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Abstract: Red Flag Warnings (RFWs) issued by the National Weather Service in the United States (U.S.)
are an important early warning system for fire potential based on forecasts of critical fire weather
that promote increased fire activity, including the occurrence of large fires. However, verification of
RFWs as they relate to fire activity is lacking, thereby limiting means to improve forecasts as well as
increase value for end users. We evaluated the efficacy of RFWs as forecasts of large fire occurrence
for the Northwestern U.S.—RFWs were shown to have widespread significant skill and yielded an
overall 124% relative improvement in forecasting large fire occurrences than a reference forecast. We
further demonstrate that the skill of RFWs is significantly higher for lightning-ignited large fires than
for human-ignited fires and for forecasts issued during periods of high fuel dryness than those issued
in the absence of high fuel dryness. The results of this first verification study of RFWs related to
actualized fire activity lay the groundwork for future efforts towards improving the relevance and
usefulness of RFWs and other fire early warning systems to better serve the fire community and public.

Keywords: fire weather; forecast verification; fire danger forecasting

1. Introduction

Wildland fire plays an important role as a natural and increasingly anthropogenic disturbance
found in most vegetated ecosystems globally [1,2] and generally serves to promote healthy, resilient
landscapes [3]. However, when fire threatens to directly impact human life and property, it may be
considered hazardous [4], prompting land management action to mitigate impacts on ecosystems
and communities [5,6]. In recent decades, longer periods of critical fire weather [7] coupled with
human-caused fire activity [8] and increased fuel loads as a result of fire suppression activities [9] have
expanded the threat of hazardous fires in the United States (U.S.), making land management objectives
more difficult and costlier to achieve, while also placing the safety of fire suppression personnel and the
public at greater risk. These effects have been demonstrated by recent fire events in the U.S. [10–12] and
are expected to continue due to anthropogenic climate change [4,13] and the growth of wildland–urban
interfaces [14].

Many early warning systems have been developed for fire hazards, including the development of
numerous fire danger indices [15]. Comprehensive fire danger systems integrate weather, fuels,
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and climate information to generate daily predictions regarding the fire environment and fire
behavior characteristics [16–18]. These outputs are generally considered in fire management plans as
actionable criteria that prompt some prevention, preparedness, or resource allocation decision [15] and
have seen widespread adoption in wildland fire management communities in North American and
Australasia [16,17,19,20], with other countries like the United Kingdom in the process of developing
similar tools [21]. In the U.S., systems such as the Severe Fire Danger Index and Santa Ana Wind
Threat Index, leverage advancements in gridded meteorological forecast data along with fuels and fire
behavior information to provide local-to-regional predictions of fire danger [22,23], while other systems
predict fire danger directly from fire weather conditions, independent of fuels [24,25]. Similarly, utility
providers incorporate a matrix of meteorological and fuel moisture criteria to de-energize electrical
lines as a fire-prevention strategy [26]. While these systems serve as important tools for understanding
hazardous fire risk, many are generated independent of real-time human input that may be important
for deciphering rapidly changing fire environment factors that drive the most extreme fire activity.

Red Flag Warnings (RFWs), which are issued by meteorologists at the U.S. National Oceanic and
Atmospheric Administration (NOAA) National Weather Service (NWS), are forecasts of critical fire
weather conditions that could lead to abundant new ignitions and/or rapid spread and growth on
existing fires (i.e., extreme fire behavior), but are not actually forecasts of fire activity (Figure 1) [27].
Forecasters at local weather forecast offices (WFOs) issue RFWs on short timescales (imminent to
48-hr lead times) and consider numerous quantitative and qualitative meteorological parameters
(e.g., relative humidity, wind speed, atmospheric stability, dry frontal passage, lightning) along with
some measure of fuel dryness. These parameters are considered as criteria for RFW issuance (Table 1)
based on the expert opinion and analyses at WFOs and vary geographically by sub-regional fire
weather zones (FWZs). Although this arrangement allows for greater flexibility to accommodate local
conditions conducive to area fire initiation and growth, it has resulted in many different criteria across
FWZs, complicating the messaging intent of these forecasts. Furthermore, limited studies have been
conducted to verify the performance of RFWs and we are not aware of any peer-reviewed studies that
discuss possible refinements to these forecasts.
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Figure 1. An example of a Red Flag Warning issued by the National Weather Service (NWS) Spokane
forecast office for windy and dry conditions on 28 August 2015.
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Table 1. Select criteria for issuing Red Flag Warnings (RFWs) at different weather forecast offices
(WFOs) taken from the 2019 Northwest Area Fire Weather Annual Operating Plan available at
https://gacc.nifc.gov/nwcc/content/pdfs/2020_Region_6_AOP_public.pdf.

