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Abstract: The scope of wildfires over the previous decade has brought these natural hazards to the
forefront of risk management. Wildfires threaten human health, safety, and property, and there
is a need for comprehensive and readily usable wildfire simulation platforms that can be applied
effectively by wildfire experts to help preserve physical infrastructure, biodiversity, and landscape
integrity. Evaluating such platforms is important, particularly in determining the platforms’ reliability
in forecasting the spatiotemporal trajectories of wildfire events. This study evaluated the predictive
performance of a wildfire simulation platform that implements a Monte Carlo-based wildfire model called
WyoFire. WyoFire was used to predict the growth of 10 wildfires that occurred in Wyoming, USA, in 2017
and 2019. The predictive quality of this model was determined by comparing disagreement and agreement
areas between the observed and simulated wildfire boundaries. Overestimation–underestimation
was greatest in grassland fires (>32) and lowest in mixed-forest, woodland, and shrub-steppe fires
(<−2.5). Spatial and statistical analyses of observed and predicted fire perimeters were conducted to
measure the accuracy of the predicated outputs. The results indicate that simulations of wildfires that
occurred in shrubland- and grassland-dominated environments had the tendency to over-predict,
while simulations of fires that took place within forested and woodland-dominated environments
displayed the tendency to under-predict.

Keywords: wildfire; predictive modeling; fire spread model; Monte Carlo; spatial modeling; area
difference index; statistics; precision; recall; principal components analysis

1. Introduction

Wildfires have increased in size, frequency, and severity in the past decades as global temperatures
have continued to warm, leading to an elevated concern about the health and safety of individuals who
inhabit areas prone to wildfire activity [1–4]. Climatic changes have triggered ecosystem alterations in
the form of significant vegetation shifts, which have ultimately led to more acreage being burned by
wildfires [1,5]. The effects of changes in wildland fire regimes have warranted the development of
dynamic wildfire propagation models amongst scientific modelling communities [6].

Wildfire modelling has evolved from the initial deterministic fire models based on the fundamental
equations proposed by Rothermel [7]. These models typically generate empirical results that do not
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account for variability in the input measurements. Wildfires are impelled by dynamic variations in
weather and fuel conditions that can produce a chain reaction in local environmental conditions such
as fuel moisture, vapour deficits, and wind patterns. Deterministic fire models can use snapshot
observations as inputs, and these data are statically accurate but limited to the moments of the
observations. Moving from a “static” to a dynamic wildfire modelling environment can follow two
solution paths. The first path is to automate the collection of observational data that could be used to
initialize the wildfire spread models. This reduces the time required to gather the required datasets and
initiate a model run. Rapid initialization is desirable when fire models are used as risk assessment tools
during active fires, but model run times might limit the utility of the results as real-world conditions
change [8]. The second path is for models that operate in near real time. Near-real-time modelling is a
computational approach, which dynamically captures new observations (such as remotely sensed fuel
moisture, wind direction, and temperature) while simultaneously forward-projecting results between
input data updates. If a model is run during an actual fire event the output should represent a close
approximation of fire trajectory based on current conditions and potential behaviour until the next
input data update. Regardless of the modelling pathway, the approach used for any model needs to be
validated to make it useful in the field or to explore simulated fire behaviour.

While recent increases in model development have provided wildfire scientists with multiple
tools for fire research, there has been limited consistent use of appropriate evaluation procedures and
performance metrics to effectively quantify the performance of spatially explicit fire spread models [6].
Despite the availability of a framework that can account for varying levels of stochasticity present
within meteorological data, fuel-bed conditions, and the overall burnable environment, it remains
challenging to predict the propagation of wildfire in near real time due to each event being so unique
and transient [6]. The utilization of an effective evaluation process to assess predictive performance
requires comprehensive knowledge of the specific model type used [9]. The most effective method for
assessing model accuracy and reliability is to test the level of agreement between simulated and observed
wildfire perimeters [10]. In order to accomplish this, a set of performance metrics deemed most appropriate
for determining the accuracy of model predictions were implemented to quantify performance.

The purpose of this research is to evaluate the predictive performance of a wildfire simulation
model called WyoFire, developed at the University of Wyoming as part of a risk assessment tool
within the architecture of the Wyoming Wildfire Risk Portal (https://wywrap.wyo.gov/app.html) [8,11].
WyoFire employs a probabilistic approach by implementing a Monte Carlo-driven structure using
Gaussian distributions of meteorological and fuel moisture data to account for stochasticity within
environments possessing a diverse range of characteristics [8,11,12]. The results of each model run yield
a potential or predicted perimeter for individual wildfire simulation that can then be validated against
observed fire perimeters. WyoFire overlays the predicted wildfire perimeters from each Monte Carlo
simulation and counts the number of times a specific area is predicted as burned to estimate the
probability of wildfire front spreading over the study area [8,11]. WyoFire employs a probabilistic
approach for generating a range of inputs centred on the observed weather and other environmental
data. The input data are variated in line with the degree of randomness apparent in environmental
datasets. WyoFire is able to simulate crown fire spread to a certain extent by checking crown fire
spread potential for each pixel and the availability of appropriate fuel load [8,11]. WyoFire is able to
utilize the updated weather and fuel information during the model execution [8]. However, for this
study all the weather and fuel data were downloaded in advance to minimize their effect on the model
execution time.

