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Abstract: Mountain forests are subjected to several pressures including historical land-use changes
and climate warming which may lead to shifts in wildfire severity negatively impacting tree species
with low post-fire growth resilience. This is the case of relict Mediterranean Scots pine (Pinus sylvestris)
forests in the Sierra de Gredos mountains (central Spain). We reconstructed the historical fire regime
of these forests since 1700 by using paleoecology, historical ecology and dendroecology. We detected
an increase in charcoal accumulation rate and coprophilous fungi in peat bogs during the late 19th
century when the pine pollen percentage sharply decreased, historical records of fire peaked and
many trees showed growth suppressions. We inferred an increased wildfire incidence during the late
19th century, which could have shaped the current distribution of Scots pine forests. This shift in
fire-forest interactions can be explained by the uncontrolled use of mountain forests and grasslands
due to the dissolution of “Mesta”, one of the major and lasting transhumance livestock associations
in Europe. Integrating historical human and climate influences on fire regimes allows decomposing
the resilience and conservation components of relict forests.

Keywords: dendroecology; growth suppression; historical ecology; paleoecology; Pinus sylvestris;
resilience; Sierra de Gredos

1. Introduction

Shifts in forest wildfire regimes are mainly triggered by changes in land use and
climate, interacting with other causes [1,2]. Bridging paleoecological and historical recon-
structions of fire recurrence and severity allow detecting those shifts and the interactive
effects of land-use changes and climate and characterizing the historical range of variability
of fire-prone forest ecosystems [3–5]. Reconstructing fire regimes is necessary to assess for-
est resilience through time in response to combinations of climatic, ecological and human
drivers [6].

Mediterranean mountain forests have shown resilience to fire in terms of regeneration
and growth dynamics [7]. However, rapid socioeconomic and land-use changes during
the 20th and 21st centuries, including rural depopulation and abandonment of traditional
landscape management, have enhanced forest expansion increasing the amount and conti-
nuity of fuel and leading to more frequent, large drought-driven fires [2,8]. It is unknown if
Mediterranean forests will keep being resilient under future scenarios with abundant fuel
loads and increased warming and aridification [7]. Detecting fire regime shifts through
paleoecological and historical data allows determining the relative role of human-caused,
historical burning in Mediterranean forests and assessing post-fire recovery [9–11].
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According to several reconstructions, fire has contributed to rapid structural and
compositional changes in Mediterranean forests at least for the past 2000 years [9–11]. For
instance, the local demise of Pinus nigra Arn. in northern and central Spain has been at-
tributed to recurrent human-caused fires occurring at a high frequency [12–14], and the low
post-fire regeneration of this thin-barked species. Some of these Mediterranean pine forests
are relict or isolated populations such as those formed by Scots pine (Pinus sylvestris L.) in
the Sierra de Gredos mountains, central Spain (Figure 1a). The relict status of Scots pine in
that region may be related to shifts in the historical fire regime [15–19], with more recurrent
fires than under “natural” regimes, since Scots pine is one of the most vulnerable European
pine species to fire damage [20].

Figure 1. (a) Distribution area of Scots pine (Pinus sylvestris) across Eurasia showing native (green
patches) and introduced or naturalized stands (brown patches; source [21]). Dots indicate isolated
Scots pine populations. (b) Location of four Scots pine forests (white circles) investigated in the Sierra
de Gredos mountains, central Spain (Gu: Guisando; Pp: Puerto del Pico; Hy: Hoyos del Espino;
Nv: Navarredonda) and pollen/charcoal records (red stars: Pp, Puerto del Pico; Se, Serranillos; Aaf,
Arroyo de Aguas Frías). Elevation is given in m a.s.l.

Here we reconstruct fire regimes during the past 300 years in the Sierra de Gredos
to assess their role as historical factors leading to the current relic status of Scots pine in
this region. We reconstruct fire incidence by combining palaeoecological (charcoal) and
dendroecological (sharp growth suppressions) data and comparing them with historical
fire records (archival sources). We hypothesize that a high fire frequency reduced the cover
and density of Scots pine forests in the Sierra de Gredos.

