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Abstract: Fire whirls are a particular case of flame behaviour characterized by a rotating column
of fire driven by intense convective heating of air close to the ground. They typically result in a
substantial increase in burning rate, temperature, and flame height. Fire whirls can occur in any
intense flame environment, including urban areas, particularly within combustible structures, and in
wildland or forest fires. Recently, investigations on the creation of fire whirls have attracted much
attention. However, most analyses are focused on fire whirl structure, formation, and controlling their
unique state. In effect, revisiting the available experimental techniques and numerical simulations
used in analyzing fire whirls has received less attention. In this paper, experimental arrangements
including empirical set ups and employed fuels are presented in detail. Subsequently, major research
progress focused on experimental studies and their laboratory setup is fully discussed, followed
by the available numerical simulations, including combustion and turbulence models. Applied
methodologies and chosen software in the recent numerical studies are also reviewed exclusively.
Finally, the latest findings are featured, and prospective pathways are advised.

Keywords: fire whirls; burning rates; simulation methods; turbulence and combustion model

1. Introduction

A fire whirl is a unique concentrated vortex driven by and consisting primarily of
combustion processes and products [1]. Fire whirls are rare but can be catastrophic and are
formed in instances where intense flames produce significant vertical convective currents
in the presence of a local rotation of the surrounding air near the fire base [2]. The most
prominent fire whirl event occurred in Japan during the Kanto earthquake of 1923 [3]. In
this incident, the fire whirl reached one hundred meters in height and caused the death
of about 38,000 people. Scientists and researchers in Canberra reported that they have
observed the first instance of a fire tornado from the investigation of the evidence gathered
from the January 2003 Canberra fires. Approximately 70 percent of the Australian Capital
Territory’s nature park, pine plantations, and pastures were seriously destroyed, and
most of the Mount Stromlo Observatory was damaged [4]. Because fire whirls produce a
strong intensification of combustion and the risks they pose during large wildland fires,
the necessity of studying this phenomenon is obvious. In this regard, many different
studies have been conducted to explore the behavior of fire whirls from different extents.
However, the need to review governing equations, up-to-date proposed models, and
solution methods for fire whirls is essential. This paper is aimed to review the available
simulation methods and discusses the capability and competency of such methods. First,
a summary of the fundamentals, classification, and formation mechanism of fire whirls
is given. Then, the experimental arrangements and numerical simulation techniques,
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including combustion and turbulence models, are presented. The review finally classifies
the research that are conducted thus far based on their simulation methods and techniques
to examine the behaviour of fire whirls.

2. Fire Whirl Phenomenon
2.1. Definition, Classification, and Formation Mechanism

Fire whirls are a type of standing vortex stimulated under specific air entrainment
conditions, where circular movement is developed by the arriving flow and forms a
flame rotation near its center core [5]. Fire whirls are not exclusively formed of fire, as
several fire whirls have been observed which consist of hot gases formed downwind of
fires (Figure 1a) [6]. Fire whirls are formed due to the interplay between fire fuels, with
distinctive impacts including cross stream and vortex breakdown. Some of them are created
from multiple fires with no wind. There are three main processes involved in the structure
of fire whirls: (1) an eddy production process (vorticity), (2) a surface drag force to produce
a radial boundary layer, and (3) a thermally driven fluid sink [2]. It is possible to have
intensive eddies including shear forces and fluid sinks at the base coalesce within fires [7,8].
The scorching gases produced by the fire act as a fluid sink, pulling the surrounding air
with an angular motion from the eddy vorticities to the core of the flame [9]. The rotation
in the air that gathers up into the fire whirl can come from various sources, including wind
dragging along the ground (see Figure 1c,d). The burning gases in the fire plume heats up
the air so that it accelerates upward, stretching and consolidating the fire whirl into long,
thin tubes (See Figure 1b). Fire whirls are well-categorized and can be separated into three
major types [10].

Type 1. Stationary, on-source (formed directly over the fuel source), and reacting [11].
(Reacting fire whirls consist primarily of combusting materials, while non-reacting whirls
consist of non-combusting materials and gases).

Type 2. Unsteady, on-source, and reacting with periodic shedding. Formed when a
line fire is subject to angled crosswinds.

