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Abstract: Quantifying livelihood vulnerability to wildland fires in the United States is challenging
because of the need to systematically integrate multidimensional variables into its analysis. We
aim to measure wildfire threats amongst humans and their physical and social environment by
developing a framework to calculate the livelihood vulnerability index (LVI) for the top 14 American
states most recently exposed to wildfires. The LVI is computed by assessing each state’s contributing
factors (exposure, sensitivity, and adaptive capacity) to wildfire events. These contributing factors
are determined through a set of indicator variables that are categorized into corresponding groups
to produce an LVI framework. The framework is validated by performing a principal component
analysis (PCA), ensuring that each selected indicator variable corresponds to the correct contributing
factor. Our results indicate that Arizona and New Mexico experience the greatest livelihood vulnera-
bility. In contrast, California, Florida, and Texas experience the least livelihood vulnerability. While
California has one of the highest exposures and sensitivity to wildfires, results indicate that it has a
relatively high adaptive capacity, in comparison to the other states, suggesting it has measures in
place to withstand these vulnerabilities. These results are critical to wildfire managers, government,
policymakers, and research scientists for identifying and providing better resiliency and adaptation
measures to support states that are most vulnerable to wildfires.
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1. Introduction

Wildfires are crucial for ecosystem dynamics by balancing fuel types and creating
appropriate vegetation for maintaining healthy forested regimes [1]. Despite the integral
ecological role of wildfires, uncontrolled burns can cause widespread environmental,
economic, social and sustainable development impacts [2—4]. Such wildfire impacts include
losses to human lives; incurring financial losses from buildings and homes; widespread
social, health and economic costs through evacuations, smoke exposure, and loss of tourism
revenue [5-7]. The Insurance Information Institute, gives an example of financial loss due
to wildfires, including the 2019 wildfires in California and Alaska that created a loss of
4.5 billion dollars in damages, largely resulting from the California Kincade and Saddle
Ridge wildfires. In order to minimize ignition and spread during this time, California’s
electrical utility provider issued rolling blackouts to homes and businesses during high
wind and extreme dry conditions. However, this inevitably cost the state billions of
dollars in losses [8]. It is therefore evident that wildfires have a direct impact on the
livelihood of many residents in fire-prone communities within the United States, making
them vulnerable to wildland fire exposure [9].

Besides economic impacts, changes in social and climate conditions can significantly
affect fire regimes, producing greater potential damage than those previously thought [2].
Social factors, such as the expansion of the wildland—urban interface (WUI) (where human
settlements, buildings, and wildland vegetation meet), have influenced the dramatic
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increase in wildfire suppression costs, as well as the number of homes lost to wildfires in the
United States (US) over the past 30 years [7,10,11]. The 2019 wildfire risk report shows that
the US experienced the sixth-highest acres burned in 2018 since the mid-1900s. According
to the National Interagency Fire Center (NIFC) report, California has topped the list in the
US with over 1.8 million acres burned in 2018 [12]. Climate factors such as extreme weather
conditions can also influence the escape of wildland fires during suppression practices,
leading to unplanned destructive fire behavior [7,13], thereby worsening environmental
and socio-economic impacts.

There have been many wildfire risk assessment studies that use a wide range of wild-
fire danger indices [14]. However, many of these indices focus mainly on specific hazard
components of wildfires (behavior, danger, threat) and consider biophysical components of
weather conditions, topography, fuel, fire size, rate of spread, suppression difficulty, fire
occurrence, or burn severity to generate fire risk assessment maps [15]. Studies, such as
that of [16], have evaluated fire risk on structures, taking into account variables pertaining
to topography, spatial arrangement, and vegetation. However, meteorological factors
(atmosphere and weather patterns), building materials, and fire suppression efforts within
different fire regions are also important to consider. It is acknowledged that combining
these various multidimensional socio-economic and biophysical variables into a risk and
vulnerability assessment framework can be challenging. While various studies have at-
tempted to bridge the gaps among the social, natural, and physical sciences and contributed
to new methodologies that confront this challenge [17-20], not much of this approach has
been applied to specifically assess wildfire vulnerability in wildland fire prone regions of
the US. Therefore, there is a need to systematically integrate multidimensional variables
into a framework to evaluate wildfire vulnerability in highly exposed wildland fire regimes,
a method often lacking in other risk assessment studies. Thus, the integration across scales
and disciplines to produce a wildfire vulnerability assessment can be conducted by creating
a framework to assess the livelihood vulnerability of highly exposed regions to wildfires. A
livelihood vulnerability framework incorporates not only wildfire exposure in a particular
region (such as biophysical factors), but also quantifies the sensitivity of a region to wildfire
exposure, and its ability to withstand these biophysical exposures (known as adaptive
capacity). Thus, producing a livelihood vulnerability framework is an appropriate method
for assessing the vulnerability of communities to wildfire exposure because it not only
takes into account biophysical factors, but also considers socio-economic influences.

A common thread in the literature is the attempt to quantify multidimensional pa-
rameters (biophysical, social, and economic) using diverse indicator variables as proxies
that can be integrated and combined to produce a vulnerability assessment, as in the work
of [21] who investigated a sustainability livelihood approach [18]. The field of climate
vulnerability assessment, as a whole, has evolved to address the need to quantify the ability
of communities to adapt to changing environmental conditions [18] (such as changes in
wildfire exposure). Thus, a vulnerability assessment is appropriate for describing a diverse
set of methods that are used to systematically integrate and examine interactions between
humans and their physical and social environment [18].

The definition of the term vulnerability, exposure, sensitivity, and hazards vary among
disciplines [22,23]. However, there is similar consensus in the definition of vulnerability to
climate change by the IPCC and Food and Agriculture Organization (FAO). These studies
define vulnerability as the extent or degree to which a system (geophysical, biological, or
societal) is at risk and incapable of thriving under negative effects of an exposure (such
as climate change) [23,24]. The livelihood vulnerability addresses how a system’s basic
necessities of living, such as shelter, work conditions, health and environment are affected
by an exposure, such as wildfires. Studies, such as that by [18] have combined previous
climate vulnerability methods to construct a livelihood vulnerability index (LVI) to estimate
the differential impacts of climate change on several African communities. Their method
follows heavily on the working definition of vulnerability as a function of three contributing
factors (exposure, sensitivity and adaptive capacity) as defined by the Intergovernmental
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Panel on Climate Change (IPCC) (IPCC, 2001). Exposure represents the magnitude and
duration of the climate-related exposure (in our case wildfires), while sensitivity describes
the degree to which a system is affected by the exposure, and adaptive capacity describes
the system’s ability to withstand or recover from the exposure [17,25].