WFO Pendleton
All FWZs

“LIGHTNING: Abundant lightning in conjunction with sufficiently dry fuels (fuels remain
dry or critical during and after a lightning event). Warnings are not typically issued for
isolated coverage events. Warnings not typically issued for events that will be
accompanied by significant rain (greater than 0.25 inches). However, if a lightning event
will occur with significant rain, but is then followed by very hot and dry conditions, a
warning may be issued if holdover/sleeper fires are a concern.”

WFO Portland
FWZs 605, 607,
and 660

“One station (RAWS) must report 35% humidity or less AND 10-minute wind speed of
10 mph AND/OR gusts to 20 mph or more for four hours in an 8- hour block, AND at least
TWO other stations reporting 35% humidity or less AND 10- minute wind of 10 mph
AND/OR gusts to 20 mph for at least TWO hours. Key RAWS: Horse Creek, Log Creek,
Wanderer’s Peak, Kosmos, Canyon Creek, Orr Creek, Elk Rock, and 3-Corner Rock. NOTE:
Includes stations from zone 659.” (Only valid during nighttime hours)

WFO Spokane
All FWZs

“An unusually unstable atmosphere. This would be associated with a strong thermal
trough which typically forms along the east slopes of the Washington Cascades.”

RFWs are similar to other NWS early warning products for natural hazards (e.g., tornadoes,
severe thunderstorms, flash floods) as they are issued for high-impact events that have the potential to
threaten life and property. Many verification studies have been conducted on the performance of these
other hazard forecasts to increase the quality of the system and value to end users [28–31]. The NWS
maintains internal verification statistics for RFWs, but these are computed for weather criteria—not
the occurrence of hazardous fires (unlike warnings for tornadoes or flash floods)—and therefore may
have reduced value for end users. RFWs are unique warning forecasts not only in this regard, but
also because the issuance of RFWs may actually prevent the hazard from occurring in the case of
human-caused fires or through increased situational awareness of fire suppression during RFWs. We
hypothesize that fire prevention efforts tied to the issuance of RFWs reduce fire hazards and result in
reduced quantitative performance for RFWs, as measured through the lens of fire activity.

Here, we consider occurrences of new large fires (LFs) as hazardous fires and treat RFWs as
dichotomous forecasts of these LF occurrences across subregions of the Northwestern U.S. Since LF
occurrence is complicated by many non-meteorological factors, we examine how RFW performance
varies across different LF size thresholds, fire causes, and land cover. Finally, we assess how forecast
performance varies as a function of relative fuel dryness, which, while being a criterion considered in
many RFWs, is used heterogeneously across zones. While some studies have shown the importance of
meteorological conditions tied with RFW criteria on fire activity [32], this study provides a first known
effort to evaluate the added value of RFW forecasts for actualized LF activity that is of key importance
for fire suppression. The results of this study may help to both refine RFWs and identify reasons why
forecast performance and skill varies across different regions and LF characteristics.

2. Materials and Methods

2.1. Study Location

The study area is composed of the county warning areas of eight NWS WFOs of the northwest
contiguous U.S.: Seattle (SEW), Spokane (OTX), Missoula (MSO), Pocatello (PIH), Boise (BOI), Medford
(MFR), Pendleton (PDT), and Portland (PQR) (Figure 2). This covers a diverse set of regions we
herein refer to as the Northwest, including the coastal areas of Washington and Oregon, the Cascade
Mountains and Blue Mountains, much of the Northern Rockies, the Columbia Basin, and portions of
the Great Basin. Fire season in the Northwest is generally shorter and more well-defined compared to
other fire-prone regions across the U.S. [33], with ~86.1% of all wildfires and ~99.7% of total burned
area occurring in the months of June–October from 2006 to 2015. Across the region, the number of
lightning-ignited fires and human-ignited fires is nearly the same, although lightning fires comprise
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~83.6% of the total burned area while human-ignited fires account for only ~16.42% of the total burned
area [34]. Smaller and primarily human-ignited fires are more common west of the Cascade Mountains
due to less lightning frequency [35,36] and a larger wildland–urban interface component [8].