Type 3. Off-source and can be reacting or non-reacting.
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Figure 1. (a): Fire whirls in Australia 2012, photo courtesy of Chris Tangey; (b) Fire whirls from a 3-meter diameter pool 
in the Fire Laboratory for Accreditation of Modeling by Experiment, or FLAME, facility at Sandia National Laboratories; 
(c) The process of forming rotating columns of flame; (d) The laboratory fire whirl. Credit: Bryan Christie Design [12]. 
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identified as “off source” [13]. The formation of a fire whirl begins with a ground fire 
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produces a low-pressure area just above the flame that pulls in ambient air. In the event 
of a crosswind or rotating wind, the vorticity of the column of combustion gases is in-
creased as the lateral momentum of the wind is converted to angular momentum centered 
at the low-pressure zone. In fire whirls, this effect is intensified by means of vortex drag-
ging due to the strain field formed by the rising air [14,15]. The combination of effects 
creates a concentrated vertical vortex core characteristic of a fire whirl (as shown in Figure 
1c).  
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a key contributor to various fire whirls. Equally, it is expected that the inflow generated 
by a buoyant plume forms a shear layer closer to the ground, which also creates horizontal 
vorticities. These horizontal vorticities can be tilted or reoriented to the vertical (Horizon-
tal vectors change direction to vertical vectors) (Figure 2). This source of vorticity could 
be present even in no wind situations. Complex topography (Wildland–urban interface 
(WUI) with manmade structures) can also form vorticity through phenomena such as 
channeling, a shear of ambient and fire-induced winds [16]. Other sources of vorticity are 
shown in Figure 3 and 4, including fire whirls that form inside the bend of an L-shaped 
heat source in crossflow [17] (Figure 2a) and fire whirl that occur due to the interaction of 
multiple fire plumes with no crossflow wind (Figure 2b). 

Figure 1. (a): Fire whirls in Australia 2012, photo courtesy of Chris Tangey; (b) Fire whirls from a 3-meter diameter pool
in the Fire Laboratory for Accreditation of Modeling by Experiment, or FLAME, facility at Sandia National Laboratories;
(c) The process of forming rotating columns of flame; (d) The laboratory fire whirl. Credit: Bryan Christie Design [12].

When the rotating vortex column is created right over the fuel source, the fire whirl
is identified as “on source”, and once it moves away or is offset to the fuel surface, it is
identified as “off source” [13]. The formation of a fire whirl begins with a ground fire
producing a convective updraft of hot gases, including air and combustion products. This
produces a low-pressure area just above the flame that pulls in ambient air. In the event of
a crosswind or rotating wind, the vorticity of the column of combustion gases is increased
as the lateral momentum of the wind is converted to angular momentum centered at the
low-pressure zone. In fire whirls, this effect is intensified by means of vortex dragging
due to the strain field formed by the rising air [14,15]. The combination of effects creates a
concentrated vertical vortex core characteristic of a fire whirl (as shown in Figure 1c).

2.2. Source of Vorticity

There are various potential sources of ambient vorticity that can cause fire whirls to
form. One key source is the shear layer, which develops when ambient wind flows over
the ground, creating horizontally leaning vorticity. This horizontal vorticity can then be
rearranged, or tilted, by the fire’s buoyant flow and turned to the vertical axis, becoming a
key contributor to various fire whirls. Equally, it is expected that the inflow generated by
a buoyant plume forms a shear layer closer to the ground, which also creates horizontal
vorticities. These horizontal vorticities can be tilted or reoriented to the vertical (Horizontal
vectors change direction to vertical vectors) (Figure 2). This source of vorticity could be
present even in no wind situations. Complex topography (Wildland–urban interface (WUI)
with manmade structures) can also form vorticity through phenomena such as channeling,
a shear of ambient and fire-induced winds [16]. Other sources of vorticity are shown in
Figures 3 and 4 , including fire whirls that form inside the bend of an L-shaped heat source
in crossflow [17] (Figure 2a) and fire whirl that occur due to the interaction of multiple fire
plumes with no crossflow wind (Figure 2b).



Fire 2021, 4, 43 4 of 22
Fire 2021, 4, x FOR PEER REVIEW 4 of 24 
 

 

  
(a) (b) 

Figure 2. (a) Schematic of fire whirl formation for an L-shaped heat source in a crossflow wind. 
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Figure 3. Fixed frames used in construction of fire whirls. (a) L-shaped covers; (b) cylinder halves.

Numerous observations of fluid dynamics phenomena happening in large-scale pool
fires, particularly fire in the existence of wind, have been described by Tieszen et al. [18],
who asserted that baroclinic vortex generation is especially prominent for large-scale pool
fires. The misalignment of the pressure gradient from the density gradient is referred to
as the baroclinicity at a point. Typically, the gradients of density and pressure act on the
same axis, but the conditions close to a fire sometimes result in warm air rising due to
surrounding cold air, producing two disparate local strata. Air above the fire extends and
lines of constant density (called isopycnals) are formed. The colder surrounding air has a
greater density compared to the fire area, tilting the isopycnals towards the fire area. The
tilting of isopycnals and isobars in the contrary axis is a baroclinic resource of vorticity, as
both gradients influence the fluid. These produce forces acting in different axes, resulting
in a rotation and leading to the generation of baroclinic vorticity. Fire whirls can form
from relatively small fires under suitable wind or topographic conditions such as at the
WUI with artificial structures. Laboratory-scale tests have illustrated that an approximately
stationary pool fire might produce a fire whirl, resulting in a much larger burning rate and
temperature compared to the primary fire [19–21]. This transient occurs in the model as
the fire is tilted to one side first, commences to spin, and afterwards pulls upward prior
to forming a fire whirl. The flame heights from pool fires and fire whirls can vary from
centimeters to kilometers [22].
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3. Experimental Arrangements (Experimental Setup, Fuels, and Burning Behavior)

The modeling tests of fire whirl are conducted based on a burner-type laboratory fire
whirl. The tests are performed by a mechanism including a support flame, a burner, a bed,
and a mechanical wind wall. Both the pool fire and burner might be applied to produce
buoyancy [23,24]. The whirls can be formed using the constant frame technique. Some
constant-frame-type whirl generators consist of a pair of L-shaped covers (see Figure 3a) [2].
The covers are set to produce a swirling stream by means of entrained air. In addition,
the whirls can be created using the constant frame technique, that is, cylinder halves
symmetrically staggered around a burner which is flush to a basis sheet to produce the
background vorticity (see Figure 3b) [25].