To better understand the strengths and weaknesses of the WyoFire model and assess the predictive
accuracy of individual wildfire simulations, we conducted an evaluation that quantifies levels of
predictive performance within multiple burnable environments based on Wyoming wildfires that
occurred in 2017 and 2019. Our goal was to determine the extent to which WyoFire accurately represents
the natural world. We hypothesized that the variance in the predictive performance of the model
was the same among different environments based on fuel loading model and terrain complexity.

https://wywrap.wyo.gov/app.html
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We validated the predictive performance of WyoFire based on statistical indices first utilized by
Adhikari et al. [8] throughout the initial developmental phase of our wildfire simulation system.

2. Materials and Methods

2.1. Overview

Wyoming has many favorable characteristics for studying wildfire, including a wide variety of
topographies, vegetation types-steppe to alpine, and low population densities so fire can propagate
naturally in many cases. We studied nine and one wildfire that occurred in Wyoming and Montana,
respectively during the 2017 and 2019 fire seasons for simulation and analysis (Figure 1). The Montana
wildfire occurred within a 25-mile buffer outside of the Wyoming border was included because of its
potential to cross into Wyoming. The different wildfire events were simulated within their respective
environments composed of unique assemblages of vegetation types, degrees of terrain complexity,
fuel loadings, and meteorological conditions (i.e., burnable environment). We used the following
performance metrics: Overestimation, Underestimation, Intersection, Area Difference Index (ADI),
Area Difference Index for Overestimation (ADIoe), Area Difference Index for Underestimation (ADIue),
F1 Score, Precision, and Recall. Duff, Chong, and Tolhurst [6] concluded that ADI, ADIoe, and ADIue

are the performance indices best suited to assess and portray the specific types of modelling error
(e.g., Overestimation or Underestimation). The procedural structure for our performance evaluation
was adapted from Duff, Chong, and Tolhurst [6], as their study serves as the foundation for research
involving what we considered to be the most widely accepted process for the evaluation of wildfire
simulation models.

Figure 1. Distribution of 2017 and 2019 Wyoming and Montana fire events used in this study.
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2.2. Model Description

WyoFire was developed by Adhikari et al. [8] using Python programming language. The model
employs mathematical functions developed by Rothermel [7], Wagner [13], and Finney [14] to create
elliptical wildfire propagation across different landscapes [8]. WyoFire accounts for natural stochasticity
of independent variables within the burnable environment using Gaussian distributions for (1) fuel
moisture and (2) High-Resolution Rapid-Refresh (HRRR) meteorological forecast datasets (i.e., relative
humidity, temperature, wind direction, and wind speed), which are automatically created by the
Monte Carlo structure. Gaussian distributions are then used for model runs to simulate wildfire
propagation and estimate natural stochasticity inherent in environmental datasets. The wildfire
simulation uses random points of fuel moisture and meteorological HRRR data from the generated
Gaussian distributions. WyoFire employs mathematical functions for wildfire spread developed by
Rothermel [7], Wagner [13], and Finney [14] to achieve elliptical wildfire propagation across a given
landscape [8]. By applying the Huygens Wavelet principle [15], the model created ellipses around each
ignition point at the end of each iteration. The ellipses define the extent of each fire propagation which
was then buffered by a convex hull using a minimum bounding geometry function [8]. Ignition points
can be randomly generated to initiate wildfire propagation; however, we use polygons rendered from
observed VIIRS and MODIS hot spot data to identify fire origination of the 10 wildfires used in this
study. Ignition points are generated along the active flaming perimeter of the original ignition polygon.

2.3. Data

Table 1 lists the datasets for the wildfire simulations performed in this study. Existing Vegetation
Type and Fuel Loading Model datasets were acquired from the United States Geological Survey
(USGS) LANDFIRE database. For 2019 wildfire simulations, two datasets were downloaded daily
using Python scripts that were scheduled to run automatically using cron. These datasets consisted
of HRRR meteorological forecast data from the National Oceanic and Atmospheric Administration
(NOAA) and fuel moisture data from the Wyoming State Forestry Division (WSFD). Downloaded
HRRR datasets were coded to only index four meteorological variables of wind direction, wind speed,
relative humidity, and temperature. The 2017 wildfire datasets consisted of previously archived HRRR
raster data accessed from archives at the University of Utah. Previously archived fuel moisture datasets
were also integrated into this study to replicate the simulation environments for the 2017 wildfires as
previously performed by Adhikari et al. [8].

Table 1. Metadata of datasets used to simulate wildfire events, adapted from Adhikari et al. [8].

Resolution

Dataset Source Data Volume
(Gigabyte/Iteration)

Spatial
(m) Temporal (h)

High-Resolution Rapid Refresh (HRRR) NOAA 11.5 3000 1
VIIIRS Active Fire Hotspot NASA 0.02 375 12

Dead Fuel Moisture WSFD/USFS 1 2500 24
Digital Elevation Model USGS 26 10 Updated: January 2017

Vegetation and Fuels LANDFIRE 3.5 30 Updated: January 2014
Historical Wildfire Perimeter (Observed) USGS GeoMAC 0.1 N/A 24