2.2. Datasets

Spatial data of RFWs were obtained from the Iowa State University Iowa Environmental Mesonet
(IEM) archive of NWS watches and warnings [37]. This dataset includes the WFO, FWZ, issuance
date/time, and expiration date/time with each warning. We simplified RFWs that span multiple days into
records for each day so that if an RFW was active for any portion of a calendar day it was considered an
RFW day for that FWZ. The resulting dataset contains 8940 RFW forecast days between 2006 and 2015.

Point location fire records for the same 10-year period were obtained from the Fire Program
Analysis (FPA) fire occurrence database [34]. These data include the fire discovery date, final fire
size, and fire cause information, aggregated from numerous federal, state, and local fire reporting
systems. Records were reduced to the study area, resulting in 64,122 fires that were assigned to the
corresponding FWZ that existed at the time of the fire discovery date. This latter point is important as
FWZ boundaries have changed throughout the entire period due to anticipated improvements in the
quality of forecasts and the ability to adequately warn affected populations [38]. We designated LFs
for each FWZ as the largest 10% of fires within each zone [39,40], but also assess the sensitivity of the
results in relation to fire size by considering the largest 5% and 20% of fires. Rather than quantifying
skill in terms of the number of individual LFs, we identified LF days (LFDs) on the basis of having at
least one LF occurrence within a FWZ on a given day. This means that multiple LFs occurring within a
FWZ for a given day were not considered separate events, which would otherwise result in misleading
performance statistics since RFWs are issued for the FWZ. The resulting number of LFDs across the
entire study region were 10,402, 5341, and 2775 when fire sizes were ≥ 80th, 90th, 95th percentile sizes,
respectively. For the purpose of tabulating LFs, we assumed that fires reached size thresholds on the
date of discovery as detailed fire progression information was unavailable.

We additionally explore how RFW performance varies by fire cause, land cover, and a measure
of relative fuel dryness. These subsequent tests are constrained to LFs above the 90th percentile size
threshold. To more effectively determine performance for just human- and lightning-caused fires, we
eliminated those which had an ‘unknown’ cause, leaving 2309 lightning-caused and 2890 human-caused
LFDs. However, we retained these ‘unknown’ caused fires in the other tests to maximize the frequency
of events available for computing performance statistics. We then classified LFs as burning primarily in
forested lands and those primarily burning in non-forested lands using the 0.5-km moderate resolution
imaging spectroradiometer (MODIS)-based global land cover climatology dataset [41]. Due to the
absence of fire perimeters, we approximated perimeters by assuming a circular fire with an area
equivalent to the final fire size. Fires which had >50% pixels classified as forested were assigned as
such and those <50% were assigned as non-forested vegetation. A total of 3073 LFDs were classified as
forested while the remaining 2466 were considered non-forested.

Lastly, energy release component (ERC) percentile values were assigned to each fire using
co-located ~4-km gridded data from gridded meteorological data (gridMET) [42] to represent fuel
dryness. These percentiles were calculated by pooling data for the entire calendar year during the
2006–2015 period. ERC is defined as the total available energy within the flaming front of a fire
calculated from the U.S. National Fire Danger Rating System (NFDRS), here using Model G (dense
conifer) as the fuel model input. ERC is often used in fire business decision making as it is a good
measure of cumulative fire danger because it gives higher weighting to heavier fuel types that tend
to reflect seasonal drying trends [43], and is not as sensitive to daily fluctuations in fire weather
variables as shown in other NFDRS indices (e.g., burning index). Several studies have shown a strong
relationship between interannual fire activity and ERC [44,45]. Most commonly, the locally defined
90th percentile ERC threshold is used to represent high fire danger across particular geographic
regions [22,46,47], and we adopt this threshold in our analysis. A total of 2160 LFDs were classified as
ERC ≥ 90th percentile while 3307 were classified as ERC < 90th percentile.
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Figure 2. Map of the study area with forestlands defined using the 0.5 km moderate resolution imaging
spectroradiometer (MODIS)-based global land cover climatology dataset [41] and NWS weather forecast
office (WFO) warning areas based on fire weather zones.

