosion [91], nor the interannual variability in the frequency of storms
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with sufficient intensity to cause erosion [34,66]. Similarly, unaccounted for variability in daily flow
volume should influence the vulnerability of the water source. Given these simplifications, we have
more confidence in our contrasts of containment benefits across scenarios than we do in our absolute
estimates of degradation risk. Our analysis also focused exclusively on the acute periods of severe
water quality degradation after rainstorms in the first year after fire, so it is unclear if containing fires
to smaller sizes will avoid elevated carbon, nitrogen, phosphorus, manganese, and suspended solids
concentrations that may persist for years after fires in Colorado [15,89], increasing treatment complexity
and cost and raising concerns about the formation of disinfection byproducts [74,92]. Similar water
quality responses and treatment challenges have been observed after wildfires in Canada, Australia,
and Europe [12,13].

Despite uncertainties in the precise magnitude of risk reduction, improved containment appears
promising compared to other mitigation strategies. We found that limiting fires to their POD of origin
should reduce the total sediment load from wildfire between 50.4 and 55.3% (Table 3). Previous
assessments of landscape-scale fuel treatments in the western USA predict long-term sediment
reduction of 19% [25] and up to 34% reduction in sediment costs [24]. Salis et al. [93] project that
treating 15% of a landscape in Sardinia, Italy would only reduce average sediment yield 4-12%,
but their treatment scenarios were not prioritized to avoid erosion. Based on the narrowest contrast
in these figures (34% for fuel treatment and 50.4% for containment), POD-based containment should
compare favorably to landscape scale fuels reduction as long as the containment failure rate is less
than 32%. Furthermore, compartmentalizing fire in small units of the landscape has the potential to
avoid disrupting multi-source water systems by limiting fire impacts to a single source. The benefit of
containing individual wildfires should vary widely (Figure 5), as fire encounters with control features
and associated impacts beyond the POD of origin depend strongly on where the fire ignites.

We also demonstrated how risk transmission metrics could inform improvements to the POD
network, which should be relevant to fire, land, and water managers engaged in spatial fire
planning. The small number of PODs with high risk from self-burning are high priorities for
further compartmentalization, which could require improving firefighter access and/or reducing
fuels. Fine scale analyses of risk factors and containment opportunities would benefit these efforts.
If further divisions are not feasible or practical (e.g., because of wilderness or wildlife habitat concerns),
these PODs could be candidates for fuels reduction with prescribed or managed fire. It is also valuable
for water managers to identify areas that are not conducive to proactive risk mitigation, so they can
plan how to best respond to the anticipated effects of future fires. As previously discussed, we did not
estimate the probability of containing wildfire at POD boundaries and how containment probability
would change with fuels reduction, but managers are interested in identifying potential control lines
in need of improvement to support safe and effective fire response. Measures of transmission risk
across the POD edges (Figure 7) highlight where these efforts should be targeted to maximize their
benefit. However, priorities differed depending on the water supply effects measure used (Figure 8);
most notably, there is greater potential to avoid degradation by improving containment probability
around the smaller PODs. Further analyses are needed to evaluate if fuel conditions around these
POD edges necessitate treatment for firefighting effectiveness and safety.

The style of Monte Carlo exposure and effects analyses we present should also be useful for
evaluating fire protection strategies for other high value resources and assets that depend on the
scale of disturbance. For example, most ecological concerns relate to the area and spatial pattern of
high severity effects on vegetation and the resulting consequences for wildlife and reforestation by
dispersal-limited species (e.g., [94-96]). If intolerable levels of fire exposure or effects can be defined
for ecological values, similar methods could be used to assess the protection value of POD-based
containment. Wildfire impacts to homes and other values in the wildland-urban interface (WUI) are
almost always negative, but consequences often become disastrous when the area and assets affected
by fire overwhelm firefighting resources [97]. Managers intuitively design smaller PODs in the WUI [2],
but it has not been tested whether these PODs are appropriately sized to avert WUI disasters—i.e.,
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whether asset exposure for most fires is below the fire protection capacity. Similarly, wildfire impacts
to transportation networks may cross thresholds of concern for evacuation when traffic exceeds the
capacity of the available routes. Explicitly defining performance objectives for these and other fire
protection concerns could help to tailor POD size and spatial arrangement in future fire planning efforts.

5. Conclusions

Improved wildfire containment has potential to meaningfully reduce wildfire risk to water
supplies, but these effects are scale dependent. In our test cases, approximately 75% of fires intersected
potential control features and, if these fires were contained within their POD of origin, watershed area
burned would be reduced by 58.7%, total sediment load to the diversion would be reduced between
50.4 and 55.3%, and water quality degradation beyond limits for treatment would be reduced between
13.0 and 33.5%. Risk mitigation was higher for total sediment load than water quality degradation
because containment did not always change water quality outcomes. Moreover, priorities to improve
the network design by modifying the size of the PODs or improving containment probability along
their edges differ depending on the effects measure used. This highlights the importance of properly
defining water supply impacts for wildfire risk assessment and mitigation effectiveness studies.
Similar analyses could be applied to other scale-dependent resources at risk of wildfire to inform
containment network design.
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