The LVI uses multiple indicators that are aggregated into the IPCC’s three contributing
factors to produce a vulnerability framework. Studies have applied the LVI method, such
as [26] to assess farmers’ livelihood vulnerability to global changes in irrigation agricultural
practices in Spain. They show that an increase in the adoption of irrigation practices have
increased the short-term adaptive capacity while displacing small-scale farming. Studies,
such as [27], have also used the LVI approach to assess the livelihood vulnerability of flood
risks to farmers for different regions in Indonesia. Results indicate that regions with similar
physical characteristics and agricultural dependencies show similar vulnerability levels.
A study [28] used LVI to quantify the vulnerability of communities to heavy lake effect
snowfall in the Northwest Territories of Canada. They found that extreme precipitation
makes some lake-rich communities more vulnerable than communities farther inland.
Therefore, it is acknowledged that there are numerous interpretations on how best to apply
exposure, sensitivity, and adaptive capacity concepts to quantify vulnerability [17,25,29-32],
with key differences among studies that include methods used for scaling, gathering,
grouping, and aggregating indicator variables [18].

We adopt an LVI approach, similar to the original methods proposed by [18], to
evaluate recent wildfire impacts in the US. This is conducted by developing a framework
that combines a set of indicator variables into their respective contributing factors to
determine the critical biophysical and human dimension components influencing the
livelihood vulnerability of selected wildfire prone states. The information gained from this
assessment will provide a clearer understanding as to which states are most vulnerable
to wildfires despite their level of wildland fire exposure. This information will be critical
to researchers, government organizations, and policymakers for identifying, allotting,
and providing better resiliency and adaptation measures, such as aiding in financial,
environmental, and social support for states that are most vulnerable to wildfires.

2. Data and Methodology

Assessing the LVI to wildfires across selected American states are conducted in two
folds. First, we develop a framework comprising a set of biophysical, social, and eco-
nomic factors that is used to assess each state’s livelihood vulnerability to wildfires. We
acknowledge that our framework provides one possible way of developing a livelihood
vulnerability model, and that results could differ depending on the subjective allocation of
each indicator variable in our framework. For these reasons, we also conduct a principal
component (PCA) analysis to determine the validity of our framework. Second, we calcu-
late the LVI and its contributing factors for each state. We further conduct a sensitivity test
to provide additional certainty that our framework is valid, and our results are robust.

2.1. Building the LVI Framework

The definitions of the livelihood vulnerability terms used in our framework are sum-
marized in Table A1, which describes the overarching contributing factors comprising
exposure, sensitivity, and adaptive capacity (color coded red, blue, and green, respectively).
While we acknowledge that the definition of the vulnerability terminologies can differ
across disciplines, we develop our framework and conduct our livelihood vulnerability
assessment based on the definitions in Table A1, to ensure terminology and interpreta-
tion consistency throughout this study. These contributing factors are divided into major
components (first level of divisions within each contributing factor). These major com-
ponents are further divided into sub-components (second level of divisions within each
major component) and subsequent indicator variables (measurable units of data for each
sub-component) (Figure 1).
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Figure 1. Description of the framework developed for the LVI (box 1 and the central gray circle). LVI is represented by
contributing factor (box 2). The contributing factors are sensitivity (blue), exposure (red), and adaptive capacity (green). The
contributing factors are further divided into major components (box 3). The major components are color-coordinated with
the contributing factors. The major components for sensitivity (blue) are demographic, ignition causes, and environmental
index (light blue); for exposure (red) are wildfire occurrence, topography, weather, weather extreme events (light red); for
adaptive capacity (green) are social network, natural, physical, human, and financial capital (light green). Major components
are divided into sub-components (box 4) and represented by the sub-components in the outermost part of the circle. The

sub-components are further divided into indicators (box 5) and not shown in this figure. Refer to Table A2 for each

indicator variable.

In our study, the exposure factor pertains to wildfire danger and the physical pro-
cesses that influence the intensity and severity of fire behavior. Major components within
exposure are wildfire occurrence, topography, weather, and extreme weather events. In
our framework, an indicator variable under exposure is interpreted as variables that can
adversely affect the exposure of wildfire risk to people within a state. For example, “total
acres burnt due to wildfires” is an indicator variable that represents how burnt soil disturbs
hydrologic and soil conditions leading to increased likelihood of flooding, runoff, and
debris flow [33]. This variable can be interpreted as, the greater the number of acres burnt,
the greater the exposure humans have to “knock-on” natural hazards, such as flash flooding
and landslides within a state (Table A2).

Sensitivity describes the degree to which each state is affected by wildfires. Its major
components are demographic, ignition causes, and selected environmental indices. The
indicator variables under sensitivity are interpreted as variables that contribute to a state’s
sensitivity to wildfires. For example, the “number of houses within a wildland urban inter-
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face zone” is an indicator variable under sensitivity because WUI are high-risk wildfire
regions due to their accumulation of wildland vegetation, concentration of flammable hu-
man structures, and potential ignition sources from sparks left by human activities [34,35].
Therefore, this indicator is interpreted as follows: States with larger WUI area and greater
number of homes within the WUI will be at increased risk and sensitivity to wildfires
(Table A2).

Adaptive capacity describes the ability of each state to withstand or recover from
wildfires. The major components of adaptive capacity include natural capital, physical
capital, human capital, social network, and financial capital. The indicator variables under
adaptive capacity are interpreted as variables that can positively contribute to the state’s
mitigation and adaptive strategies for wildfires. For example, “median household income”
is an indicator variable under adaptive capacity that can be interpreted as: States with
higher income may have more financial resources and financial capital to invest in home
and community hardening, thereby having higher mitigation and adaptation capacities
(Table A2).

When interpreting the indicator variables under each contributing factor (exposure,
sensitivity, and adaptive capacity), usually states with higher values would represent
greater exposure, sensitivity, or adaptive capacity to wildfires. For example, states with
higher temperatures would have a “greater exposure to wildfires”. However, for certain
indicator variables, the opposite is true, such as precipitation. States with higher amounts
of precipitation will have a “lower” exposure to wildfires. Indicator variables that are
interpreted as such require the inverse of their value to be integrated into the LVI equation
(e.g., instead of 12 mm of rain, it would be (ﬁ). These inverse indicators are denoted
with an asterisk (*) in Table A2. Please refer to Table A2 for a comprehensive overview of
our LVI framework that outlines all the major components, sub-components, and indicator
variables used in each contributing factor, along with detailed rationales and interpretation
on how we apply each indicator variable to assess the livelihood vulnerability of each state.

2.2. Input Variables

The LVI analysis is conducted solely for 14 fire prone American states that are most
at risk to wildfires. The states selected are Arizona, California, Florida, Idaho, Montana,
Nevada, New Mexico, Oklahoma, Oregon, Utah, Washington, and Wyoming because they
experienced the highest risk of wildfires in 2018, as determined from by the maximum
acres burnt in 2018 and 2019 and as documented in the NIFC 2019 Wildfire Risk Report
(Table A3 in the Appendix A). The 14 states analyzed in this study had the largest acreage
burnt in 2018 across the US (Figure 2). For these reasons, we limit our analysis to comparing
the LVI for only the top states most exposed to wildfires. The remainder of the states are
not as exposed and will inevitably provide irrelevant comparisons. Though Alaska was
included as a top state listed in the 2019 Wildfire Risk Report, it was excluded from our
study due to the lack of spatial and temporal comprehensive data, such as those required
under sensitivity (e.g., number of houses within the WUI zone), and if included, would
have impeded our comparison analysis among the other states.