2.3. Analysis Methods

To quantify forecast performance, we treated RFWs as dichotomous forecasts for LFDs and
constructed a contingency table that shows the frequency of forecasts and LFDs. The contingency table
is a standard forecast verification tool used to compute performance statistics of nonprobabilistic
forecasts of discrete predictands [48–50] and has the general form:

Observed Event?
Yes No

Forecast Issued?
Yes Correct Positive (a) False Alarm (b)
No Miss (c) Correct Negative (d) *

* Not calculated.

Here, correct positive forecasts (i.e., hits) are RFWs where an LFD occurred on or within one day
following the forecast in the same FWZ. This 2-day period was used to accommodate typical delays in
fire reporting and is consistent with other studies that consider meteorological conditions immediate
to fire occurrence using LF databases [51]. If an RFW was issued but no LFs were observed coincident
with or one day after the forecast date, the forecast is classified as a false alarm. A forecast is classified
as a miss when there was no forecast issued for a FWZ during the 2-day period but an LFD occurred.
We acknowledge that considering a 2-day period in the compilation of our performance statistics
differs from traditional methods of measuring forecast skill of meteorological elements. Moreover, our
treatment of RFW forecast skill is specific to the occurrence of new LFDs; RFWs issued coincident with
days of rapid growth on existing fires in the absence of new LF are treated as false alarms.
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Since RFWs are forecasts of high-risk, statistically rare events (similar to tornadoes, flash floods)
calculating correct negative forecasts are of little value due to the overwhelming amount of days where
no event was observed or forecast [29,30,52]. Thus, we omit correct negatives in our analysis [53].
An example of this classification scheme for a particular day is given in Figure 3. On 10 August 2015,
32 RFWs (shown as hits or false alarms) were issued and LFs which occurred on 10–11 August were
used to classify forecasts. The resulting number of hits, misses, and false alarms for this RFW day were
11, 11, and 21, respectively. Table S1 summarizes the number of RFW days as well as LFDs over the
10-year dataset for each WFO.Fire 2020, 3, x FOR PEER REVIEW 7 of 23 
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August 2015 and new large fires from 10–11 August 2015. Thirty-two RFWs were issued, resulting in 11
hits, 11 misses, and 21 false alarms across the study area.

From the contingency table, we computed the following performance measures: probability of
detection (POD), false alarm ratio (FAR), and critical success index (CSI). The relevant equations and
definitions of these metrics are listed in Table 2. These measures are frequently reported together in the
case of rare event forecasts because of a shared lack of consideration given to correct negatives [54].
Furthermore, if we consider the formulae in Table 2, we can rearrange terms to show that CSI is a
nonlinear function of POD and FAR given by

CSI = [(POD)−1 + (1− FAR)−1
− 1]

−1
,

For rare events such as LFs, it is important to note that values will seldom approach CSI = 1
(and may instead be much closer to CSI = 0) due to the decreased frequency of events and increased
frequency of times where no event was forecast or observed.

Most commonly, forecast systems are evaluated against persistence forecasts, random forecasts,
or climatological forecasts by determining the ‘skill score’ of the compared forecasts for a particular
performance metric [50]. These skill scores provide an analytical guide to measure the added value
of a forecast relative to a reference forecast. In its most generic form, the skill score with respect to a
performance metric (M) is defined as [55]

Mss =
MFORECAST −MREFERENCE
MPERFECT −MREFERENCE

,

where MFORECAST is the performance metric (such as POD or CSI) of the forecast system being evaluated,
MREFERENCE is the same metric but for the reference forecast, and MPERFECT is the scalar value of a



Fire 2020, 3, 60 7 of 17

perfect forecast for that particular metric (for example, PODPERFECT = 1 if POD was being evaluated).
If MSS > 0, improvement over the reference forecast can be inferred.

Table 2. Forecast metrics calculated in this study.