Historical HRRR Data Uni. Of Utah 9 3000 24

Observed wildfire perimeters were obtained from the Geospatial Multi-Agency Coordination
(GeoMAC) data archives, maintained by the USGS. Observed perimeters were used as control layers
to evaluate predictive model performance against the resulting simulated perimeters. Although the
new on-site measurements of wildfire perimeter and weather conditions might provide more exact
representation of the simulation environment, they were not included in this study as these simulations
were performed on the wildfires that already occurred and all the required datasets were downloaded
as well as processed beforehand by the python script. For this study, the term burnable environment
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is defined as the combination of existing vegetation type, dominant fuel loading model, and mean
level of terrain complexity within an observed wildfire perimeter. The terrain complexity index value
for each wildfire was calculated by running Slope and Focal Statistics functions on Digital Elevation
Model data in ArcMap. Time and date stamps attributed to the observed fire perimeters represented in
spatial data shapefiles did not always align with the initial time of ignition and propagation of each
fire, thus requiring the use of supplemental observed datasets in the form of active hot-spot point data
from the VIIRS fire detection satellites. Shapefiles of active hot-spot point data were obtained from the
Visible Infrared Imaging Radiometer Suite (VIIRS) data archive published by NASA and were used to
interpolate active perimeters that were not available within the GeoMAC database for the date and
time of the simulation.

2.4. Wildfire Simulation

Two parameters are coded into the simulation configuration module that can be manually adjusted
by individuals operating the model: (1) centroid distances (CD) of generated ellipses surrounding
ignition points along the propagative front and (2) time step values in minutes for each iteration
completed within a given Monte Carlo run. CD can be defined as the radius of each elliptical polygon
generated from individual ignition points established along the flaming front. All simulations were
configured to sixty-minute time steps, which is equal to one iteration of one Monte Carlo simulation.
For this study, active wildfire perimeters were simulated from fire origination to ~eighteen hours due to
availability constraints of the HRRR datasets and availability of their observed perimeter data (Table 2).

Table 2. Simulation parameters for the ten wildfires analyzed within this study.

Wildfire Total Size (Acres) Simulation Duration (h) Observed Perimeter Source Total Simulations (n)

Keystone, 2017 1102 13 VIIRS 600
Pole Creek, 2017 2139 12 GeoMAC and VIIRS 600

Buffalo, 2017 3515 12 GeoMAC and VIIRS 600
Stallions, 2017 1111 12 VIIRS 600
Tannerite, 2019 1349 18 GeoMAC 600

Pedro Mountain, 2019 9388 18 GeoMAC and VIIRS 600
Currant, 2019 381 12 GeoMAC 600
Corbin, 2019 164 8 GeoMAC 600

Fishhawk, 2019 2359 18 GeoMAC and VIIRS 600
Saddle Butte, 2019 252 12 GeoMAC 600

Total Simulations 6000

An idealized analysis was conducted to train the model and identify which CD value yielded the
best performance results across all simulation environments [15]. A direct relationship between CD,
dominant fuel loading model, and predictive accuracy was observed throughout this study. As CD
increases, a subsequent decrease in predictive accuracy will occur in simulations of wildfires burning
in higher fuel loads dominated by canopy fuels. In contrast, predictive accuracy increased when
the CD was decreased for simulations of wildfires occurring within those higher canopy fuel loads.
Through an iterative analysis, a mean CD of 5 m was identified as optimal across all fires and was used
to achieve reported results for the rest of this study.

Simulations were run in Coordinated Universal Time (UTC) to align with the HRRR data
format. For terminology purposes, one simulation predicts fire spread for the next x-number of hours.
Intermediate or iterative predictions are generated on an hourly basis. Therefore, within a single
simulation, there are x-number of iterations. One simulation consists of a simultaneous run of y-number
of sample model configurations. Each model execution composed of a unique sample configuration
is the equivalent to one Monte Carlo run. Simulated perimeters were evaluated against concurrent
observed perimeters to assess variation in model performance for each target fire event. Performance
of the WyoFire model was tested across a range of existing vegetation types, terrain complexity values,
and fuel loading models in order to identify variables within each burnable environment that induce
the greatest variance in the predictive performance of the model.
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2.5. Assessing Model Performance

Simulation code was run across the High Performance Computing cluster (Teton), managed by the
University of Wyoming’s Advanced Research Computing Center. Teton allowed multiple independent
simulations to be run concurrently, distributed across multiple nodes, as well as scaling up the
number of individual Monte Carlo simulations that could be run in parallel on individual nodes.
Where a standard desktop could run 10 simulation queued sequentially, utilizing 4 or 8 cores at
one time, the cluster enabled 10 (or more) simulations to be run concurrently, with up to 32 cores
(i.e., 32 Monte Carlo simulations) running simultaneously on each node. Utilization of the cluster
enabled both vertical (time to run a simulation) and horizontal (number of concurrent simulations)
scaling, reducing the computational time from days down to hours. We used simultaneous batch
processing of numerous wildfire simulations. Following the conclusion of all wildfire simulation jobs,
logged results were transferred from the Linux system to a single-node workstation. Statistical and
spatial analysis scripts were written in R-Studio. All data were graphed using R-Studio factoextra
and ggplot2 packages. Simulated perimeter data were then analyzed to assess predictive performance
by employing a series of spatial and statistical analyses using the aforementioned scripts. In order to
calculate performance indices, a spatial intersection was conducted first to identify the critical areas of
model Overestimation, Underestimation, and Intersection (Figure 2). The final burned area prediction
was calculated using spatial overlay of all predicted wildfire perimeters obtained from each individual
Monte Carlo simulation. The multipart polygons and individual polygons that were less than 1sq.
meters were removed to generate the final predicted wildfire perimeter. The areas that were predicted
to be burned only once were not included in the final perimeter. The results for each simulation were
not compared amongst each other in this study due to the inherent randomness of the input weather
and fuel conditions generated by the simulation. The resulting area of each predictive zone from the
spatial intersection can then be integrated into a series of algebraic formulas to calculate performance
indices that are indicative of overall model performance, e.g., Area Difference Index (ADI), Precision,
Recall, and F1 Score.