Our analysis is conducted to determine the current LVI and not future LVI projections.
Therefore, most of the data gathered for our assessment were acquired within the past
decade (2010-2019). The exception is given to certain indicator variables that represent a
long-term climatological average (1950 to 2019). In addition, the elevation data for each
state was acquired from 1980, with the understanding that the elevation of each state
is not time sensitive and would not have changed drastically if the measurements were
acquired in 2019. The year in which the data was acquired for each indicator variable in
our framework is indicated in Table A2.

Furthermore, most of the data acquired are entered directly into the framework
as raw values, meaning that they did not require additional computations before the
LVI was calculated. However, some indicator variables under exposure, sensitivity, and
adaptive capacity required further processing to be amenable and included in the analysis.
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Indicator variables under the exposure that required initial computations included annual
average wind speed, humidity, annual precipitation, number of days with higher than
0.1 inches or more of precipitation, and annual temperature. The National Center for
Environmental Information (NCEI) provides annual averages of each indicator for various
weather observation stations located in each state. The values for every available weather
observation station within each state were spatially averaged over the state and temporally
averaged over the 1950 to 2018 period before being used in our LVI calculations.

States considered in LVI

States not considered in LVI

Figure 2. Map of the United States with the states that are analyzed shaded in orange and states not considered shaded in

gray. The acreage size burnt in 2018 and 2019 is indicated by the red circles, ranging from the smallest circle (burn area less

than 90,000 acres) to the largest circle (burn area exceeding 1 million acres).

The indicator variables requiring initial computation under sensitivity included the
Palmer Drought Index (PDI) and the number of smokers. The National Oceanic and Atmo-
spheric Administration (NOAA) collects monthly PDI values from weather observation
stations throughout the US every year. The 2019 annual average was calculated for each
station and then averaged amongst all the stations within a state. We also calculated the
number of smokers using data from the United Health Foundation, which provided the
percentages of smokers for every state. To accurately convey the proportions between the
states, the state’s population for that year was multiplied by its respective percentage of
smokers. Finally, for adaptive capacity, only the indicator variable pertaining to the total
area of lakes had to be computed. The original data provided the area for each individual
lake. Thus, we had to aggregate the area for all lakes to produce the cumulative lake area
in each state.

The motivation for including the selected indicator variables in our framework was
based on current risk assessment information suggested by the open literature, such as
potential health risks due to wildfires [36]. Other examples include indicator variables
pertaining to fuel, weather, and topography that are important drivers of wildfire danger
and behavior, as referenced heavily in the literature [37,38]. Environmental indices such as
the PDI and air quality were also included. While we acknowledge that there are many fire
indices that could be integrated [14], we selected PDI because of its available spatial and
temporal data for our study and because PDI is a useful indicator in describing an essential
environmental factor (drought) required for the potential onset, ignition, and behavior
of a wildfire [39]. Adding more fire indices and sub-indices would add redundancy to
our framework.
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2.3. LVI Calculation

Subsequently, we calculate the LVI and the corresponding contributing factors for each
of the analyzed states based on our developed framework (Table A2). Our methods for
computing the LVI follows a similar approach to [18,27]. Before the computation, we need
to interpret whether the magnitude of each indicator value, under each contributing factor,
is influencing the contributing factor positively or negatively. If the indicator variable is
affecting the contributing factor negatively, then the inverse value is taken.

To compute LVI, we first compute the standardized index (SI) for each indicator
variable, where I, is the original indicator variable for each individual state, [max and Imin
represent the state with the maximum and minimum value, respectively, corresponding to
that particular indicator, we use Equation (1).

I — Imax

SI 1)

= Tmax — Imin

Second, the major component (MC) value for each state is computed by averaging the
standard indices, over the number (1) of all indicators used in each major component, as in
Equation (2).

mc = Ziz1 S
n

)

Third, each contributing factor (CF) is computed by taking a weighted average of
each computed major component. This is done by multiplying each major component by
its number of indicators (Wi), as in Equation (3).

Y. [MC-Wi]

CF= Y Wi

)
Finally, the LVI for each state is computed by combining the contributing factors of
exposure (E), adaptive capacity (AC), and sensitivity (S), as in Equation (4).

LVI = (E—AC)-S (4)

The weighted balance function is applied to this method, as followed by [18]. The
weighted function gives equal weighting to each indicator variable, despite how many
indicators are present within the framework. This weighted approach is often used when
determining vulnerability in data-scare regions. Once the LVI is computed for each state, a
constant value of 0.5 is added to each LVI to simply aid in visualizing and interpreting the
rank of LVI [26].

2.4. Validation Framework Approach

We subsequently applied a PCA to our indicator variables in order to gain confidence
in the structure of our framework. PCA is a variable-reduction technique that takes a large
set of variables and organizes them into a smaller set of principal components. For the
purposes of this study, PCA was used to verify our framework by ensuring the indicator
variables were loading into the “proper” major components that they were assigned. When
conducting a PCA, four assumptions are made about the dataset, namely (1) the variables
are measured at the continuous level, (2) there is a linear relationship between the variables,
(3) there is adequate sample size, and (4) the dataset contains no outliers [40]. In addition,
two tests are conducted to determine whether PCA is a suitable method for validating our
framework: the Kaiser-Meyer-Olkin (KMO) sampling adequacy test [41] and Bartlett’s
Test of sphericity [42]. The KMO test measures the proportion of variance among the
indicator variables that may be caused by underlying factors. KMO is an average of the
measure of sample adequacy (MSA) for each indicator variable within their respective
major component. MSA values range from 0 to 1 and represent the extent of a given
indicator belonging to a group [43]. Smaller KMO values indicate fewer correlations
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between a given variable and the other indicators. Therefore, if the KMO value is less than
0.5, the results from a PCA will not be useful because the indicators do not share high
correlations with each other. From Table A4 in the Appendix A, KMO values range mostly
between 0.5 and 0.8, suggesting a strong sampling adequacy. Bartlett’s test of sphericity
is conducted to determine whether the correlation matrix of the indicators is an identity
matrix. The null hypothesis is that the indicators are orthogonal (uncorrelated). For this
study, if the indicator variables are uncorrelated, then they are unsuitable for this factor
analysis. The values for this test range from 0 to 1, with 0 representing a rejection of the null
hypothesis (meaning that the indicator variables are correlated). In addition, a significance
value that is less than 0.05 indicates that PCA will provide helpful information. The values
for the Bartlett’s test of sphericity in our results mostly range from 0 to 0.3, suggesting that
the variables chosen are correlated. Table A4 in the Appendix A provides the KMO and
Bartlett test scores for each major component by using the indicator data gathered from the
14 states.

Once the indicator variables we selected had passed these tests, a PCA was conducted.
The normalized data input for PCA were the standardized values for each indicator. The
PCA gives insightful data such as a correlation matrix, communalities, and total variance
explained. However, the output that helped reorganize and strengthen our framework was
the component matrix. The component matrix displays the Pearson correlations between
the indicator variables and principal components. The component matrix was used to
verify whether the indicator variables loaded into their respective major components.
This indicates that they are measuring the same underlying construct and are, therefore,
correctly grouped accordingly in our framework.