2. Materials and Methods
2.1. Study Area and Tree Species

The study area is located in the Sierra de Gredos, central Spain (Table 1, Figure 1).
The climate of this mountainous region is Mediterranean with continental influence,

characterized by cold-wet winters, wet springs and warm-dry summers. Mean annual
temperature is 14.5 ◦C, mean maximum and minimum temperatures are 30.1 ◦C and 0.0 ◦C,
respectively, and total annual precipitation is 1483 mm (data from “Arenas de San Pedro”
meteorological station; 5◦5′28′′ W, 40◦12′31′′ N, 510 m a.s.l.). Drought may last from May
to September. Geological substrates are dominated by granites, and soils are moderately
deep at mid-elevation but rocky and thin in high-elevation Scots pine stands [22].
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Table 1. Site information on the forests where tree-ring chronologies were developed. Diameter (Dbh) and age values are
averages, and their ranges are shown between parentheses. The two ITRDB chronologies were developed by Klaus Richter,
and Dbh and age data are not available for them.

Site (Code) Source Latitude N Longitude W Altitude (m) No. Trees
(No. Cores) Dbh (cm) Age at 1.3 m

(years)

Puerto del Pico
(Pp) This study 40.31 5.02 1600 21 (45) 60.8

(28.5–110.5) 149 (76–265)

Navarredonda
(Nv)

ITRDB-
spai034 40.30 5.08 1470 12 (26) - -

Hoyos del
Espino (Hy)

ITRDB-
spai033 40.31 5.11 1465 12 (25) - -

Guisando (Gu) This study 40.24 5.10 1175 24 (45) 53.8
(8.0–180.0) 53.8 (18–284)

The vegetation of the study area includes forests, shrublands and also sparse pine
woodlands on rocky slopes, and includes oaks (Quercus ilex subsp. ballota (Desf.) Samp.,
Quercus pyrenaica Willd.) from 600 to 1600 m, and shrubs (Cytisus oromediterraneus Rivas
Mart.) above 1600 m and pines. The resin tapping industry has favored planting Pinus
pinaster Ait. at low to mid elevations, whereas scattered Scots pine stands appear at high
elevations from ca. 1200 up to 1800 m [17]. In this area, pine woodlands have burnt
(Figure 2) disproportionately more than other vegetation types since the 1970s after the
abandonment of traditional land use and grazing practices associated with small fires
affecting high-elevation scrublands [23].

Figure 2. Views of burnt Scots pine trees in a stand located in the study area affected by a fire in 2009
(stand situated near Puerto del Pico site, see Figure 1).

Scots pine is a long-living, thin-barked, non-serotinous and shade-intolerant species
that can survive low-severity surface fires, but is less tolerant to mid-severity fires than the
thick-barked, fast-growing P. pinaster [20,24].

2.2. Field Sampling of Scot Pine Forests and Dendroecology

We selected relict Scots pine stands situated near the sites of paleoecological records
and in areas historically burnt (Figures 1b and 2) but subjected to different climate con-
ditions. We sampled two Scots pine stands located at high (Puerto del Pico) and at low
(Guisando) elevation (Table 1). In each stand, we sampled living Scots pine trees with
diameter at breast height (Dbh) above 10 cm and located in a ca. 0.5 ha large area. Due to
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the conservation measures of these relict Scots pine forests, we discarded obtaining partial
cross sections from living trees, and we took cores at 1.3 m using 5-mm Pressler increment
borers perpendicular to the maximum slope.

Dendrochronology was applied to cross-date the tree-ring width series [25]. Cores
were air-dried, glued onto wooden supports and polished with sandpaper until rings
were clearly visible. Then, samples were visually cross-dated and tree-ring widths were
measured to the nearest 0.01 mm using a binocular scope and a LINTAB measuring
device (Rinntech, Heidelberg, Germany). Cross-dating was checked using the COFECHA
program [26].

Individual tree-ring width series were detrended to remove non-climatic, size-related
growth trends [25]. We applied a power transformation and then a cubic smoothing spline
with 50% frequency-response cut-off was fitted to obtain ring-width indices. These indices
were subjected to autoregressive modeling to remove most first-order autocorrelation.
Finally, site chronologies were obtained by averaging the residual ring-width indices on a
yearly basis using a bi-weight robust mean. We obtained two types of chronologies for each
of the two study sites: (1) standard, non-pre-whitened or preserving serial autocorrelation;
and (2) residual, pre-whitened chronologies. For the chronology construction, we used
the ARSTAN software [27]. To characterize each tree-ring series, we calculated the mean
and first-order autocorrelation, a measure or similarity between consecutive rings, of
raw ring-width data, and the mean sensitivity, a measure of relative change in width
between consecutive rings and correlation of trees with site mean chronology of standard
chronologies [25]. The two study sites’ chronologies were compared with tree-ring data of
the same species and from two nearby sites (Navarredonda, Hoyos del Espino; Table 1)
gathered from the International Tree-Ring Data Bank (ITRDB) webpage [28] and measured
by Klaus Richter in 1985. We also considered previous chronologies developed in the study
area for Scots pine and other pine species to check our cross-dating [13,14,29,30].