Figure 2. Graphical representation of the observed and simulated wildfire perimeters, as well as the
three predictive areas, underprediction, intersection and overprediction, that are a product of each
simulation, adapted from Duff, Chong, and Tolhurst [6].

ADI uses an index of incorrect estimation as a ratio of the correctly predicted area of intersection
between the simulated and observed wildfire perimeters [6,8,16,17]. All performance indices calculations
were conducted in R-Studio. ADI is calculated as:

ADI (t) = (OE (t) + UE (t))/(I (t)) (1)

ADI can also be decomposed into partial metrics which attempt to explain whether the source of the
modelling error is a result of net Overestimation or Underestimation being the ADI of Overestimation
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(ADIoe) and the ADI of Underestimation (ADIue) [6,16]. The partial indices of ADIoe and ADIue are
calculated as:

ADIue = UE(t)/(I(t)) (2)

ADIoe = OE(t)/(I(t)) (3)

Precision and Recall are also considered in this study as partial metrics that combine to compose the
F1 Score statistic [6,16]. Precision is functionally a measure of over-prediction, and Recall is functionally
a measure of under-prediction [6,16]. Precision and Recall are calculated as:

Precision = I(t)/I(t) + OE(t) (4)

Recall = I(t)/I(t) + UE(t) (5)

F1 Score is a measure of the overall state of agreement between the over- and underestimation of
each simulated perimeter and is functionally equivalent to Sorensen’s Familiarity Index, which has
been applied in pattern research but not in the discipline of fire science [6,8,16]. F1 Score functions as
an evaluative index that essentially combines Precision and Recall values to assess the overall level of
predictive agreement between simulated and observed perimeters [6,8,16]. F1 Score is calculated as:

F1 = (2 ∗ I (t))/(I(t) + UE(t) + I(t) + OE(t)) (6)

Applying an appropriate combination of evaluative indices to assess the predictive performance of
the model provides a foundation of computational results to conduct further analyses. Adhikari et al. [8]
evaluated three 2017 wildfire events: (1) Keystone, (2) Pole Creek, and (3) Buffalo fires. Here, we apply
a paralleled evaluation approach to an additional seven wildfires to increase the sample size and range
in diversity of burnable environments tested. Computational results were analyzed in congruence
with empirically derived modelling results, e.g., the morphology of predicted perimeters within a GIS
platform to determine whether the accuracy of the fire spread model is sufficient for the application of
wildfire education. Single-value performance metrics are useful when conducting rapid assessments
of model performance for a particular simulation event, but they do not provide a sufficient level of
detail regarding the sources of error within each simulation [6,18].

2.6. Principle Components Analysis

A Principal Components Analysis (PCA) was conducted on the simulation results to identify and
understand the particular variables that might have induced the most variance on model performance
and to identify emergent environmental properties of modeled fire events. Bi-plot visualizations were
rendered using the factoextra package within R-Studio.

3. Results

3.1. Statistical Performance

We implemented a series of single-value performance metrics to evaluate how well WyoFire
simulations performed across a range of landscapes (Figure 3). Each metric is a unitless index that represent
specific facets of simulative model performance and can be formulated to determine rates of Overestimation,
Underestimation, and Intersection for each series of the wildfire simulations. Mean performance indices
for all simulations are found in Table 3. Performance outcomes for all simulations varied considerably
between the 10 wildfire events. The Area Difference Index was designed as a simple metric to describe
wildfire model performance, while the closer a value is to being equal to one suggests a less predictive
error in simulation results in contrast to values much greater than one, which suggests more significant
amounts of predictive modelling error [6,16]. Variables likely driving model over- or under-prediction
in different environments are shown in Table 3.
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Figure 3. Maps of showing ignition polygon, fire perimeter (actual) and 18-h simulated fire perimeter
for each of 10 fires modelled in this study.

Table 3. Mean performance index values derived from all wildfire simulations based on the optimal
Centroid Distance of five meters.

Wildfire Existing Vegetation Type(s) Terrain Roughness ADIoe–ADIue Fuel Loading

Currant Grassland, Shrubland 3 37.940 Med—High

Stallions Northwestern Great Plains Grassland,
Ponderosa-Pine Forest 6 32.430 Med–High

Buffalo Northwestern Great Plains Grassland,
Sage Brush Steppe 3 8.479 Low–Med

Tannerite Sage Brush Steppe,
Montane–Foothill–Valley Grassland 5 1.481 Low–High

Pole Creek Spruce-Fir Woodland, Aspen and
Mixed-Conifers 7 1.031 Low–Med

Pedro Mountain Sage Brush Shrubland, Limber
Pine-Juniper Forest 6 −0.093 Low–Med

Keystone Lodgepole Forest, Spruce-Fire
Woodland, Aspen and Mixed Conifers 1 −1.733 Low–Med

Fishhawk Subalpine Woodland, Spruce-Fir
Woodland, Douglas-Fir Forest 5 −2.450 Low

Saddle Butte Sage Brush Shrubland, Sage Brush
Steppe, Montane Meadow 4 −2.789 Low