In the constant frame technique, the fire strength can either alter or be constant. In
fact, the chosen geometry specifies the swirl strength. Moreover, both the fire strength and
the imposed circulation can be determined. In all conditions, the thermal release rate is
controlled by regulating the fuel mass flow rate [26].

To analyze fire whirls in the laboratory, several types of fuels are employed. Liquid,
solid, and gas fuels can be utilized to analyze the behavior of fire whirl, each with their
own advantages and disadvantages. Test fuels may either be fed into the system during
the test or located at the container’s center for a certain burning period. Solid fuels must be
set in place prior to ignition, while gas fuels must be fed in. Liquid fuels can utilize either
method. Chauh et al. [27] employed a fuel pan for inclined fire whirl tests using methanol,
two-propanol, and ethanol as fuel. Aluminum slits were used in some tests to keep the
fuel surface coplanar to the surrounding surface.

In the context of burning behavior, some small-scale empirical analyses were con-
ducted to find correlations between the flame length, burning rate, and the fuel type used.
Semi-experimental simulations coupling the rates of burning with the ambient circula-
tion and the pool size for turbulent and laminar fire whirls including liquid fuels were
presented by Lei et al. [28]. The authors asserted that the growth of the burning rate in
this phenomenon is due to the increased convective mass and heat transfer in the inflow
boundary layer above the surface of the liquid fuel. An empirical analysis to investigate the
burning rate of various fuels in fire whirls and pool fires was conducted by Hariharan [29].
Experiments were done using two types of fuel, Alaska North Slope crude oil and n-
heptane. The authors used pool fire. A constant-frame, four-wall configuration was used
to produce the fire whirls. The four walls were positioned to form a container, and the
fuel pool was located at the container’s centre on the bottom face. This setup allows the
natural entrainment of air to the fire via the four gaps, forming an on-source, quasi-steady
fire whirl. To produce a pool fire, the walls were picked up to allow radially symmetric
air entrainment to the fire. A circulate dish formed of aluminium was applied to include
the fuel pool. The dish was applied to keep a water sublayer upper which the fuel slick
floated, mimicking open-water conditions at the laboratory scale. The resulting flames are
shown in Figures 4 and 5. For tests with heptane fuel (see Figure 4), the total mass loss was
equal to both fire whirls and pool fires, as no residue remained behind following extinction.
The mass loss can be considered linear for heptane fire because the rate of mass change is
constant over time; however, the rate decreases over time for Alaska North Slope fires (see
Figure 5).

The rate of burning of the pool fire regime was lower than the fire whirl regime for all
considered conditions. For both ANS crude oil and heptane, the pool fire regime consumes
fuel at a rate almost half of the corresponding fire whirls. There was residue following
extinction of the ANS crude oil fires.
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4. Numerical Simulations of Fire Whirls (Turbulence Simulations, Combustion
Models, Heat Transfer)
4.1. Governing Equations of Computational Fluid Dynamics for Fire Whirls

The general equations for fire whirls are derived by considering the compressible,
reactive, time-dependent Navier–Stokes equations with source terms

.
ωi,

.
q, and an added

scalar Yi expressing the rate of species production, the rate of energy release, and the mass
fraction for species i, respectively.

∂ρ

∂t
= −∇.(ρV) (1)

∂(ρV)

∂t
= −V∇.(ρV)−∇P + ρg−∇.τ̂ (2)

∂E
∂t

= −∇.((E + P)V)−∇.(V.τ̂)−∇.(K∇T) +
.
q (3)

∂(ρYi)

∂t
= −∇.(ρYiV) +∇.(ρD∇Yi) +

.
wi (4)

τ̂ = ρv(
2
3
(∇.V)I − (∇V)− (∇V)t (5)

where, I, K, T, V, E, P, ρ, D, and t are the identity matrix, heat conductivity, temperature,
velocity vector, total energy, pressure, density, mass diffusivity, and time, respectively (the
nomenclature is also presented in Nomenclature). It is assumed that the fluid is Newtonian,
giving the stress tensor τ̂, as illustrated in Equation (5). ν is the kinematic viscosity [30,31]
Most fluid flows in engineering and nature, such as fire whirls, are of a turbulent nature. In
fluid dynamics, turbulence is determined by chaotic variations in flow velocity and pressure.
Turbulence can be seen in the Navier–Stokes equations governing fluid dynamics, where
the presence of non-linear terms leads to highly complex behaviour. Highly dissipative and
diffusive properties are the two major factors of turbulent flows, resulting in a significant
degree of mass and heat transfer in a turbulent fluid. Turbulent behaviour can be modelled
using a variety of methods utilizing correction factors, alternate forms of the equations,
and other correlations or sub-models to obtain a system of equations/correlations. These
processes have been developed to reduce the typically prohibitive computational cost of
performing fluid dynamics simulations. These models include important physical variables
including velocity, fluid density, kinematic viscosity, and pressure.