Apart from the added confidence we gain from applying the PCA, we also conduct a
sensitivity analysis to test whether our framework provides robust livelihood vulnerability
results for each state. This is conducted by slightly perturbing our framework (through
randomly selecting to omit one indicator variable at a time from a major component)
and then re-running the LVI calculations. This will, thereby, provide twelve different
framework scenarios with LVI results generated for each state. The original LVI results
(current framework) is compared to the LVI output from each scenario to establish whether
the top three LVI states and the lowest three LVI states remain consistent throughout 90%
of the runs. If the LVI ranks remain the same (or are similar within reason) for more than
90% of the runs, these results provide additional validation to the framework. Refer to
Table A8 for a synthesis of the scenarios. We acknowledge that other scenarios may be
possible (by interchanging some indicator variables amongst the contributing factors) but
this would lead to many other possible scenarios and has already been tested by the PCA.

3. Results
3.1. LVI

We compute the LVI for each of the 14 American states analyzed (Figure 3). Most of
the states we analyzed exhibit similar LVI values. However, Arizona and New Mexico
experience the greatest livelihood vulnerability, with an LVI of 0.57 and 0.55, respectively.
In contrast, California, Florida, and Texas experience the least livelihood vulnerability to
wildfires (0.44, 0.35, 0.33, respectively) (Figure 4). To understand these LVI results, we
delve into analyzing each contributing factor.

3.2. Exposure

First, we examine each state’s susceptibility to wildfire by examining the exposure
contributing factor. The exposure results indicate that California, Nevada, and Arizona
exhibit the highest exposure to wildfires (0.63, 0.52 and 0.49, respectively) while Oklahoma,
Florida, and Montana have the least exposure (0.25, 0.21 and 0.19, respectively) (Figure 5a).
To understand the exposure results, we assess the four major components of exposure
(wildfire, topography, weather, and weather extreme events) for each state Figure 5b).
Wildfires (blue) is predominant for California, Texas, and Arizona. This is because these
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states experience the highest number of wildfires and the largest acres burnt due to wildfires
in 2019. Nevada and Arizona also experience relatively higher values of weather (yellow),
which indicate favorable weather conditions for the development of wildfires, such as
relatively higher wind speeds and lower humidity. In addition, weather extreme events
(green) represent extreme wildfire and extreme heat events and are most prevalent in
California and Nevada.
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Figure 5. Histogram showing the overall exposure of the 14 selected states in the US with California having the highest

exposure (with respect to wildland fire) and Texas having the lowest overall exposure (a). Radar plot showing the different

major components of the exposure contributing factor, namely, wildfires (blue), topography (red), weather (yellow), and

weather extreme events (green) for the selected 14 states of the US (b).

The major component, topography, represents mean height and highest elevation for
each state. Topography is important because higher elevations in complex terrain can be
conducive to the propagation of wildfire behavior, add uncertainties to the prediction of
the wildfire rate of spread [44], and make fire suppression efforts more challenging. Thus,
states with higher topographic values could potentially be more at risk, or dangerously
affected by wildfires. Nevada also ranks high in topography. While topography is also
relatively high for other states, such as Wyoming and Utah, other major components, such
as wildfires, weather, and weather extremes, are negligible, thereby reducing the overall
exposure of wildfires in these states. Furthermore, Florida, Oklahoma, and Montana have
the lowest exposures because all of their major components under exposure are ranked
very low in comparison to the other states.

3.3. Sensitivity

Second, we assess the degree to which each state is affected by wildfires by investigat-
ing the sensitivity contributing factor. The results for sensitivity (Figure 6a) show California
as the most sensitive state to wildfires (0.84). This is followed by Texas, with a sensitivity of
0.66. Montana and Wyoming are the least sensitive. California, Texas, and Florida are the
most sensitive to wildfires because they yield the highest values of each major component
under sensitivity (demographic, ignition causes, and environmental index) (Figure 6b).
Demographic comprises sub-components, such as the wildland-urban interface (WUI) and
population. States with larger WUI areas or higher populations within a WUI, would
be more sensitive to wildfires because they are within a region more exposed to wildfire
events. Ignition causes attributed to outdoor activities, such as campfires and smoking,
would also increase the potential inception of human-caused fires. In addition, states that
experience poorer air quality and more drought will be more sensitive during and after
wildfire events and seasons. The environmental index remains relatively constant among
all states (yellow). However, California and Texas are the most sensitive states because they
are driven primarily by the major components of ignition causes (red) and demographic
(blue). The least sensitive state is Montana (0.08) because, in comparison to the other states,
all its major components are ranked relatively low.



Fire 2021, 4, 54

11 of 29

1.00

0.75

0.50

0.25

0.00

MONTANA

WYOMING

NEVADA

Overall Sensitivity by state

IDAHO

OKLAHOMA

UTAH

Sensitivity Major Components

CALIFORNIA

FLORIDA TEXAS
1.0000
= DEMOGRAPHIC
WYOMING 0.7 COLORADO = IGNITION CAUSES
0.4000 ENVIRONMENTAL
INDEX

NEW MEXICO 0.2¢H ARIZONA

NEVADA IDAHO

2 z € o E < © <
] o z [a] Q o =
2 3 5 8 2 g 2 % UTAH WASHINGTON
w N T o = o
S BB B
8 = 2 MONTANA OKLAHOMA
e OREGON
(a) (b)

Figure 6. Histogram showing the overall sensitivity of the 14 selected states in the US with California having the highest

sensitivity (with respect to wildland fire) and Texas having the lowest overall sensitivity (a). Radar plot showing the

different major components of the sensitivity contributing factor, namely, demographic (blue), ignition causes (red), and the

environmental index (yellow) for the selected 14 states of the US used in this study (b).
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3.4. Adaptive Capacity

Third, we assess the ability of each state to withstand or recover from wildfires by
analyzing the contributing factor of adaptive capacity. Our results indicate that California,
Texas, and Florida exhibit the greatest adaptive capacity to wildfires (0.69, 0.67 and 0.48,
respectively) while Oregon, Idaho, and Montana are the least adaptive (0.15, 0.12, 0.12,
respectively) (Figure 7a). The reasons for the adaptive capacity disparities among the states
have to do with the major components (or capitals) that each state has (natural, physical,
human, social network, and financial) Table A2.
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Figure 7. Histogram showing the overall adaptive capacity of the 14 selected states in the US with California having the

highest adaptive capacity (with respect to wildland fire) and Texas having the lowest overall adaptive capacity (a). Radar

plot showing the different major components of the adaptive capacity contributing factor, namely, natural capital (blue),

physical capital (red), human capital (yellow), social network (green), and the financial capital (orange) for the selected

14 states of the US (b).

What drives the adaptive capacity to be relatively high for California and, to a slightly
lesser extent, Texas, are their social network (green) physical capital (red) and financial
capital (orange) (Figure 7b). These two states have social structures in place to facilitate
safety measures in times of wildfires such as allocating firefighters and first responders
to wildland fire emergencies. These states are also more equipped with transportation
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accessibilities, such as closer airports and access to public roads, in case of major wildfires.
California and Texas also have greater access to communication within their households,
including internet signals for receiving warning alerts, both of which can be beneficial
to one’s livelihood during the state of an emergency wildfire evacuation. These states
also rank highly in financial capital, such as having relatively higher household incomes
and fire management assisted grants, which can lend financial support during wildland
fire emergency hazards. Additionally, Florida also has a high adaptive capacity that is
primarily driven by its natural capital. It has the largest water area of all the states analyzed,
thereby providing the state with water resources for fire suppression.