Corbin Sage Brush Steppe, Sage Brush
Shrubland, Semi-Desert Shrub Steppe 2 −4.248 Low

Simulation of wildfire events occurring in environments with medium-to-high total fuel loadings
dominated by shrubland and grassland vegetation types, such as the Currant, Stallions, and Buffalo
fires, produced the highest rates of overestimation–underestimation (ADIoe–ADIue) (Table 3). In contrast,
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simulations of wildfire events occurring in environments with lower fuel loadings, dominated by
mixed-forest, woodland, and shrub-steppe vegetation types, such as the Fishhawk, Saddle Butte,
and Corbin fires, yielded the lowest rates of overestimation–underestimation. Wildfires that lie in
mixed fuel types, Tannerite, Pole Creek, Pedro Mountain, and Keystone fires, displayed the most
balanced performance in terms of overestimation and underestimation rates.

3.2. Principle Components Analysis

PCA was conducted on fuel characteristics and balance of predictive performance indices within
each respective burnable environment. The first two principle components account for 78 percent of
the total variance in model performance (Figure 4). The position of each fire relative to one another in
the Bi-Plot (Figure 4) indicates the relative similarity of the models’ performance in predicting actual
wildfire perimeters. Examining the burnable environment within each group also helps reveal what
vegetation conditions yield over- and under-predictions by WyoFire. PCA yielded three distinct groups
of wildfire events (Figure 4). Group 1 consists of the Corbin, Saddle Butte, Keystone, and Fishhawk
fires, which can be observed in Quadrant IV of the Principle Components Analysis Bi-Plot. Group 2 is
composed of the Currant, Stallions, and Buffalo fires, which can be seen in Quadrants II and III. Lastly,
Group 3 consists of the Pole Creek, Tannerite, and Pedro Mountain fires, which can be found in Quadrant I.

Figure 4. Principal Components Analysis (PCA) Bi-Plot of variable weightings and coordinate locations
of individual wildfire events. The events are color-coded and symbolized by triangles within the
Bi-Plot. FLM = Fuel Loading Model, TC = Terrain Complexity, ADI = Area Difference Index,
OE = Overestimation, UE = Underestimation, ADIoe = ADI of Overestimation, ADIue = ADI of
Underestimation. These variables are represented by individual arrow vectors of varying lengths and
colors, in which a lengthier vector signifies that the variable is better represented within the analysis
and a darker color fill indicates a better Quality of Representation (cos2).

The first Principal Component (PC-1) explains 56.6 percent of the variance in model performance
across all simulations. Under-prediction indices were prominent along this axis, showing how the
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model performed within environments containing forested elements. Fuel loading became an emergent
variable along this axis, while each group of individuals is ordered along the continuum by existing
vegetation type and fuel-bed characteristics. The Fishhawk and Stallions fire simulations form the end
members along the PC-1 axis. PC-1 appears to be primarily described by the existing vegetation type and
dominant fuel loading models present within each respective burnable environment. WyoFire tended
to under-predict in situations where the fuel load was low to medium with poor fuel-bed continuity.
The Fishhawk Fire was characterized by low surface fuel loads but higher canopy fuel loads, as it
occurred primarily in Rocky Mountain Subalpine Forest and Woodland vegetation types with a low
total fuel loading. The Stallions Fire was primarily in North Western Great Plains Mixed Grass Prairie
and Inter-Mountain Basin Big Sage Brush Steppe communities, possessing a low total fuel load and
poor fuel-bed continuity.

Performance results for Fishhawk fire simulations displayed a much higher rate of underestimation
than overestimation, while results for Stallions simulations show a relatively higher rate of
overestimation than underestimation. The Fishhawk fire simulations had a greater rate of
under-prediction in congruence with its high ratio of the canopy to surface fuels, further suggesting
that this model may struggle to accurately model transitions of a flaming front propagating from the
surface to canopy fuel types. Both wildfires burned across landscapes with average terrain complexity,
as this variable did not prove to have a significant effect on the outcomes for these fire simulations.

The second Principle Component (PC-2) explains 21.5 percent of the variance in the predictive
performance of the wildfire simulations. Certain burnable environments for wildfire simulations that
possessed greater terrain complexity, meaning that the landscape has a greater degree of localized
elevational variance, displayed overestimation rates similar to those with relatively low levels of
terrain complexity, such as Pedro Mountain (6) and Corbin (2) fire simulations. Overestimation
indices are pointed toward the Stallions, Currant, and Buffalo fire simulations as a result of simulating
wildfire in higher fuel load with increased continuity. The Pedro Mountain and Corbin fires burned
through similar environments dominated by Inter Mountain Basin Big Sage Brush Steppes and
Artemisia tridentata ssp. vaseyana Shrubland Alliances, yet these two fires appear as opposing end
members along the PC-2 axis. The significant difference between these two burnable environments
is the influence of grassland vegetation present throughout the Corbin Fire but not the Pedro
Mountain Fire.

The Pedro Mountain Fire had a strong influence of limber pine and juniper woodland vegetation
types interwoven on the burnable landscape. This disparity may reflect that overall predictive performance
results can be a product of the general fuel load and the specific fuel type present within the burnable
environment. In this case, the presence-or-absence of canopy fuels may have been a driving factor of
model error for these two wildfires. Heterogeneity of fuel loading models and the configuration of
existing vegetation types across the landscape were the variables that induced the most significant
amount of variance on performance results for each series of wildfire simulations.