Performance Metric Measures Equation Possible Range
and Perfect Score

Probability of detection
(POD)

Fraction of observed events
that were correctly forecast

POD = a
a+c

0–1
1

False alarm ratio (FAR) Fraction of predicted events
that did not actually occur FAR = b

a+b
0–1
0

Critical success index
(CSI)

Fraction of correctly forecasted events
without consideration to correct negatives

CSI = a
a+b+c

0–1
1

Since RFWs and LFDs within the study area are generally confined to the summer months, reference
forecasts need to preserve this seasonality for fair comparisons. Climatological and persistence forecasts
are commonly used as reference forecasts for skill score calculations, particularly for continuous
variables [56–58]. For our case, a persistence-based reference would not be suitable given the serial
correlation of these forecasts from one day to the next that would make it difficult to separate the
skill of the actual forecasts from the reference forecast [59]. A randomly generated forecast provides a
reference completely independent of the observations (a truly no-skill forecast) but may sacrifice the
seasonal relationship we are trying to preserve if the forecasts are allowed to be drawn from any time
in the year. Thus, we define a ‘random climatology’ forecast to achieve an independent set of reference
forecasts that retain a similar seasonal distribution to the actual RFWs. To achieve this, a resampling
procedure was implemented where actual RFW days were resampled for any date within ± 15 days
among all years of the study period, resulting in a reference set of the same size. These reference
forecasts were then assessed against the observations using the same procedures and performance
metrics as before and skill scores were computed against the actual forecasts. This process was repeated
one hundred times to obtain a robust sample of statistics and skill scores and median values were
selected for presentation in the results. To test the statistical significance of RFW forecast skill versus
the reference, we reject the null hypothesis of RFW skill being the same as the reference forecast if 95%
of the sample skill scores (MSS) are greater than zero.

We also report results in terms of relative improvement between the RFWs and reference as
another measure of skill since skill scores may be unintuitive to fire managers and other readers
external to the weather forecasting community. Relative improvement is expressed as the percentage
difference from the reference forecast as:

Rel. Improvement (%) =
MFORECAST −MREFERENCE

MREFERENCE
× 100,

In addition to reporting performance metrics and skill for each WFO, we compute area-wide
statistics by aggregating the number of hits, misses, and false alarms from each WFO into one
contingency table representing all eight offices.

3. Results

3.1. Performance as Forecasts of LF Occurrence

RFWs exhibited skill as forecasts of LFDs across WFOs in the Northwestern U.S. (Figure 4).
Area-wide POD was 0.29, while PODSS was 0.18 and POD relative improvement was 124.1% over the
reference forecast. Six of the eight WFOs demonstrated >100% POD relative improvements. POD was
the lowest for two offices covering the populated and mesic portions of the study area (SEW and PQR),
although relative improvements in capturing LFDs in these areas were high. Herein, all forecasts were
found to have significant skill unless otherwise noted.
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3.2. Fire Size

Area-wide POD increased with larger fire size thresholds, although this was countered by increased
FAR values due to decreasing event frequency (Table 3; Table S2a–c). Similarly, area-wide skill scores
and relative improvement increased with larger fire size thresholds; PODSS increased from 0.13 for
80th percentile LFDs to 0.23 for 95th percentile LFDs, while the area-wide relative improvement in
POD increased from 99.4% for 80th percentile LFDs to 138.2% for 95th percentile LFDs. Differences
in POD as a function of fire size varied among the WFOs; across all fire size thresholds, the highest
performance was shown for regions with the largest fire sizes (BOI, PIH, and PDT) while a notably
lower performance was observed for regions west of the Cascade Mountains (PQR and SEW). Five
WFOs demonstrated relative improvements over the reference forecast > 100% for LFDs regardless of
fire size threshold.
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Table 3. Area-wide Probability of Detection (POD), POD skill scores, and POD relative improvement
in Red Flag Warnings when large fire day (LFD) was defined at 80th, 90th, and 95th percentile fire
size thresholds.

LF Size ≥ 80th Perc. LF Size ≥ 90th Perc. LF Size ≥ 95th Perc.