In contrast to the states with the highest adaptive capacity, Montana, Idaho, and
Oregon rank very low in all capitals. Moreover, while some states rank high in one major
component, it suffers in others, thereby driving down the rank of its overall adaptive ca-
pacity value. For example, New Mexico has a relatively high human capital in comparison
to other states, which corresponds to residential density and occupation; however, all its
other capitals are negligible, resulting in an overall low adaptive capacity to wildfires. This
emphasizes the need to evaluate all the contributing factors in adaptive capacity to obtain
a holistic view of the allotted resources available to aid in wildfire resiliency measures.
Adaptive capacity is one of the most important determining factors in risk assessment, as
highlighted by [45]. who showed that wildfire hazard potential can be reduced once the
adaptive capacity of the state is taken into consideration.

4. Discussion
4.1. Validation of Framework
4.1.1. Principal Component Analysis (PCA)

A PCA was conducted for each major component to test the indicators categorized
within them. Table A4 in the Appendix A shows the results after running the KMO and
Bartlett test. All of the values from the KMO test are at least 0.5, which is the minimum
required value to conduct a PCA as described in [41]. The only major component that
is not at least 0.5 is that of weather, which has a value of 0.488. Previous research such
as [46] suggests a KMO value of at least 0.6 in order to proceed with PCA. However, due
to the small sample size and indicators tested per PCA (adaptive capacity, 13; exposure,
11; sensitivity, 9) it is difficult to achieve a KMO value of at least 0.6. In addition, in
this study, PCA was not utilized for its typical purpose of reducing variables, but rather,
performed to verify whether the indicators within each major component loaded onto one
principal component.

Table A4 in the Appendix A also contains the results for the Bartlett test. Some of the
major components achieved a desirable value of less than 0.05. However, some had values
higher than 0.05. This is not an issue for two reasons. First, the major components that
had a value greater than 0.05 had only two indicators to test. Only having two variables
to create a correlation matrix would make it very difficult to achieve a value below 0.05.
Second, the purpose of conducting a Bartlett test is to assess whether the correlation matrix
diverges significantly from an identity matrix for data reduction [47]. Since the goal of the
PCA is not variable reduction, the correlation matrix only needed to be proven as not being
an identity matrix, that is, a value closer to 0 than 1.

After computing the PCA, we analyzed the generated component matrices. To val-
idate the framework, the indicators had to have a strong loading into their respective
major components. A strong loading is considered to be any value above 0.5 and sug-
gests that the indicators are measuring the same underlying construct. Despite the fact
that a PCA was conducted for each major component, the results are compiled into three
tables (Tables A5-A7 in the Appendix A), one for each contributing factor. Overall, most
of the indicators demonstrated a strong loading into their respective major components.
However, there were some indicators that had weak loadings, under a value of 0.5, for
example, annual average wind speed and annual average temperature in exposure. These
indicators had a factor loading of 0.17 and 0.39, respectively, for the major component of
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weather. These low values indicate an inverse relationship between the other indicators
under weather [48]. When a state is characterized by higher wind speed and temperature,
they are more likely to be exposed to wildfires. The other indicators under weather involve
humidity and precipitation. If a state is characterized by higher humidity and precipitation,
then they are less likely to be exposed to wildfires in that same year. The same logic can be
applied to the following indicators: acres of forests, number of timber/woodworkers, and
annual PDI. These indicators all have negative loadings for their respective major compo-
nents. These inverse relationships were reflected in the calculation of the LVI. With PCA
verifying the structure of our framework, the validity of the LVI results is strengthened.

4.1.2. Sensitivity Analysis

Another test to validate our framework, included a sensitivity analysis. We perturbed
the framework by removing one indicator variable at time and testing the rank of the new
LVI results. A total of twelve scenarios were conducted (Table A8). Under exposures, the
indicators removed were wildfire occurrence, mean height above sea level, wind speed, and
extreme heat. Despite these exposure perturbations, the LVI rank for the top three (Arizona,
New Mexico, Idaho) and lower three LVI states (Texas, Florida, California) remained the
same as the original LVI outputs.

Similarly, the same analysis was carried out for sensitivity for which indicators: WUI
area, number of campsites, and the air quality index were removed. The LVI results did
not vary for these scenarios. Applying this approach to adaptive capacity, one indicator
variable was removed at a time under each major component (area of lakes, miles of public
roads, persons per household, number of firefighters, median household income). While
the results remained the same for most perturbed scenarios of adaptive capacity, omission
of the median household income changed the top LVI rank to include Colorado and not
Idaho. The top LVI states were, Arizona, Colorado, followed by New Mexico. However,
the lower three LVI states remained the same.

Overall, only one of the 12 scenarios showed a slight shift in the LVI rank for one of
the states, but the top two (Arizona, and New Mexico) were still ranked accordingly. The
results remained consistent for 92% of the runs. The results from this sensitivity analysis
provides validation on applying our framework to quantify livelihood vulnerability.

4.2. Contribution of LVI

The main findings indicate that Texas, Florida, and California exhibit the lowest
livelihood vulnerability to wildfires, while Idaho, New Mexico, and Arizona experience
the greatest. Assessing each contributing factor and its respective major components and
subcomponents have provided an in-depth analysis of why the livelihood vulnerability
of some states to wildfires are higher than others. Many media and scientific reports
constantly show California as the state with the most dangerous and destructive wildfires,
especially in recent years. The NIFC report showed that California had the highest acres
burned and maximum damages in 2018 among all the states. According to the 2019-2020
California Budget Summary [49], approximately ten of the most destructive wildfires
in California have occurred since the year 2015. Thus, one might think that California,
with the highest exposure, would have the highest LVI. Our study indicates that, while
California is the most exposed, and sensitive to wildfires (Figure 8), it has a very high
adaptive capacity to help offset its livelihood vulnerability. The California Administration
has implemented solutions and recommendations to reduce wildfire risk to improve the
state’s emergency preparedness, response, and recovery capacity, and to further protect
vulnerable communities. The 2019-2020 state budget includes 918 million dollars in
additional funding to comply with these efforts [49]. For these reasons, it is evident why
California exhibits a lower livelihood vulnerability to wildfires, relative to other states.
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Figure 8. Plot showing the overall contributing factors for each state, indicated by exposure (along the x axis); adaptive

capacity (along the y axis); and sensitivity (denoted by the size of the circles).