4.2. Turbulence Simulations

Modern techniques, enabled by the improvement of computational resources, allow
for the efficient simulation of fluid flow and allow certain fluid properties to be investigated
when a physical experiment may be impractical, especially in turbulent streams. Four
broad modelling categories have emerged as the most popular methods with which to
simulate turbulent flows. These models are: Direct Numerical Simulation (DNS), large
eddy simulation (LES), and Reynolds Stress Transport (RST). While a variety of other
techniques exist, those listed above have proven to be the most useful and applicable and
are the most popular methods to use in simulating fire whirls [30,32].

4.2.1. Direct Numerical Simulation (DNS)

Direct numerical simulation (DNS) is the process of calculating the direct solution
of the unsteady Navier–Stokes equations. DNS is capable of resolving even the smallest
eddies and time scales of turbulence within a flow. When the Reynolds number (Re) grows,
the range of the eddy scales will become greater, and the requirement for more precise
grids is necessary to resolve all the behavior in the flow area, particularly at the smallest
scales. The characteristic length at which a turbulent eddy is dissipated into molecular
friction is given according to the fluid viscosity and dissipation as follows [33–37]:
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η = (
v3

εd
)

1
4

(6)

where ν is the viscosity and εd is the dissipation rate. One of the major challenges of this
modeling technique is the nearly impossible or difficult implementation of direct numer-
ical simulations in complicated geometries. The requirement to apply exact numerical
techniques are usually incompatible with their implementation in complicated geometries.
DNS simulation is barely applied, as the computations are very expensive in terms of calcu-
lating resources for turbulence streams. The Navier–Stokes correlations should be resolved
on adequately fine spatial meshes with adequately small time steps in this method.

4.2.2. Large Eddy Simulation (LES)

In the fluid stream, large scales (or eddies) are the major transporters of energy and
momentum. In LES, the larger turbulent eddies are resolved and the impact of small
eddies on the mainstream is simulated using a sub-grid scale (SGS) model [38–41]. LES
benefits from a decomposition of the Navier–Stokes equations. Instead of separating the
flow behaviour into mean and fluctuating behaviours, however, the LES method uses a
filtering procedure so that the smallest scale eddies in the flow are not resolved explicitly
and are instead described by an SGS model. The process of LES, in dealing with detached
eddies in turbulent streams, allows it to produce good agreement with DNS at a lower
computational cost compared to DNS. The simulation of the unresolved small scales is
the main area of development in LES turbulence simulations and was first introduced
by Smagorinsky [42]. Other SGS models have been presented, such as the wall-adapting
local eddy-viscosity (WALE) model, the Smagorinsky simulation (SM), the Standard one-
equation model (OM), the standard dynamic Smagorinsky model (DSM), the one-equation
Vreman model (OVM), and the one-equation dynamic model (ODM). The major target of
such models is preparing an efficient simulation to deal with the unresolved eddies in the
turbulent stream. LES can be separated into three different classifications in relation to
sub-grid scale (SGS) simulation, called the eddy-viscosity simulation, the mixed model, and
the similarity model. Eddy-viscosity simulations are more well-known compared to the
others. This model has its basis in the Boussinesq assumption [43] that links the turbulent
and molecular transports to a turbulent or eddy-viscosity (it is an artificial viscosity) model.
The SGS stress tensor in 1D can be written as:

τ = −2vSGSE + σ (7)

where E is strain tensor, and σ is normal stress. Each SGS simulation expresses a particular
formulation for sub-grid scale eddy-viscosity, presented in Table 1.

4.2.3. Reynolds Stress Transport Model (RST)

In the RST model, the equations are solved along with separate correlations for
each independent part of the Reynolds stress tensor and a transport equation for the
scalar rate of turbulent kinetic energy dissipation. In these models the eddy-viscosity
hypothesis is ignored, and the Reynolds stress tensor components are calculated directly.
Such models apply the equations of the Reynolds stress transport for the formulation. They
consider the directional impacts of the complicated interplays in turbulent flows and the
Reynolds stresses. Reynolds stress simulations present much better accuracy compared to
eddy-viscosity based turbulence simulations, in addition to being inexpensive in terms of
computation compared to DNS and LES.