POD 0.24 0.29 0.34
PODSS 0.13 0.18 0.23

Relative Improvement 99.4% 124.1% 138.2%

3.3. Fire Cause

Area-wide POD, PODSS, and the relative improvement in POD were notably higher for
lightning-caused LFDs than for human-caused LFDs (Figure 5a). For example, the area-wide POD was
0.46 for lightning-caused LFDs and 0.17 for human-caused LFDs. Furthermore, PODSS was 0.34 for
lightning-caused LFDs and only 0.08 for human-caused LFDs. While skill scores for human-caused LFDs
were low, they showed substantial relative improvement (~78.4%) in POD over the reference forecast.
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Similar to the area-wide results, we generally found higher skill for lightning-caused LFDs than
human-caused LFDs across WFOs (Table S3a,b). Figure 5b shows this as points for each WFO where
higher POD and lower FAR result in increased CSI. WFOs with the fewest lightning-caused LFDs
(PIH, PQR, and SEW) showed the lowest POD and highest FAR. Although more human-caused LFDs
occurred across the region, FAR values for these fires were higher than lightning-caused LFDs for five
of the eight WFOs. Skill scores demonstrated improvements for both fire-cause types across regions,
although the improvement among human-caused LFDs was low.

3.4. Land Cover Type

We found little discernible difference in performance and skill scores calculated for LFDs stratified
by forest and non-forest land cover (Table 4). Area-wide POD was slightly higher for non-forested LFDs
but FAR and CSI were nearly the same. Both land cover types showed area-wide relative improvements
> 125% above the reference. We found statistically significant skill for all RFWs by land cover except for
non-forested LFDs in SEW. The results for individual WFOs are provided in Table S4a,b.

3.5. Fire Danger

RFW forecasts conditioned on being coincident with high fire danger (ERC ≥ 90th percentile,
area-wide POD of 0.42) exhibited superior skill to RFW forecasts coincident with lesser fire danger
(ERC < 90th percentile, area-wide POD of 0.23) (Figure 6a). Furthermore, area-wide PODSS coincident
with high fire danger was nearly double that of RFW, coincident with lesser fire danger. Area-wide
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POD relative improvement over the reference was 142.1% for LFDs with high fire danger and 116.2%
for those LFDs with lesser fire danger.

Table 4. As in 3a but for forested and non-forested large fire land cover types using a 90th percentile
fire size threshold.

Forested LFD Non-Forested LFD

POD 0.28 0.34
PODSS 0.18 0.23

Relative Improvement 129.0% 131.3%
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POD and PODSS were ubiquitously higher for RFWs coincident with high fire danger than lesser
fire danger across WFOs (Figure 6a, Table S5a,b). Similar to findings for differences in skill metrics
between human- and lightning-caused LFDs, we showed improvements in POD, FAR, and CSI between
RFWs issued during lesser fire danger and during high fire danger across WFOs (Figure 6b). For example,
we found a POD of 0.61 at for the Pendleton WFO during high fire danger, which is much higher than
the POD during lesser fire danger (0.34) and showed a 195% improvement over the reference forecast.
We found statistically significant skill for all RFWs conditioned by fire danger except for RFWs issued
by PIH, coincident with the ERC < 90th percentile.

4. Discussion

4.1. Performance in the Context of Rare Event Forecasting

We found that RFWs have skill as forecasts for the occurrence of new LFDs across the Northwestern
U.S. and further demonstrate substantial improvement from reference forecasts (Figure 7). This is
an important finding that indicates the added value RFWs provide to fire managers and the public.
As was expected, overall performance metrics were low due to the rare nature of LFDs, and the fact
that we constrained our definition of fire activity to new LFs rather than also accounting for growth on
existing fires or the number of new ignitions. In addition, forecasts of high-risk, rare events may be
prone to hedging, where the cost of a missed forecast exceeds the forecaster’s risk tolerance, leading
to the issuance of more forecasts and a greater number of false alarms [60,61]. Other forecasts of
high-risk, rare events such as flash floods [30] and earthquakes [62,63] similarly demonstrate the
consequences of hedging and lower forecast skill. We mitigate biases introduced through hedging
by demonstrating a substantial relative improvement in RFWs compared with reference forecasts.
However, complementary analyses show that the majority of days with new LF starts do not coincide
with the issuance of RFW across WFOs, highlighting the challenges inherent in the stochastic nature of
fire occurrence (Table S1).
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4.2. Lightning- and Human-Caused Fires

The majority (55.6%) of LFs across the study area were human-caused. However, the performance
of RFWs for the occurrence of human-caused LFDs was quite low with only one WFO having POD >

0.25. Conversely, performance was notably higher for days with lightning-ignited large fires with all
WFOs having POD > 0.25 and three WFOs having POD > 0.5. The interaction between lightning and
fire occurrence is well understood [36], although there is some debate about which factors are most
critical for determining fire ignition potential [64]. Previous research has shown that the presence of
dry thunderstorms, low fuel moisture, and fuel type impact the ignition efficiency of lightning [65].
The probability of dry thunderstorms as agents of fire ignition is often included in the issuance of RFWs.
Improvements in dry thunderstorm forecasting and continued research on lightning characteristics
(e.g., polarity, residence time, and amplitude) for ignition potential (see [66]) are likely to increase RFW
performance for lightning-caused fires.