Similarly, Texas has the lowest LVI of all the states analyzed. Despite its high sensitivity,
its exposure to wildfire is relatively lower than more than 25% of the other states and has
the second-highest adaptive capacity. Texas is highly sensitive to wildfires. According to
Texas A&M Forest Service (2020), there have been over 150,000 wildfires consuming more
than 9 million acres since 2005 with 71,499 wildfires in 2017 alone [50]. Indeed, 90% of
wildfires in Texas are human caused as a result of debris burning, sparks from welding
and grinding equipment, poorly discarded smoking materials, vehicles” exhaust systems,
and arson. Moreover, according to Headwater Economics (2018) parts of Texas that are
experiencing the fastest population growth are spatially correlated with regions of highest
wildfire threat and greater proportions of vulnerable people [51]. These factors contribute
to the sensitivity of Texas. However, we suggest that similar to California, Texas has a
very high adaptive capacity, which drastically influences its livelihood vulnerability to
wildfires. This high adaptive capacity is driven primarily by social network, physical
capital, and financial capital. According to the Texas A&M Forest Service (2020), Texas has
resources to deploy wildfire risk information and create awareness about wildfire concerns
across the state through using a Texas Wildfire Risk Assessment Portal (TxWRAP) [50].
Furthermore, data produced from this portal is part of the Texas Wildfire Risk Assessment
Project (WRA) that has further positioned the Texas Forest Service as a national leader in
wildfire protection planning. These resources have positioned Texas to help withstand
natural hazards related to wildfires.

Additional considerations should also be taken into account for states like Arizona
that exhibit a high LVI. Arizona has high exposures of wildfires and high sensitivity to
environmental indices such as drought and poor air quality. According to the Arizona
Commerce Authority, Arizona is among the top three states with the highest rates of popu-
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lation growth in the nation [52]. There have been more than 120,000 new residents (doubled
California’s 50,635 new residents) in the 2018-2019 time period alone, with a projected
population of over 10 million people by 2050 [52]. It can be assumed that with such growth,
urbanization, transportation, and communication services will increase, thereby, making
Arizona more sensitive to wildfire risk, as nine out of 10 wildland fires are started by
humans according to the Arizona Department of Forestry and Fire Management [53].

We emphasize here that vulnerability is one factor in a risk assessment function,
and thus, does not quantify the overall “risk”. Therefore, the resultant LVI assessment is
not meant to negate the fact that California, for example, is still at high risk of wildfire
impacts, but instead, provides a relative measure that compares, specifically, the aspect of
livelihood vulnerability to wildfires among the 14 states. To this end, it is important that we
reiterate that despite a low LVI value in California, wildfires are continuing to worsen each
year causing increased casualties, significant environmental impacts, and socio-economic
damages. For example, the frequency of small (less than 500 acres) of wildfires have
increased predominantly across western and central California and that wildfire season is
lengthening to include the month of July [54]. There are also future concerns for the state
of California, despite having a low LVI. We acknowledge and emphasize that the resultant
exposure to wildfire in California is the highest amongst all states, thereby requiring
continuous observations and monitoring. According to [55], the increased number of fires
in California is due to a combination of climate change that has heightened hot and dry
conditions and fire suppression policies that have allowed the accumulation of fuels in the
landscape. As stated by numerous dependencies in the California Forest Carbon Plan in
2018, wildfire emissions are projected to increase by 19%-101% using the 1961-1990 years
as the baseline period [56].

If global greenhouse gas emissions continue to increase at its current rate, wildfire
smoke will increase, only exacerbating these emissions and worsening the current health
impacts. Therefore, looking to the future, mitigation and resiliency strategies need to be
developed and adopted for the high livelihood vulnerable states, such as Arizona. In
addition, continued efforts are required for relatively low LVI states that have a high
exposure such as California in order to facilitate and provide resources to help mitigate
wildfire hazards in the future.

The need to adopt contemporary practices is beneficial for resiliency and mitigation
methods. For example, proposed policies focusing on fire suppression and prevention be-
came prevalent in the early 1900s and represented the foundation of California’s economic
theory of wildfire management, following a massive fire that had burned 3 million acres
in Montana, Idaho, and Washington [57-59]. However, according to the recent California
Policy Center (2017), fire suppression techniques only worked as short-term solutions,
resulting in over 100 million dead or dying trees, overgrown forests, and fuel accumulation,
increasing the risk for dangerous wildland fires [60]. Thus, the continued need for evolv-
ing and enhancing fire management techniques and practices is essential for accurately
monitoring and improving wildfire risk assessments.

5. Conclusions

Across the US, wildfires can produce catastrophic environmental and socio-economic
impacts. To quantify these risks across multidimensional, socio-economic, and biophysical
variables, we produce a framework to compute a livelihood vulnerability index for the
top 14 American states that are most at risk for wildfires. Our framework comprises
contributing factors (exposure, sensitivity, and adaptive capacity), major components, sub-
components, and indicator variables. Our framework was further justified by performing
a principal component analysis to provide additional confidence in our approach.

Our results indicate that the states of Arizona and New Mexico experience the greatest
livelihood vulnerability, with an LVI of 0.57 and 0.55, respectively and California, Florida,
and Texas experiencing the least livelihood vulnerability to wildfires (0.44, 0.35, 0.33,
respectively). LVI is weighted strongly on the contributing factors. For example, while
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California has a high exposure and sensitivity to wildfires, it has high adaptive capacity
capitals that offset these factors. Additionally, livelihood vulnerability depends largely
on sensitivity indicator variables, such as population density. We acknowledge that, with
Arizona’s high LVI and steady population growth, continued wildfire risk management
and urban planning strategies are essential for reducing the biophysical and socio-economic
impact of wildfires in the future and to further avoid an increase in its LVL

This study provides a first order approximation that uses secondary (available census)
data to provide a novel quantitative account of livelihood vulnerability through multi-
dimensional factors. While we acknowledge that higher resolution scale (perhaps at the
community level) would provide additional valuable information, this requires primary
data acquisition through field surveys and interviews at the local scale, which is beyond
the scope and feasibility of this work. However, the results generated from our relatively
coarser scale analysis, can point towards high order evaluations that can be conducted at
finer scales in future studies.

The results from this study are critical to researchers, government, and policymakers in
identifying, allotting, and providing better resiliency and adaptation measures to support
the states that are most vulnerable to wildfires. Further research can be conducted, follow-
ing the same framework for each of the state’s geo-political subdivisions in order to better
understand the risk and vulnerability of growing wildland—urban interface zones and
to determine what urban boundary limitations should be considered for risk assessment
studies. Moreover, additional research can be conducted to assess future LVI scenarios by
employing high-resolution forecast models to help guide future wildland fire exposure
projections in vulnerable communities within the US.
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Appendix A

Table Al. LVI terminology definitions, color coordinated by major components in each contributing factor: adaptive
capacity (green), exposure (red) and sensitivity (blue). Gray highlights denote terms that are frequently used in livelihood

vulnerability literature.