For the specific Reynolds stress tensor in the RST simulation, R =
−q f

ρ is introduced
as below (q f is the vector of the turbulent thermal flux) [33]:

∂

∂t
(ρR) +∇.(ρRV) = ∇.D− 2

3
ρIχM + φ + εd + . . . (8)
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Here, the Dilation Dissipation is χM, the tensor of the turbulent dissipation rate is εd, and
other specific resources are “ . . . ”. D (the generalized gradient diffusion) was applied for
the turbulent thermal flux vector.

Table 1. Displays each SGS model’s formulation for sub-grid scale eddy-viscosity.

Smagorinsky Model (SM) [42]
νSGS = (Cs∆)2|ε|,
|ε| =

√
2εijεij

(0.5 ≺ Cs ≺ 0.22)

∆ is the filter width (size of mesh
spacing), ε is the resolved strain-rate

tensor

Dynamic Smagorinsky Model
(DSM) [44] Based on Lilly’s Idea [45]

νSGS = (Cs∆)2|ε|, (Cs)
2 =

Lij Mij
Mij Mij

Mij = 2∆2
(|ε̃|ε̃ij − α4η2|ε̃|ε̃ij)

mostly α = 2, η = 1

The stress Lij can be expressed as the
stress related to the smallest solved

scales between the grid–filter scale (∆)
and test–filter scale (∆′)∆′ = ω∆.

Wall-Adapting Local
Eddy-Viscosity (WALE) Model [46]

νSGS = (Cw∆)2 (εd
ijε

d
ij)

3
2

(εs
ijεs

ij)
5
2 +(εd

ijε
d
ij)

5
4

εd
ij =

1
2
(vgikvgkj + vg jkvgki)−

1
3

δij(vgkk)
2

εs
ij =

1
2
( ∂vi

∂uj
+

∂vj
∂ui

)

0.55 ≤ Cw ≤ 0.6

Here, vg is the tensor of the velocity
gradient. Cs and Cw can take

different values depending on the
nature of the flow, and δij is
Kronecker Delta function

Vreman Model [47]
νSGS = CV

√
β

αijαij
|ε| αij =

∂Vj
∂xi

βij = ∆2
αmiαmj, |ε| =

√
2εijεij

∆ is the filter width (size of mesh
spacing), and Cv = 2.5Cs, Cs can take

different values depending on the
nature of the flow

Standard One-Equation Model
(OM) [48]

νsgs = Cν∆ν
√

ksgs, ksgs = (ViVi −ViVi)/2 = τii/2
∆ν = ∆

1+Ck∆
2
ε2/ksgs ′

νsgs is the SGS viscosity, Cv is a
constant and always taken to be

0.1,Ck = 0.08,ε, and ∆ are defined in
previous models.

4.3. Combustion Models

The chemical reactions influence turbulence by a change in density due to thermal
energy release and changes in density impact the rate of chemical reaction. In turbulent
streams, the rate of chemical reaction is specified by two factors: (1) molecular-level mixing
and (2) mixing because of the collision between randomly travelling turbulent eddies.
Turbulence increases both the mass and heat transfer in a fluid and grows the rate of time-
mean reaction by strengthening the mixing among combustion products and disparate
reactants. Turbulence leads to the oscillation of temperature and species, which grows the
rate of the time–mean reaction. To model turbulent combustion, the main challenge is that
the rate of reaction in terms of mean variables is not the same as the time–mean amount of
the reaction rate.

4.3.1. Eddy Break-Up (EBU) Model

Because of the simplicity of the Eddy Break-Up (EBU) model first presented by
Spalding [49] and then revised by Magnussen and Hjertager [50], EBU simulations be-
came a popular method in combustion modelling. This model uses the assumption that
when turbulence mixing is included, the rate of reaction is primarily reliant on the presence
of turbulent eddies. The outcomes of reference [51] showed the potential of applying RST
method to contribute in better understanding of fundamental knowledge of the driving
system and the physical response of the fire whirls. Many researchers have found that
the EBU model is appropriate for the estimation of higher temperature air combustion
efficiency; however, there is some disagreement between numerical results and laboratory
observations due to some uncertainties and simplifications performed in numerical analy-
ses. Su et al. [52] presented a modified EBU model to address this issue. Based on empirical
case studies, the average thermal release rate was predicted by the fuel combustion rate;
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however, the power curve is not presented. As the chemical reactions in most models are
very quick, the combustion rate can be specified by the intermixing rate on a molecular
scale of oxygen and fuel eddies. The individual species are transferred at various rates
based on their equations. The time mean of the instantaneous equation is presented as
below [31,33,50]:

∂

∂t
(ρY) +∇.(ρuY) = ∇(( k

Cp
+

νt

Prt
)∇Y) (9)

where k is the laminar thermal conductivity of the combination, and Cp is the specific
heat capacity of the mixture. The mixing rate is presented in terms of the turbulence time
scale ( ζ

k ). The individual rates of dissipation for combustion products, oxygen and fuel are
presented as below:

.
w f u = CrρYf u

ζ

k
.

wox = Crρ
Yox

s
ζ

k
.

wpr = Crρ
Ypr

1 + s
ζ

k

(10)

Here, the stoichiometric factor is s, and the component mass is Y. The EBU model considers
the individual wastage rates for the actual rate of the fuel and applies the slowest of [33].