Fires in Group 1 are characterized by low total fuel load and low degree of fuel-bed continuity,
which resulted in higher rates of under-prediction. Simulation results for these four fires displayed the
highest rates of under-prediction out of all model runs. The Corbin and Saddle Butte fires burned
through sagebrush steppe and semi-arid shrubland vegetation types, while the Keystone and Fishhawk
fires burned predominantly through Subalpine forest and woodland vegetation types such as spruce-fir,
lodgepole pine, Douglas-fir, aspen, and other mixed conifers. Existing vegetation type(s) is the only
significant difference amongst this grouping of individual wildfire environments, as variations in
surface fuel loading appear to be the primary driver of model performance. It can be inferred that the
most significant rates of under-prediction are yielded when simulating wildfire events in environments
with high ratios of canopy-to-surface fuels. Given the discontinuous nature of sagebrush and semi-arid
shrubland vegetation communities across the landscape, the interstitial spacing between clusters of
burnable vegetation may result in simulations to under-predicting wildfire activity.
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Group 2 is characterized by medium-to-high total fuel loadings and a high level of fuel-bed
continuity, which resulted in higher rates of over-prediction. In contrast to Group 1, results for the
simulations within Group 2 displayed the highest rates of over-prediction across all model simulations.
The Buffalo, Currant, and Stallions fires burned in predominantly of Northwestern Great Plains mixed
grassland and sagebrush steppe vegetation types. These landscapes are more homogeneous than
landscapes present in Groups 1 and 3. Higher rates of overestimation are achieved when modelling
wildfire propagation in herb- and grassland-dominated environments. The Currant and Stallions fire
simulations yielded substantially higher rates of overestimation than did model runs for Buffalo Fire,
which is likely attributable to the relatively lower level of surface fuel loading within the Buffalo Fire.
We infer that higher rates of over-prediction are associated with simulative environments dominated by
herb and grassland vegetation types with medium-to-high surface fuel loads. Simulations for wildfires
that have burned on landscapes dominated by herb and grassland vegetation types possess a more
continuous fuel bed, which results in a more uniform propagation pattern. The grassland vegetation
types inherent to these simulation environments create a more continuous fuel bed than shrubland,
forest, and woodland vegetation types do.

Group 3 is associated with low-to-medium fuel loads with varying levels of fuel-bed continuity,
which resulted in a more accurate prediction with minimal over- or under-prediction. It can be inferred
that these landscapes possessed a relatively higher degree of heterogeneity among existing vegetation
types and fuel loadings due to the diversification of surface and canopy fuel types within these
environments. All fires in this group were burned environments consisting of an increased mixture of
canopy and surface fuel types. Tannerite Fire simulations yielded a higher rate of over-prediction than
simulations of the Pole Creek and Pedro Mountain fires, as this is likely attributable to the presence of
Montane–Foothill–Valley Grassland vegetation types across the burnable landscape for the Tannerite
Fire. An increased level of heterogeneity among fuel types in these environments allows the model to
simulate more transitionary events of the flaming front propagating from surface to canopy. Simulative
results for the Pole Creek and Pedro Mountain fires displayed slightly lower rates of overestimation
than the simulations for the Tannerite Fire.

4. Discussion

As the scope of wildfire activity and severity continues to increase [1], it has become increasingly
important to identify and employ accurate predictive wildfire models to ensure timely interventions
and protect property, lives, and biodiversity. In the Central Rocky Mountain Region, forest and
woodland areas are typically characterized by steep and highly variable terrain elevation, which poses
a series of complex challenges for wildfire models to resolve while integrating datasets with limited
spatial resolutions. Our research quantified and evaluated the predictive performance of WyoFire,
a Monte Carlo-based wildfire simulation model using a set of evaluative indices and corresponding
PCA results to assess how the model performs over a range of diverse landscapes.

The different environments of the 10 wildfire events had unique vegetation type assemblages
which helped bring about statistically significant variations in model performance. The significant
variations in model performance were supported by statistically testing the accuracy results by using
the equation ADIoe—ADIue to determine ranges in over- and underestimation within particular fuel
types and loadings. Fuel loading was found to induce the most variance in model performance of all
variables present within the wildfire simulations, while terrain complexity appeared to be the second
most import factor on performance.

Simulations of wildfires occurring in shrubland- and grassland-dominated environments displayed
the tendency to over-predict, while fire simulations of forested and woodland dominated-environments
displayed the tendency to under-predict. In part, these performance differences may reflect interactions
of the models used for wildfire spread in WyoFire [7,8,13,14], particularly during fuel condition changes
(grassland to forest) or actual historic wind speeds used in our simulations as compared to modelled
wind speed restrictions based on the source model assumptions [18–20]. This information is pertinent
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to researchers examining the processes of wildfire propagation across heterogeneous landscapes,
as assumptions can be made about expected model performance across heterogeneous environments,
as is evident by WyoFires’ output.