We calculated the differences between the standard and residual chronologies fol-
lowing [14] to assess short-term changes in growth. According to these authors, post-fire
growth declines should be characterized in stands historically burnt, and these growth
suppressions should not be related to other stress factors such as pests, diseases or droughts
which differently affect tree growth [4,14]. We considered the standard chronology of the
observed post-fire growth values, and the residual chronology of the predicted values after
removing the temporal autocorrelation influence. We assumed that an abrupt decrease
in growth following a fire (growth suppression) was related to a loss of photosynthetic
biomass or deterioration of cambium because of high temperatures as has been observed in
boreal Scots pine forests where post-fire growth suppressions lasted from 1 to 5 years [31].

Finally, we reconstructed pine recruitment in 20-year classes based on estimated age at
1.3 m. Age was estimated by counting rings in cores with pith or by calculating pith-offset
estimates in cores without pith. This was achieved by fitting a geometric pith locator to
the innermost rings and converting the distance to the theoretical pith into the number of
missing rings [32]. We estimated tree age as the maximum number of tree-rings in each
individual summed to the number of years from the base to the coring height (1.3 m). The
time to grow from the base to 1.3 m was estimated to be 6 years based on the equation
fitted to trees from the Guisando site: height = 0.347 age0.736, R2 = 0.85.

2.3. Paleoecological Methods

To reconstruct the regional forest history during the period 1700–2000, three pollen and
charcoal records from the study area were selected corresponding to three cored mountain
peat bogs (Figure 1): one situated at mid elevation (Arroyo de Aguas Frías, 1120 m a.s.l.) and
two located at high elevation (Puerto del Pico, 1395 m; Serranillos, 1700 m). The processing
and dating of samples have been described elsewhere [16–18,33–36]. These procedures are
explicitly documented for the Arroyo de Aguas Frías site in the Supplementary Material.
Here we only consider the percentage values of the main taxa identified in the pollen
records related to fire (Scots pine, pyrophytic broom communities of Genisteae shrubs), the
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relative abundance of coprophilous fungi associated with grazing activity, as well as fire
events related to peaks in charcoal accumulation rates.

2.4. Historical Fire Records Obtained from Archives

Historical fire records were obtained through systematic research in national (National
Historical Archive, General Archives of the Administration, Archives of the former Min-
istry of Agriculture, Spanish Military Police Archive, Spanish National Library), regional
or provincial (Province Historical Archives, Forestry Administration Archives, private
archives) and municipal archives. This allowed reconstruction of the fire history for the
Sierra de Gredos mountains (n = 1094 records) from the year 1497 until 2013. Three types
of archival sources were considered: administrative documents from administrations with
fire use regulation and land management power since the 16th century, judicial and police
sources including court registers and police reports since the 17th century and printed
press (official journals, newspapers, books) [10,37]. Historical fire records were georefer-
enced with three different levels of increasing accuracy (municipality, site or area without
specified boundaries and forest or plot with accurate limits of property) depending on
the historical source. The historical fire database includes comprehensive information
on fire occurrence with data on: date, location, land ownership, land cover/use, burnt
area, fire duration, fire cause, suppression resources, losses, etc. [1]. We acknowledge the
statistical limitations of the archival sources [1,10], but they still provide relevant qualitative
information on historical fire regimes.

3. Results
3.1. Paleoecology: Late-19th-Century Shift in Fire Regime and Reduction of Scots Pine Forests

Several proxies indicate a reduction of Scots pine forests during the past three centuries
in the study sites with an abrupt shift in the late 19th century when the fire regime changed.
For instance, in the Arroyo de Aguas Frías site, there is an abrupt drop in Scots pine pollen
during the late 19th century which coincided with an increase in Genisteae pollen and
coprophilous fungi indicating an increase in pastoral pressure (Figure 3). This change is
also documented between the second half of the 19th century and the early 20th century in
the Serranillos site, where the abundance of coprophilous fungi increased.