Terminology

Definition

Contributing factor

Overarching biophysical and socio-economic factors used to
calculate LVI (exposure, adaptive capacity, and sensitivity) [18]

Adaptive capacity

The system’s (state’s) ability to adjust to a perturbation or
disturbance and cope with consequences [61]

Exposure

The degree, time and or extent a system (state) is in contact with,
or subject to a perturbation (e.g., wildfire events) [61]

Sensitivity

The degree to which a system (state) is modified or affected by
the perturbation or set of disturbances [61]

Major component

The first level of divisions within each contributing factor [18]

Financial capital

Considers financial resources a system (state) has in order to
help adapt to an exposure (wildfire) e.g., grants, income [62]

Human capital

Considers human resources and level of education and
productive skills of people in a system (state) e.g., occupation
type [62]

Natural capital

Considers natural resources in a system (state) that helps a
system adapt to an exposure (wildfire) e.g., lakes, forests [62]

Physical capital

Considers materials and resources that a system (state) has to
help adapt to an exposure (wildfire) e.g., transportations and
communication types, infrastructure and livestock [62]

Social network

Considers social constructs that are in place by a system (state)
in order to help adapt to an exposure (wildfire) e.g., safety
practices, clubs, networks, affiliations [62]

Wildfire Occurrence

Metric used to quantify the number of wildland fires in a state,
e.g., wildfire occurrence, loss of wildland

Topography

Considers metrics used to quantify topography of landscape,
e.g., elevation height

Weather

Considers the meteorological metrics that influences wildfire
behavior, e.g., air temperature

Weather Extreme Events

Considers metrics that quantifies extreme environmental
conditions conducive for wildfires e.g., extreme heat

Demographic

Considers metrics that describes the population structure of a
state, e.g., population density

Ignition causes

Considers metrics pertaining to potential ignition sources for
the onset of a wildfire, e.g., smoking

Environment Indices

Indices that compute a potential risk related to wildfires, e.g., an

air quality index

Subcomponent

The second level of divisions within each major component [18]

Indicator variables

Measurable units of data for each sub-component

A vulnerability assessment tool to address issues of sensitivity,
exposure and adaptive capacity to climate change (wildfire) in
fire-prone communities [18]

Livelihood vulnerability index (LVI)
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Table A2. LVI framework outlining the indicator variables, sub-components, and major components that feed into each contributing factor (exposure, adaptive capacity, and sensitivity). A

rationale for each indicator is provided along with a description as to how the indicator is interpreted into the LVI framework. Asterisk (*) denotes indicator variables for which the inverse

values were applied in the LVI equation. In addition, the data source and the year of analysis is presented.

EXPOSURE
Major Sub- Indicator Va}- iables Rationale and Interpretation Date, Source and Year
Components Components and Units
Wildfire Wildfires cause damages to the environment and catastrophic socio-economic losses [54] Insurance Information
Number of wildfires The greater the number of wildfires in a state, the greater the exposures of wildfires are to Institute [a]
occurrence s
people within that state (2019)
Wildfires Burnt soil disturbs hydrologic and soil conditions leading to increased likelihood of . Natlona'l Report of
Total acres burnt due to - - Wildland Fires and Acres
. [ flooding, runoff, and debris flow [33]
Loss of wildland wildfires in 2019 Burned by State
(acres) The greater the number of acres burnt, the greater the exposure humans have to (2019)
“knock-on” natural hazards, such as flash flooding and landslides within a state [b]
Mean height above sea level Elevation effects fire behavior by influencing the amount of precipitation received, wind USGS
Toposraph levati (meters) exposure, and the amount and type of fuel present (National Wildfire Coordinating [63,64] (1980)
pography Elevation Highest elevation Higher elevation may lead to additional complexities in wildfire behavior predictions and Ic]
(meters) uncertainties making people within a state more at risk to wildfires
Winds affect fire behavior by supplying oxygen for combustion, reducing fuel moisture,
Wind speed Annual average wind speed and increasing evaporation, increasing fire spread and ember/firebrand transport [65]
(miles per hour) Higher wind speeds provide increased potential for a fire to develop and spread, making
the state more exposed to hazardous wildfire conditions
NOAA
A low value of relative humidity provides an ideal atmospheric condition for wildfires to | Comparative Climatic
* Annual average Relative ignite and burn rigorously due to the limited amount of moisture in the atmosphere, Data
Weather Relative humidity allowing fuels to undergo increased evapotranspiration [65] (1950-2018)
Humidity (%) The inverse value of relative humidity is considered (i.e., instead of “higher values”, states [d]
* inverse taken that experience “lower” annual averages of relative humidity, have a greater likelihood of
being more prone to the development of intense wildfires
* Average annual
precipitation amount o . P
Precipitation (inches) Precipitation will dampen the surfaces of fuels, suppressing fire ignition [65]
* inverse taken
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(acres)

EXPOSURE
Conl\l/i)a;r(:::nts Comsplj)]:ents Indlc;’Ing};a irtlsables Rationale and Interpretation Date, Source and Year
* Average number of
days in a year with
Oyl inch i,)r more The inverse values of the precipitation indicators are considered, (i.e., instead of “higher
.precipi tation values”, states that experience “lower” annual precipitation and number of precipitation days,
(days) will have a greater likelihood of being more prone to the development of intense wildfires
* inverse taken
Annual average Air temperature directly influences the ignition and continued combustion of wildfires [65]
Temperature temperature States with greater exposure to warmer air temperatures are more susceptible increased
(°F) wildfire development and risk
Percent of wildfires S . . . .
occurring between 1980 Wildfires cause damages to the environment and catastrophic socio-economic losses [35]
Extreme wildfires ’?o 2010 The higher the % of wildfires in a state, the greater the exposures of wildfires are to people World Media G
Weather (%) within that state or IfLCIZa roup,
Extreme
Events zsz(;?trsltb(;ftxi/f;EI?SS}(lleg Extreme heat events directly influence the ignition and continued combustion of wildfires [65] (1980-2010)
Extreme heat 2010 The higher the % extreme heat events in a state, the greater fire weather conditions are for the [e]
(%) development of wildfires, and the greater the exposure to people and the state
ADAPTIVE CAPACITY
Corx)atlr(:zms ComS;)l(I)]:ents Indlc:rtgrl};a irtlsables Rationale and Interpretation Date, Source and Year
Forests provide an abundance of fuel, which is required for wildfires to start and spread [66]
* Acres of forests While states with large forested acreage can be an asset, it also provides larger amounts of fuel USDA
Forest (acres) to burn, spawning the development of large wildfires, therefore, the inverse value of “acres of (2016)
* inverse taken forests” are considered and can be interpreted as, states with “less” acres of forest, may have a [f]
Natural higher capacity to manage and mitigate wildfires risk
Capital Water area U.S. Census Bureau,
Lakes/water (squared miles) Drafting water from lakes and rivers provide water supply sources for fire suppression and 2010
bodies q fire protection systems [67] [g]
Area of lakes States with larger water areas have more available natural resource to help in fire suppression, The Lake Almanor
thus having a higher capacity to adapt and mitigate wildfire risk 2020