The results of this study reveal that, relative to vegetation type and fuel loading, terrain complexity
has a minimal effect on predictive modelling performance when employing a Monte Carlo simulation
approach. Rates of model overestimation and underestimation can be primarily attributed to fuel
loading models and vegetation types within burnable environments. WyoFire displayed its highest rates
of underestimation when simulating fires in environments with low surficial fuel loads that also have a
low degree of fuel-bed continuity. These results are reasonable as wildfires burning within environments
possessing lower degrees of fuel-bed continuity will invoke higher rates of under-prediction due to
interstitial spaces between burnable vegetation [21]. In contrast, the highest rates of overestimation
occurred when simulating wildfires in environments with medium-to-high total fuel loads that have a
higher degree of fuel-bed continuity. This increased rate of overestimation likely occurred due to the
increased connectivity of vegetation across the heterogeneous landscape [22]. These results will help us
understand the environmental characteristics that lead to the tendencies for wildfire simulation models
to over- or-under-predict wildfire behaviour. It should be noted that a range of centre distances should
always be tested for each wildfire simulation environment in order to determine which value will
yield the most accurate results. After analysing each of the ten fires within this study, we observed that
parameterizing WyoFire with a higher CD yielded more favourable results in homogenous grasslands
and shrubland landscapes. When parameterizing the model with a lower CD, we observed more
favourable prediction results in forested and transitionary fuel types.

In its current state, WyoFire performs exceptionally well across a range of burnable environments
as defined by fuel load, vegetation type and terrain complexity characteristics. The most adverse
challenge faced in wildfire modelling is accounting for the stochastic nature of natural wildfire caused
by internal dynamics, the ability to locally modify winds and fuels, coupled with mesoscale weather
conditions that can shift rapidly. By employing a probabilistic approach that uses local historic
variability to model wildfire propagation across heterogeneous landscapes, WyoFire incorporates
natural stochasticity within each burnable environment. This approach begins to deal with the problem
of wildfire simulation models coupled with meteorological forecast datasets maintaining accuracy
due to the growth in error with each hour of prediction [23]. Monte Carlo simulation models that
account for physical stochasticity within the natural environment are invaluable tools for a better
understanding of how wildfires propagate across heterogeneous landscapes. Researchers leveraging
deterministic wildfire prediction models for training purposes would benefit from implementing
probabilistic Monte Carlo simulation models such as WyoFire.

WyoFire allows the user to parameterize specific model inputs to optimize the quality of predictive
performance results regarding characteristics present within the desired burnable environment. If the
characteristics associated with the burnable environment are known at the time of simulation, then a
general hypothesis can be developed to address whether the simulation will result in over- or
under-prediction. This model serves as a practical educational tool that can improve our understanding
of wildfire behaviour in the lab and in the classroom. Future improvements to WyoFire largely hinge
upon interpretations made from the results of this study, as conducting a comprehensive performance
evaluation of model simulation results is pertinent for understanding its strengths and limitations [6,24].

5. Conclusions

In this study, we assessed the predictive performance of a Monte Carlo-driven wildfire simulation
model, WyoFire, employing a set of single-value performance metrics and results from a Principal
Components Analysis. Ten wildfire events in and around the state of Wyoming were simulated to assess
the causes of variance in model performance which were mainly explained by existing vegetation types,
fuel loadings, and degrees of terrain complexity variables. The PCA yielded three apparent groups of
individual wildfire events based upon a measure of similarity between their resulting performance
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metric values and the physical characteristics that comprise each burnable environment. The fuel
loading model emerged as the variable that induces the most substantial amount of variance on model
performance when simulating wildfire events on a particular landscape, while terrain complexity was
found to be relatively less significant in altering model performance.

Results from this research further confirm Adhikari et al.’s [8] finding that WyoFire is reliably
effective and efficient across various heterogeneous landscapes. The model tends to over-predict fire
spread in environments with a higher total fuel load in contrast to under-predicting wildfire activity in
environments possessing lower total fuel loads. Results from all optimized simulations suggest that
WyoFire performs exceptionally well, as accentuated rates of over- and under-prediction align with
the fuel loading model and fuel-bed continuity present within the burnable environment. This model
also displays the tendency to over-predict at higher rates when simulating wildfire events occurring
on relatively smoother landscapes dominated by grassland vegetation types, in contrast to yielding
substantially higher rates of under-prediction in environments dominated by shrubland and woodland
vegetation types with a higher level of terrain complexity. WyoFires’ predictive ability across various
fuel loading models and vegetation types may prove to be an effective tool to understand potential fire
risk and potential processes that affect wildfire behaviour.

Author Contributions: Conceptualization, T.A.M., P.H., C.X.; methodology, B.A., C.W.O., T.A.M., P.H., C.X.;
software, C.X., B.A., C.W.O., S.P.A.; formal analysis, C.W.O., S.P.A.; writing—original draft preparation, C.W.O.,
T.A.M., C.X., P.H., B.A., S.P.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: Authors declare no conflicts of interest.

References

1. Garfin, G.; Gonzalez, P.; Breshears, D.; Brooks, K.; Brown, H.; Elias, E.; Gunasekara, A.; Huntly, N.;
Maldonado, J.; Mantua, N. Southwest. In Impacts, Risks, and Adaptation in the United States: Fourth National
Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K.,
Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II,
pp. 1101–1184.

2. Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring.
Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [CrossRef] [PubMed]

3. Stavros, E.N.; Abatzoglou, J.T.; McKenzie, D.; Larkin, N.K. Regional projections of the likelihood of very
large wildland fires under a changing climate in the contiguous Western United States. Clim. Chang. 2014,
126, 455–468. [CrossRef]

4. Higuera, P.E.; Abatzoglou, J.T. Record-setting climate enabled the extraordinary 2020 fire season in the
western United States. Glob. Chang. Biol. 2020. [CrossRef] [PubMed]

5. McWethy, D.B.; Schoennagel, T.; Higuera, P.E.; Krawchuk, M.; Harvey, B.J.; Metcalf, E.C.; Schultz, C.;
Miller, C.; Metcalf, A.L.; Buma, B. Rethinking resilience to wildfire. Nat. Sustain. 2019, 2, 797–804. [CrossRef]

6. Duff, T.J.; Chong, D.M.; Tolhurst, K.G. Indices for the evaluation of wildfire spread simulations using
contemporaneous predictions and observations of burnt area. Environ. Model. Softw. 2016, 83, 276–285.
[CrossRef]

7. Rothermal, R. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range
Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972; 40p.