By contrast, RFWs do not explicitly include predictors of human ignitions. The lesser skill of RFW
for capturing human-caused LFDs is consistent with prior research that shows that human-caused fires
are more difficult to predict [67,68] and occur over a more diverse set of fuel moistures and broader
period of the year than lightning-caused fires [8]. Other factors beyond fuels, weather, and topography
tend to influence human-caused ignitions such as road, population, and railroad density, days of the
week, holidays, and socioeconomic status [69].

The issuance of RFWs may alter human activity resulting in degraded skill. RFWs for non-lightning
events (e.g., hot and dry conditions, high winds) may act as preventative measures for fire managers
and the public that reduce the number of new large human-caused fires. For example, the issuance
of RFWs can promote action by local land agencies to restrict campfire usage, limit silvicultural and
agricultural burning, and bolster suppression capability in the affected areas. In this case, are false
alarms actually indicative of a successful forecast? Contrarily, there are claims that illegal burners and
arsonists may view RFWs as a window of opportunity to maximize their efforts, although research
suggests this may not be well-founded [70]. Collectively, these factors highlight the reasons for the
reduced performance and skill of RFWs for human-caused LFDs. More research is needed here to
discern the efficacy of RFWs in fire prevention efforts.

4.3. Fuel Dryness as a Prerequisite for RFW Issuance

We found improved RFW skill for new LFDs conditioned on fuel dryness. LFs generally occur
when fuels are more receptive due to weather and climate drivers [45,51] and RFWs are intended
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to consider some measure of fuel dryness. Our results reinforce the added value of RFW forecasts
that explicitly integrate objective measures of fuel dryness. For this study, we chose ERC because of
its representativeness of seasonal drying trends and widespread usage by regional fire management,
although we acknowledge that other fire danger indices may be more appropriate for different
geographic areas or times of the year depending on the dominant drivers of fire activity for the expected
event. For example, in western Washington, downslope wind events that bring hot and dry winds
from the Columbia Basin across the Cascades can occur throughout the year and are a known critical
fire weather pattern when they co-occur with dry fuels [33,71]. These events typically occur on short
timescales and thus the fuels response and fire risk may be better resolved by 10-/100-hour fuel moisture
values than ERC. Additional studies that examine a variety of fuel aridity metrics throughout the year
may aid in the efficacy of RFWs.

4.4. Limitations of Assessing and Interpreting Skill of RFWs

RFWs are issued for areas of relatively homogenous climate and fuels. We caution that comparisons
of performance between WFOs need to consider the climate, fuels, and frequency of events that differ
markedly across FWZs. Furthermore, WFOs with larger FWZ sizes could show artificially better skill
because of a larger pool of LFDs. Previous studies have shown similar results where performance
increases with the scale of the geographic area considered, but tends to result in decreased value to the
end user [63]. Additional analyses that examine the specific criteria for RFW by zones as well as the
host of biophysical and human factors may help shed light on differences in forecast skill.

Lastly, we considered RFWs as forecasts of new LFDs, although, in reality, RFWs may be issued
for weather conditions (e.g., atmospheric instability, high winds, low relative humidity) that promote
growth on existing fires and heighten the potential for rapid rates of fire spread for new ignitions.
Our explicit treatment of RFWs as forecasts for new LFDs results in a low estimate of skill as we
classify RFW days that may have rapid growth on existing fires but no new LFs as false alarms. Recent
geospatial datasets of daily fire incident status reports (SIT-209s, [72]) and burned area information
from satellite imagery [73] aim to provide fire growth information for larger fires and thus may be
useful for the future evaluation of RFWs and other fire hazard warning systems.