R f = −ρ
ζ

k
min[CrYf u, Cr

Yox

s
, Cr

Ypr

1 + s
] (11)

4.3.2. Mixture Fraction Combustion Model Based on the EDC

Most extensively applied ways for turbulence–chemistry interactions are a conserved
variable way. In this method, a transport equation for the conserved variable including
mixture fraction is resolved. This fraction presents the mixedness of the oxidizer and the
fuel. Turbulence and local equivalence ratio are presented by the mixture fraction variance,
the scalar dissipation rate, and the filtered mixture fraction. With a flamelet equation solved
in the mixture fraction space, the chemical kineticity is coupled [53].

4.3.3. Gas-phase Combustion Model

In the model of Gas-phase combustion, the chemical kinetics are expressed as a one-
stage reaction wherein fuel reacts with the ambient oxygen, nitrogen, carbon dioxide, soot,
and water vapour. The value of species produced is specified based on the value of gas-
phase fuel and the oxygen content at the grid control volume. The gas-phase fuel volatiles
emission is controlled by the liquid fuel evaporation. The value of heat generation through
combustion is specified by summation of the species mass fraction, which multiplies its
formation heat [54].

4.4. Modeling of Soot Formation and Combustion

In combustion phenomena, the generation of soot particles is very complicated, af-
fected by many terms such as the pressure, the temperature, and the chemical composition
of gas in the constituted soot particle pathway. As a result, the flow field has an important
role. Syed et al. [55] considered a semi-experimental soot model. The main term applied to
specify soot constitutive equations is soot mass function (γsoot):

∂

∂t
(ργsoot) +

∂

∂x
(ρuγsoot) =

∂

∂x
(

νt

Prsoot

∂γsoot

∂x
) +

dM
dt

(12)

The turbulence Pr number for soot transfer (equal to 0.4) is Prsoot, and M is the soot
mass concentration that is computed using the balance of combustion and soot formation.
The radiation heat transfer and soot formation are coupled by the highly nonlinear reliance
of these processes on temperature. The significance of coupling of soot kinetics and radia-
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tion in sooting flames has been analyzed and shown in numerous references: According to
the study of Wang and Niioka [56], it is expected that radiation attraction should be ob-
served in the prediction of soot formation in diffusion flames at low stretch. The outcomes
of the investigation done by Liu et al. [57] stated that in a moderately sooting diffusion
flame, the soot radiation is significant in terms of the soot volume fraction and the visible
flame height. In a numerical analysis done on ethylene diffusion flames, Liu et al. [58]
developed a CFD code which combines both radiative transfer simulations and simplified
soot chemistry. They showed that the accurate chemical and physical procedures related
to the modified soot rates are not completely found and there is no guarantee that the
simulation can be precise in other configurations. Modeling the impact of radiation on
soot formation is very complicated because it influences the soot kinetic rate linked to the
soot precursors.

4.5. Heat Transfer of Liquid Fuel in Fire Whirl Tests
4.5.1. One-Dimensional Heat Conduction Equation

The liquid fuel temperature T(x, t), where X is the axis pointing into the depth of the
fuel, is solved using 1D thermal conduction equation [31,59,60]:

ρCp
∂T
∂t

=
∂

∂x
[k

∂T
∂x

] +
.
qchem +

.
qrad (13)

Here, k and Cp are the heat conductivity and specific heat of liquid fuel, respectively.
The parameters

.
qrad and

.
qchem are the thermal rates associated with radiation absorption

and chemical reactions, respectively. The boundary condition at the surface of the liquid
fuel is [61–63]:

− k
∂T(0, t)

∂x
=

.
q′′ conv +

.
q′′ rad (14)

Here, q′′ conv is the convective thermal flux at the surface of the liquid fuel. It is
assumed that the radiation incident rays q′′ rad penetrate the fuel and therefore do not act on
the surface of the liquid fuel. This term is therefore assumed to be zero on the boundary. It
should be said that the liquid fuel modeling in some computational codes such as the Fire
Dynamics Simulator [54] does not have moving interface properties. The depth of the pool
fire therefore cannot be directly simulated and must be accounted for using other methods.

4.5.2. Radiation Heat Transfer

In Equation (13), the source parameter owing to radiation heat transfer from the fire
to the liquid fuel can be estimated by the “two flux” simulation according to Schuster-
Schwarzschild estimation [64]. It is considered that the strength of the radiative flux is
fixed for the “back” and “front” of the hemispheres. The radiation parameter is computed
by the sum of “backward” and “forward” incoming flux gradients, which are presented as
follows [65]:

.
qrad =

d+rad(x)
dx

+
dqrad(x)

dx
(15)

The existence of soot particles can highly influence radiative features such as the
medium’s absorption coefficient. This coefficient is used by the soot simulations to specify
the impact of soot on radiative heat transfer. In most analyses, the summation of absorption
factor of soot and gas is employed as the medium’s effective absorption factor. This factor
because of soot particles is computed as a function of soot concentration. The following
correlation for the interaction of soot radiation was used by AshokeDe [66]:

∇(∇GΓλ) = αλGλ + SGλ − 4αλn2σT4 (16)

In Equation (16), the left side is the radiative thermal flux gradient, and the right
side represents the radiative heat source which is added to the equation of energy. In
this correlation, SGλ is the user-defined parameter which replaces the energy equation to
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calculate the thermal sources because of radiation, and n expresses the refractive index of
the medium. αλ is the effective absorption factor which accounts for the combination of an
absorbing gas and soot that is introduced by Equation (17):

αλ = αAbsorbing−Gas + αsoot (17)

The impact of soot particulates on radiative heat transfer is considered using a mean
gray soot absorption factor that is expressed by Equation (18):

αsoot = b1ργsoot(1− b2(T − 2000)) (18)

Here, γsoot and ρ are the soot mass fraction and the soot density, respectively. Using
the Taylor–Foster estimation, b1 and b2 are obtained. In Equation (17), using the Weighted-
Sum-of-Gray-Gases (WSSG) simulation, αAbsorbing−Gas is calculated [67,68].

4.5.3. Convective Heat Transfer

The convective thermal flux parameter in Equation (14) is needed for the expression
of typical thermal feedback from the fire resource to the liquid fuel surface. In large
eddy simulations, this parameter can be assessed by the heat transfer factor Hc and the
temperature difference at the grid control volume and the fuel surface. The heat transfer
factor is considered as the maximum of the forced or natural convection correlations
presented by the following [68]:

Hc = max(Cconv−n

∣∣∣Tg − Tf

∣∣∣ 1
3 ,

kNu
L

) (19)

Here, Nu = hl/k is the Nusselt number, and Ccony-n is the natural convection factor
describing an experimental value relying on the model shapes. Tg is the temperature of
grid control volume, and Tf is the fuel surface temperature.

4.5.4. Evaporation of Liquid Fuels

The simulation of liquid fuel utilizes a discontinuous phase transition model between
two phases of a single constituent [1]. The liquid fuel evaporation rate, as a result of
burning, is associated with the liquid temperature and the fuel vapor concentration above
the pool surface. The volume fraction of the fuel vapor above the fuel surface can be
computed as a function of the liquid fuel boiling temperature, which can be presented
as follows:

Vf uel,sur f = exp[−
hvw f uel

R
(

1
Tl
− 1

Tb
)] (20)

Here, the liquid fuel heat of vaporization is hv, the fuel gas molecular weight is w f uel ,
and the fuel boiling temperature is Tb. The rate of the liquid fuel evaporation is defined as [1]:

m′′ evap =
ShDl,g

L
PW f uel

RTg
ln[

Vf uel,grid − 1
Vf uel,sur f − 1

] (21)

Here, the Sherwood number is Sh (Sh ≈ 0.04Sc
1
3 Re

4
5 ), Sc is the Schmidt number for

the fuel gas, and Re is the Reynolds number, which is obtained as Re = uL
ν .

5. Review of Experimental Studies and Numerical Simulations on Fire Whirls
including the Considered Models

Numerous empirical research works have been published on burner and small-scale
pool fire whirls and gaseous fuel fire whirls employing a split cylinder and constant-frame
apparatus to analyze the tangential and axial velocity profiles, the radial and axial distribu-
tion of temperature, the rates of burning, and the flame heights. The empirical facilities are
usually categorized into two types depending on if the circulation is produced by entrained
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air streams entering the facility tangentially from spiraling gases or is imposed by a mechan-
ically driven rotating screen [69–74]. The details of some presented simulation endeavors
to-date and the fire whirl behaviour they attempted to capture are expressed in Table 2.

Table 2. Experimental studies discussed fire whirls and presenting their considered models.

References Outcomes Fuel Type Schematic Diagram of Testing Equipment and Tester Equipment Details
(Reproduced from Cited Work)

Dobashi et al. [23]
(2015)

Middle and small-scale
tests were conducted to
find the mechanism of

flame height growth at the
fire whirls.

n-heptane
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Table 2. Cont.

References Outcomes Fuel Type Schematic Diagram of Testing Equipment and Tester Equipment Details
(Reproduced from Cited Work)

Lei et al. [77]
(2016)

A novel method was
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streams increase the rate

of burning.

Dead Pinus
pinaster,
straw of
Avena

sativa, dead
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globulus.
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Table 2. Cont.

References Outcomes Fuel Type Schematic Diagram of Testing Equipment and Tester Equipment Details
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Yamada and Kuwana [84]
(2019)

This study analyzed the
scale impacts on the flow
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emphasis on if a dynamic
similarity stays satisfied
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of a flat floor, heat-resistant glass. The burner exit was a porous rectangular sheet built

of sintered stainless-steel particles.
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However, significant studies have been conducted to better examine the behavior
and mechanisms of fire whirl production in empirical research works. It is hard to obtain
outcomes that match the various analyses under the same conditions, as demonstrated
by Hayashi et al. [88]. In fact, empirical research on fire whirls is a complex task due to
the many limitations of the laboratory. A successful simulation should consider both the
quantitative view and the qualitative view of a fire whirl. The qualitative aspects should
include some conditions including the transition from a buoyant diffusion gas flame to a
stable fire whirl, as well as the stability conditions for the fire whirl.