The changes in Scots pine pollen from the range of 50–70% during the 18th century
and most of the 19th century to 10–30% values after the late 19th century and afterward
indicate a shift from more extensive pine forests to scattered, fragmented stands. In the
Puerto del Pico site such a decrease in pine pollen was not observed, but coprophilous
fungi increased in the mid-19th century and in the 20th century.

Charcoal analyses indicate that the abrupt deforestation of pine forests observed in
the late 19th century in the Arroyo de Aguas Frías is related to fire events in the late 19th
century (1886 and 1893; Figure 3), despite a long-term increasing trend of pine pollen being
observed until 2000. Fires occurred at Puerto del Pico in the 18th (1726, 1759), 19th (1814
and 1854) and 20th (1907) centuries, while in Serranillos, they are documented for the 19th
century (1842, 1862 and 1879).
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Figure 3. Percentage values of the main pollen and non-pollen palynomorphs morphotypes cited
in the text (green line: Pinus sylvestris; violet line: Genisteae; brown line: coprophilous fungi) and
inferred fire events based on charcoal analyses (red crosses).

3.2. Tree Growth

On average, radial growth was 1.97 mm (Table 2), with sites such as Guisando show-
ing higher growth rates because of the presence of younger trees (Figure 4). The mean
autocorrelation was 0.79 and the mean sensitivity was 0.26 indicating a high similarity
between consecutive rings but also a high relative year-to-year variability in width. The
mean correlation of trees with the site chronology was 0.61 confirming a high common
signal, probably controlled by climate variability.

Table 2. Tree-ring data and statistics for the common period 1920–1985. Values are means ± standard deviations. Different
letters indicate significant (p < 0.05) differences between sites according to Mann–Whitney tests.

Site (Code) Timespan Tree-Ring Width
(mm)

First-Order
AutoCorrelation Mean Sensitivity

Correlation of
Trees with Site

Mean Chronology

Puerto del Pico (Pp) 1761–2018 1.92 ± 0.57 0.85 ± 0.07b 0.23 ± 0.03 0.54 ± 0.09a
Navarredonda (Nv) 1769–1985 1.88 ± 0.60 0.78 ± 0.09b 0.28 ± 0.05 0.64 ± 0.09ab

Hoyos del Espino (Hy) 1813–1985 1.82 ± 0.38 0.83 ± 0.08b 0.29 ± 0.05 0.73 ± 0.09b
Guisando (Gu) 1744–2015 2.28 ± 1.07 0.69 ± 0.05a 0.26 ± 0.06 0.51 ± 0.08a
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Figure 4. Scots pine recruitment (grey bars) reconstructed considering 20-year age classes in the
two study forests (Puerto del Pico, Guisando) and historical records of fires (red bars with diag-
onal lines). The number of fires corresponded to historical records of fire events in the Sierra de
Gredos mountains.

During the best-replicated period common to all tree-ring series (1920–1985), the two
ITRDB series were highly correlated with them (Pearson correlation, r = 0.76, p < 0.001) and
also with the Puerto del Pico series (r = 0.25–0.37, p < 0.05) but not with the Guisando series
which showed lower correlations with the ITRDB series (r = 0.23, p = 0.07). The series of
the two sampled sites were positively correlated (r = 0.34, p = 0.005). These results indicate
a slightly different climate-growth response in Guisando as compared to the other sites in
agreement with its lower autocorrelation and lower correlation with the site chronology
(Table 2).

3.3. Fire Proxies in Tree-Ring Records: Recruitment Patterns and Growth Suppressions

None of the sampled Scots pine trees were recruited from 1880 to 1920 when the
frequency of historical fire records peaked according to archive sources (Figure 4). In the
Guisando site, at least three age classes could be distinguished, with young trees (age at
1.3 m between 20 and 100 years, 51% of trees), middle-aged trees (age between 150 and
200 years, 45% of trees) and one old tree of 284 years (age between 280 and 300 years,
which represent 4% of all sampled trees). In the Puerto del Pico site, middle-aged trees
were also abundant (45% of individuals), and 68% of trees were established to be from
1800 to 1880. In this site, there was a negative but not significant correlation between the
log-transformed number of fire events and the frequency of recruited trees (Spearman
correlation, rs = −0.44, p = 0.10). Overall, we found a dominant cohort of middle-aged
pines recruited in the first half of the 19th century.