5. Conclusions

We found the skills of RFWs for meaningful measurements of fire activity broadly across
the Northwestern U.S. We additionally demonstrated that RFW skill was significantly better for
lightning-caused LFDs and when issued coincident to high fuel dryness (area-wide POD relative
improvements of 154% and 142.1% over our reference forecast, respectively). While this is the first
known study on RFW skill married to actual fire activity, our measures of skill are specific only to the
occurrence of new, large fires. However, these forecasts may have value for fire early warning systems
beyond those reported here.

Our results provide a means for discussing the quality of RFWs and highlight recommendations for
improving RFWs while preserving value to end users. The definition of RFWs and criteria used to issue
these forecasts should be explicit, centrally documented, and easily verifiable. We discovered many
different WFO interpretations of the RFW definition and found numerous qualitative RFW criteria that
are challenging to verify directly. RFW criteria should include a measure of fuel dryness (e.g., ERC,
1000-hr fuel moisture) and be flexible enough to accommodate different weather regimes that drive
fire activity throughout the year. Furthermore, improved empirical analyses of the weather and fuels
conditions that lead to significant ignitions and rapid rates of spread need to be performed to determine
appropriate local RFW criteria, and these criteria should be quantifiable and concise so that performance
may be easily assessed and improved upon. Such analyses may draw upon studies that have identified
meteorological and fuel moisture thresholds important for ignitions and rapid spread rates [51,65,74].
We emphasize that RFWs are directly linked to fire occurrence and spread within the NWS Fire Weather
Services Product Specification [27], and argue that RFW issuance criteria and verification should
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include actual fire activity. We have demonstrated the performance of RFW as forecasts of large fire
occurrence and hypothesize that further improvements could be made by incorporating daily fire
spread data and revising RFW criteria to include our aforementioned recommendations.

RFWs and other early warning systems for fire may benefit from incorporating a probabilistic
framework that is better suited for high-risk, rare event forecasting [61,75] and quantitative risk
assessments [76]. A probabilistic forecast would be especially useful for the fire community, where
decisions are commonly made with high economic cost and human risk factors [77,78]. The NOAA
Forecasting a Continuum of Environment Threats (FACETs) framework seeks to supplement or replace
existing NWS deterministic products with high-resolution probabilistic information [79] and may be
applicable for moving RFWs in this direction. Beyond RFWs, other fire early warning systems should
consider providing probabilistic information that identifies the range of potential scenarios that would
ultimately lead to better, more actionable decisions by end users.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-6255/3/4/60/s1,
Table S1: Summary statistics for the eight WFOs showing the number of days where an RFW was issued, days
when an LF occurred, the mean LF size for the WFO, the number of human- and lightning-caused LF days, and
the ratio of LFs occurring on or within one day following an RFW day. Table S2: Complete RFW performance
statistics, skill scores, and relative improvement values for large fire days ≥ 80th percentile, ≥ 90th percentile, and
≥ 95th percentile sizes. Table S3: Complete RFW performance statistics, skill scores, and relative improvement
values for lightning-caused and human-caused large fire days ≥ 90th percentile sizes. Table S4: Complete RFW
performance statistics, skill scores, and relative improvement values for forested and non-forested large fire days ≥
90th percentile sizes. Table S5: Complete RFW performance statistics, skill scores, and relative improvement values
for large fire days ≥ 90th percentile sizes where ERC≥90th percentile values and ERC < 90th percentile values.
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BOI Boise (weather forecast office)
CSI Critical success index
ERC Energy release component
FACET Forecasting a Continuum of Environment Threats
FAR False alarm ratio
FPA Fire Program Analysis
FWZs Fire weather zones
gridMET Gridded meteorological data
IEM Iowa Environmental Mesonet
LF Large fire
LFD Large fire day
MFR Medford (weather forecast office)
MODIS Moderate resolution imaging spectroradiometer
MSO Missoula (weather forecast office)
NOAA National Oceanic and Atmospheric Administration
NWS National Weather Service
OTX Spokane (weather forecast office)
PDT Pendleton (weather forecast office)
PIH Pocatello (weather forecast office)
POD probability of detection
PQR Portland (weather forecast office)
RAWS Remote Automatic Weather Stations
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RFWs Red Flag Warnings
SEW Seattle (weather forecast office)
U.S. United States
WFOs weather forecast offices
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