There is much research that has attempted to estimate the empirical behaviour of fire
whirl utilizing various simulation software and methods. The details of some presented
simulation endeavors to date and the fire whirl behaviour they attempted to capture are
expressed in Table 3.

Table 3. Recent numerical analyzed fire whirls and presenting their simulations.

References Outcomes Numerical
Method/Software

Fuel
Type

Turbulence
Model

Combustion
Model Schematic Diagram of Numerical Method

Hartl et al. [89]
(2014)

Demonstrated the
feasibility of applying

DNS for modeling
swirling buoyant
turbulent plumes.

Spectral
element–Fourier

method

dimethyl
ether DNS

None, heat
input using flux

boundary
conditions
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Table 3. Cont.

References Outcomes Numerical
Method/Software

Fuel
Type

Turbulence
Model

Combustion
Model Schematic Diagram of Numerical Method

Parente et al. [51]
(2019)

Studied the ability of
the RST to measure

physical behaviour of
fire whirls (for

example, the effects
of used swirl

generator on the
flame height).

Star-CCM+
software Propane RST Eddy Break-Up
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Based on the results presented in Table 3, in the DNS model, a full range of scales from
the smallest to the largest are solved both in time and space. Therefore, the DNS model’s
needs are highly computationally demanding; however, in the LES model, only the large
scales are solved, and the impacts of the smaller scales are simulated. This is due to the fact
that the LES are highly influenced by the boundary conditions and so should be calculated,
but smaller scales, which are highly independent of the flow geometry, are isotropic and
homogeneous without considering the geometry, and so they can be easily simulated.
As a result, the LES model requires lower calculation expenses. The calculation expense
related to LES is usually orders of magnitudes greater compared to that for steady RANS
computations regarding CPU time and memory. It is known that LES is more reliable and
exact compared to RANS for streams in which large-scale unsteadiness appears such as the
streams on bluff bodies [33]. Based on the presented results of [71], referenced in Table 3,
the Barely Implicit Correction flux-corrected transport algorithm (BIC-FCT) [91], omits the
sound velocity limitation by resolving the equations at large time steps specified by the
velocity of the fluid (FDS uses the low Mach number formulation), and after that using a
pressure correction which efficiently balances the acoustic waves. Specifically, the pressure
field is corrected with respect to the energy and momentum equations at each time step.
In addition, the flux-corrected transport is applied to estimate the next required time step.
Despite the fact that a large number of experiments were conducted on this topic (Table 1),
few numerical studies were made. This might be because of the complicated interplays
that happen in the generation and the growth of fire whirls [67,68,92,93].
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6. Conclusions

Fire whirls produce an intense combustion and have been analyzed by fire researchers
due to the hazard they present in wildland and urban fires. Most of the presented data
regarding fire whirls has been obtained from simulating tests in the laboratory because the
destructive strength of fire whirls covers many properties of their structure. In the present
review, empirical arrangements including experimental set up, and applied fuels are
presented. In addition, the available simulation methods in numerical studies, including
combustion and turbulence models used for the analysis of fire whirls are expanded. This
paper demonstrates that more research works should be conducted to find the conditions
under which fire whirl is produced, extending the range of factors considered so far
and applying other sensors to investigate the temperature and flow field of the flames,
presenting information to better investigate, and finding the physical mechanism related
to the constitution and complicated dynamics of fire whirls. Based on the presented
review, the main findings of the experimental and numerical methods used in fire whirls
investigations can be summarized as follows:

• A successful simulation should consider both quantitative and qualitative aspects of
fire whirl. The qualitative approach should include conditions incorporating transition
from a buoyant diffusion gas flame to a stable fire whirl, together with stability
conditions for the fire whirl.

• The qualitative features of the models used for numerical analyses should be based
on the real physical nature of fire whirls.

• One of the strengths of the numerical simulation methods is that all ranges of temporal
and spatial scales of turbulence in fire whirls are resolved in the computational mesh.

• While numerical studies will allow for better investigations of the fundamental mech-
anisms of fire whirl initiation and stability, there are currently not enough studies
conducted in this area.
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Nomenclature

Cp specific heat capacity
Cvar dynamic stress constant
K thermal conductivity
Nu Nusselt number
q heat flux
Re Reynolds number
T temperature
Tg temperature of grid control volume
Tf fuel surface temperature
V displacement
x direction
Y combination fraction
ρ density
ν viscosity
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νt eddy-viscosity
εd dissipation rate
εij the mean strain-rate tensor
δij Kronecker’s delta
τij the stress tensor of SGS
∆ grid–filter scale
∆′ test–filter scale
χM dilatation dissipation
γsoot soot mass function
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