In the Guisando site, we detected very low values of the differences between standard
and residual indices in the mid (1861) and late 19th century (1888, 1891, 1895) and also
in the early 20th century (1922, 1944, 1947, 2006) (Figure 5). The growth suppressions
observed during the 1880s and 1890s in this site coincided with the peak of fire records.
Similar years of low difference values were also observed in the Puerto del Pico site, but
they did not surpass the 0.05 lower threshold (dashed line in Figure 5). The series of
differences between the standard and the residual chronologies of the Guisando site was
negatively related to the number of fires (rs = −0.21, p = 0.007, period 1850–2013).



Fire 2021, 4, 29 8 of 12

Figure 5. Differences between the standard and residual indices of the two Scots pine sites (Puerto del
Pico, Guisando; lines with symbols) for the period 1850–2018 and annual frequency of fires according
to archive sources (bars, right y-axis). The dashed lines show the mean of standard minus residual
indices ± 2.96 times the standard deviation indicating the 95% confidence intervals.

4. Discussion

Our findings confirm our hypothesis supporting that a high fire frequency reduced
the abundance of Scots pine in the Sierra de Gredos mountains. This corresponded to an
abrupt shift in the fire regime cascading on feedbacks between wildfire, vegetation and
human use of mountain forests, shrublands and pasture. We found a peak in wildfires
during the late 19th century according to several proxies (charcoal accumulation rates,
archive sources; Figures 3 and 4), which coincided with a reduction in Scots pine pollen in
several sites (Arroyo de Agua Frías, Serranillos), a lack of tree establishment (Figure 4) and
growth suppressions in the Guisando site (Figure 5). Nevertheless, there could be lagged
responses of pine forests to the change in fire regime or dating uncertainties of fire events,
which could explain why after several fires in the late 19th century, pine pollen steadily
increased during the 20th century in the Arroyo de Agua Frías site. This trend could also
reflect the recovery of pine forests in the study area after the reduction of the number of
fire events during the mid-20th century (Figure 4).

In the study region, the last 300 years are mainly characterized by the deforestation
of high-elevation Scots pine forests [18] related to an increase of human pressure, that is,
clearance of high-mountain pine forests by means of anthropogenic fires to obtain pastures
related to transhumant pasture uses [17]. This is confirmed by the increase in post-fire
shrubland (Genisteae) communities above the disturbed treeline and coprophilous fungi
after the 19th-century fire regime shift (Figure 3), as illustrated by the Arroyo de Agua Frías
site. This deforestation process was not related to any major timber harvesting during the
late 19th century according to historical management plans [10], and the presented tree-ring
data do not show growth releases suggesting the removal of trees and the reduction of
competition in the sampled stands (Figure 5).

The data from Serranillos reflect the presence of more extensive pine forests from
the mid-18th to the mid-19th centuries as inferred from the changes in pollen percentage;
while a reduction of pollen record there and in the Puerto del Pico along its chronolog-
ical trajectory would denote the existence of isolated high-mountain pines or scattered
stands [38]. These data seem to suggest that the increase of human-mediated fires and
livestock grazing was connected to the decline of Scots pine in high-elevation sites [9,20].
The lower percentage of Scots pine pollen in the Puerto del Pico record is explained because
this area has been the main passage for transhumant cattle since the Middle Age, making it
an open woodland with scattered stands [35].
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The beginning of the Late Modern Period (1800 to the present) in the Sierra de Gredos
mountains coincides with prominent socioeconomic and political changes such as the
dissolution of the “La Mesta” system, one of the main transhumance livestock associations
in European history [39]. The termination of “La Mesta” in the 19th century far from
lightening the livestock pressure on mountain areas as the Sierra de Gredos, triggered the
intensive use of pastures for sheep and cattle for local farmers [20,35]. This manifested as
a further local expansion of high-mountain shrublands (e.g., Genisteae) and grasslands
with the increase of proxies of pastoral pressure such as coprophilous fungi and minimum
percentages of Scots pine pollen [18]. These changes suggest an increase in local grazed
areas and grazing pressure in response to the abrupt increase in fire frequency and severity
during the late 19th century [13,14]. Such a shift in the fire regime was the most plausible
cause of reduced establishment (Figure 4), either because of low recruitment or high
mortality rates or both and severe growth suppressions (Figure 5). We noted that both
forest responses were site contingent since the recruitment signal was more evident in the
high-elevation Puerto del Pico site, where severe fires are frequent (Figure 2), whilst the
growth signal was recorded in the low-elevation Guisando site. It is also remarkable that
some growth suppressions (e.g., 1960–1963) and fire scars (e.g., 1975) were dated in trees
sampled in the Puerto del Pico site [40], during two decades with a high frequency of fires
(Figure 5). This may be explained by the fact that the late-19th-century wildfires drastically
reduced pine cover whereas recent fires occurred under the present fire exclusion policy
when the landscape was more open. It is also interesting to note that other reconstructions
of fire history found a high incidence of fires during the mid to late 19th century in several
Mediterranean countries such as Greece [41,42], Spain [43] and Algeria [44]. Further
research could investigate if the 19th-century shift in fire regime was linked to local
socioeconomic changes or also influenced by regional changes in climate conditions such
as increased aridification.