8. Adhikari, B.; Xu, C.; Hodza, P.; Minckley, T.A. Developing a geospatial data-driven solution for rapid natural
wildfire risk assessment. J. Appl. Geogr. In Revision.

9. Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.;
Newham, L.T.; Norton, J.P.; Perrin, C. Characterising performance of environmental models. Environ. Model. Softw.
2013, 40, 1–20. [CrossRef]

10. Kelso, J.K.; Mellor, D.; Murphy, M.E.; Milne, G.J. Techniques for evaluating wildfire simulators via the
simulation of historical fires using the Australis simulator. Int. J. Wildland Fire 2015, 24, 784–797. [CrossRef]

11. Adhikari, B. A Web GIS Portal for Modeling Wildfire Spread in Near Realtime and Assessing Associated Risk;
University of Wyoming: Laramie, WY, USA, 2018.

http://dx.doi.org/10.1098/rstb.2015.0178
http://www.ncbi.nlm.nih.gov/pubmed/27216510
http://dx.doi.org/10.1007/s10584-014-1229-6
http://dx.doi.org/10.1111/gcb.15388
http://www.ncbi.nlm.nih.gov/pubmed/33048429
http://dx.doi.org/10.1038/s41893-019-0353-8
http://dx.doi.org/10.1016/j.envsoft.2016.05.005
http://dx.doi.org/10.1016/j.envsoft.2012.09.011
http://dx.doi.org/10.1071/WF14047


Fire 2020, 3, 71 15 of 15

12. Filippi, J.B.; Mallet, V.; Nader, B. Representation and evaluation of wildfire propagation simulations. Int. J.
Wildland Fire 2014, 23, 46–57. [CrossRef]

13. Wagner, C.V. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [CrossRef]
14. Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; Research Paper RMRS-RP-4

Revised; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004; 47p.
15. Ott, C.W. Performance Evaluation of a Monte Carlo Driven Wildfire Simulation Model: Assessing Model Performance

to Advance Education and Improve Human Safety; University of Wyoming: Laramie, WY, USA, 2020.
16. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
17. Pugnet, L.; Chong, D.; Duff, T.; Tolhurst, K. Wildland–urban interface (WUI) fire modelling using PHOENIX

Rapidfire: A case study in Cavaillon, France. In Proceedings of the 20th International Congress on Modelling
and Simulation, Adelaide, Australia, 1–6 December 2013; pp. 1–6.

18. Duff, T.J.; Cawson, J.G.; Cirulis, B.; Nyman, P.; Sheridan, G.J.; Tolhurst, K.G. Conditional performance
evaluation: Using wildfire observations for systematic fire simulator development. Forests 2018, 9, 189.
[CrossRef]

19. Moon, K.; Duff, T.; Tolhurst, K. Sub-canopy forest winds: Understanding wind profiles for fire behaviour
simulation. Fire Saf. J. 2019, 105, 320–329. [CrossRef]

20. Andrews, P.L.; Cruz, M.G.; Rothermel, R.C. Examination of the wind speed limit function in the Rothermel
surface fire spread model. Int. J. Wildland Fire 2013, 22, 959–969. [CrossRef]

21. Loehle, C. Applying landscape principles to fire hazard reduction. Forest Ecol. Manag. 2004, 198, 261–267.
[CrossRef]

22. Kerby, J.D.; Fuhlendorf, S.D.; Engle, D.M. Landscape heterogeneity and fire behavior: Scale-dependent
feedback between fire and grazing processes. Landsc. Ecol. 2007, 22, 507–516. [CrossRef]

23. Coen, J.L.; Schroeder, W. Use of spatially refined satellite remote sensing fire detection data to initialize
and evaluate coupled weather-wildfire growth model simulations. Geophys. Res. Lett. 2013, 40, 5536–5541.
[CrossRef]

24. Salis, M.; Arca, B.; Alcasena, F.; Arianoutsou, M.; Bacciu, V.; Duce, P.; Duguy, B.; Koutsias, N.; Mallinis, G.;
Mitsopoulos, I. Predicting wildfire spread and behaviour in Mediterranean landscapes. Int. J. Wildland Fire
2016, 25, 1015–1032. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1071/WF12202
http://dx.doi.org/10.1139/x77-004
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.3390/f9040189
http://dx.doi.org/10.1016/j.firesaf.2016.02.005
http://dx.doi.org/10.1071/WF12122
http://dx.doi.org/10.1016/j.foreco.2004.04.010
http://dx.doi.org/10.1007/s10980-006-9039-5
http://dx.doi.org/10.1002/2013GL057868
http://dx.doi.org/10.1071/WF15081
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Overview 
	Model Description 
	Data 
	Wildfire Simulation 
	Assessing Model Performance 
	Principle Components Analysis 

	Results 
	Statistical Performance 
	Principle Components Analysis 

	Discussion 
	Conclusions 
	References