We consider that the 1890s growth suppression can be explained by widespread sur-
face fires which differently affected trees with moderate to high diameter (we estimate Dbh
between 15 and 25 cm in the 1890s of the largest trees). This fire regime primarily depended
on human burning and secondarily on climate variability since warm spring conditions
occurred during those decades [13]. Scots pine growth in the study area is enhanced by wet
spring and summer conditions [29,45], and reconstructed summer precipitation in the 1890s
showed the smallest range of variability since 1800 [46]. Surface fires of different intensity
usually affect Scots pine forests, albeit lethal crown fires could occur in dense stands under
drought conditions [20]. In the study case, a high frequency of mid- to high-severity surface
fires could have triggered the decline of Scots pine forests.

The late-19th-century shift in the fire regime contributed to shaping the current distri-
bution and structure of relict Scots pine forests in the Sierra de Gredos mountains. Such
episodes of rapid socio-economic and ecological changes and loss of forest resilience may
inform management policies based on prescribed burning to recreate pre-19th century
disturbance regimes associated with smaller, frequent fires and a greater abundance of
Scots pine mountain forests. In addition, these forests are located near the species’ south-
ernmost distribution limit and should be monitored, better investigated and preserved
since climate warming could further threaten their persistence. Plantations with other Scots
pine provenances or with the more flammable P. pinaster should be avoided near these relict
stands to preserve their genetic uniqueness and promote their long-term post-fire recovery.
From a scientific point of view, combining paleoecological, historical, dendroecological
and ecological (tree census data, forest inventory plots) sources of information represents a
unique opportunity to disentangle the roles played by humans and climate as long-term
drivers of forest dynamics [5,30].

5. Conclusions

We documented a regime shift in fire-vegetation dynamics during the late 19th century.
In this study, human-caused burning was the main driver of the reduction in cover and
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abundance of Scots pine, which currently forms relict scattered stands in the Sierra de
Gredos mountains. Paleoecological (increase in charcoal, decrease in pine pollen, increase
in Genisteae pollen and coprophilous fungi), historical (increase in archive records of fires)
and dendroecological (decrease in recruitment, growth suppressions) proxies point out to
the high frequency and severity of fires during the late 19th century as triggers of defor-
estation related to shifts in land use of the mountain landscape (dissolution of the “Mesta”
transhumant livestock system, extensive anthropogenic wildfires to create woodlands more
intensively grazed). The disturbance regime shifts in the late 19th century illustrate a severe
loss of resilience of Scots pine forests with legacy effects, including the current structure
and distribution of relict forests of the species in the Sierra de Gredos mountains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/fire4020029/s1, Paleoecological Methods; Table S1: radiocarbon (AMS-14C) data from
Arroyo de Aguas Frías site.
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R.L.-L., P.O., M.G. and J.A.L.-S.; software, J.J.C.; validation, G.S.-B., C.M.-M., R.L.-L., P.O., M.G.;
formal analysis, J.J.C. and J.A.L.-S.; investigation, J.J.C. and J.A.L.-S.; resources, J.J.C., C.M.-M., M.G.
and J.A.L.-S.; data curation, J.J.C., C.M.-M., M.G. and J.A.L.-S.; writing—original draft preparation,
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