(h]
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ADAPTIVE CAPACITY
Corx)a;g::n ts Comsplj)]:en ts Indlc;’Ing};a irtlsables Rationale and Interpretation Date, Source and Year
Roads can act as fuel breaks to help reduce the propagation of fire spread; facilitate firefighter
Miles of public road accessibility; provide evacuation accessibility for residents [68]
(miles) The greater the miles of public roads per state, the better equipped, and the higher the .
capacity states have to mitigate and adapt to wildfire risk Bureau of Tr.an.sportatlon
Transportation Statistics
Number of maior Airports can provide additional fleet of aerial firefighting aircrafts, or accessibility for (2020)
Physical airports ) evacuations for residents [69] [i]
Cay ital (airports) The greater the number of airports per state, the better equipped, and the higher the capacity
P states have in handling wildfire emergencies
Households with a
computer Technology equipped homes with access to computers and internet can provide advantages
L (households) 8Y equipp L. ) put np e U.S. Census Bureau
Communication H holds with such as warning communications during natural disasters (such as wildfires) [70]
ouseho cs wit hat have higher number of i ion per household, will thereb (2014-2018)
broadband internet States that have higher number of computers/internet connection per household, will thereby [l
be more informed and prepared for wildfire emergencies and evacuation protocols )
connection prep & p
(households)
The number of people per household can be helpful following the idea of the “good Samaritan
Residential Persons per households law [71] . . U:S. Census Bureau
density (persons) An assumption can be made that more people per household can be considered an asset to (2019)
help aid and support household members and neighbors during wildfire evacuation or (]
emergencies
Human While states with large number of people working in forest related occupations can be
Capital * Timber /wood labor considered an asset in human capital, these workers’ livelihoods can be heavily impacted by U.S. Bureau of Labor
Occupation (workers) wildfires, leading to loss of work, equipment, operations, and income [72] Statistics
P * inverse taken The inverse value of “timber laborers” are considered and can be interpreted as, states with (2019)
“less” occupations in the timber industry may have higher capacity to cope with wildfire risks (k]
because less of the states working population’s livelihood is directly impacted by wildfires




Fire 2021, 4, 54

21 of 29

Table A2. Cont.

ADAPTIVE CAPACITY
Con%a;zle.nts Comspl:)l:;ents Ind1cator8: ;,::bles and Rationale and Interpretation Date, Source and Year
Firefighter employment will grow 6% from 2019-2029 [73] due to the increase demand of U.S. Bureau of Labor
Number of Firefighters workers during the fire seas:on. . Statistics
(firefighters) The greater the number of f1ref1ghters{ th(.e more resources of first responders the state has (2019)
to safely and effectively respond to wildfire emergencies and to conduct forest [k]
management treatments, such as prescribed burns, increasing the states’” adaptive capacity
Social
Network Safety Number of First responders The employment rate of first respon.ders, such as EMTs, .is expected to grow faster than the U.S. Bureau of Labor
(Emergency Medical average gronth rate for all occupations [74] due'to t'he increase demand of workers Statistics
Technicians) required during emergency response, such as wildfires (2019)
(EMTs) The greater the number of first responders, the more personnel the state has to respond to K]
wildfire emergencies safely and effectively
Low-income households tend to have more fires than neighborhoods with middle to high
. . income ([75], as they may lack the financial resources to install smoke detectors and US. Census Bureau
Income Median household income harden their homes (2018)
(dollars) States with higher income may have more financial resources and financial capital to il
invest in home and community hardening, thereby having a higher mitigation and
Financial adaptation capacities
Capital Grants support projects that enhance the safety of the public and firefighters from fireand | ~ o . o 4
Number of fire management related hazards, with the primary goal to reduce injury and prevent death among géervice Report
Grant assistance ts in 2017 high-risk populations [76]
grants in ) . . . . . P (2017)
States with larger number of grants, will have increased financial assistance for firefighting 1]
and public safety efforts
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SENSITIVITY
Major Sub- Indicator Va}r iables and Rationale and Interpretation Data Source
Components Components Units
WUI area (km?) Wildland Urban Interface (WUI) are high-risk wildfire regions because of their
accumulation of wildland vegetation, concentration of flammable human structures, and
Number of houses within potential ignition sources from sparks left by human activities [34,35] USDA
WUI WUI zones States with larger WUI area and greater number of homes within the WUI will be at (2010)
increased risk and sensitivity to wildfires [m]
Demographic Population at risk in WUI
Zones Higher populations are more at risk of being in harm’s way of wildfires [77]
States with higher populations will require more assistance and resources to aid in U.S. Census Bureau
Population evacuation and emergency response, making them more sensitive to wildfire hazards (2[01]9)
. n
Population . . . . . o U.S. Census Bureau
Number of housing unit Higher housing units can have a larger community-wide exposure to wildfires [77] (2019)
States with higher housing units can, thereby, be more impacted by wildfire hazards o]
Recreation activities in the wildland appear to be increasing since the 1980s [78] and
Outdoor Number of campsites campfires carry a high-risk factor of starting fire and hence might be banned at several Camping USA
Activities (Number) campsites during fire season (Riders Trail, 2021) (2019)
States that encourage outdoor activities involving fires may be more sensitive during [p]
wildfires due to increased exposures
Ignition
Causes Smoking materials, including cigarettes, are deposited into wildland areas before they
have been fully extinguished, occasionally igniting dry brush, grass or other natural America’s Health
Smoking Number of smokers vegetation, producing wildland fires [78] Rankings (2019)
(Millions of people) Greater number of smokers may make a state more sensitive because these human [q]
activities are compounded effects that can result in wildland fires that damage property
and cause injuries
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Table A2. Cont.

SENSITIVITY
Conlriaagglern ts Comspl;l:en ts Indlcatorl\]:? ;::bles and Rationale and Interpretation Data Source
* Annual PDI e  The operational Palmer Drought Index (PDI) measures the duration and intensity of the NOAA NCEI
Index (PDI) for 2019 long-term drought [79], with lower values signifying drier conditions (2019)
* inverse taken e  States with lower PDI can be more sensitive to wildfires as increased droughts levels can 1]
compound fire behavior risks, therefore the inverse interpretation is applied
Environmental -
Index e Air quality index (AQI) is used to characterize the quality of the air at a given location [80] World Media Group,
A . . - LLC
Index (AOI A 1 AOI e  States with higher AQI will have a larger percentage of the population that is likely to
ndex (AQD) nnual AQ experience increasingly severe adverse health effects that can be compounded by wildfire (1999-2009)
smoke, thereby increasing the sensitivity of the population [e]

Data Sources for Table A2: [a] Insurance Information Institute: https://www.iii.org/fact-statistic/facts-statistics-wildfires#Wildfires%20By%20State, %202019 (accessed on 20 August 2021); [b] National
Report of Wildland Fires and Acres Burned by State: https:/ /www.predictiveservices.nifc.gov/intelligence /2019_statssumm/fires_acres19.pdf (accessed on 20 August 2021); [c] USGS Science for a changing
world: https://pubs.usgs.gov/gip/Elevations-Distances/elvadist.html (accessed on 20 August 2021); [d] NOAA NCEI: https://www.ncdc.noaa.gov/ghen/comparative-climatic-data (accessed on 20
August 2021); [e] World Media Group LLC: http://www.usa.com/ (accessed on 20 August 2021); [f] USDA 2016: https://www.fs.usda.gov/sites/default/files/fs_media/fs_document/publication-
15817-usda-forest-service-fia-annual-report-508.pdf (accessed on 20 August 2021); [g] NFPA: https:/ /www.nfpa.org/News-and-Research /Publications-and-media/Blogs-Landing-Page /NFPA-Today /
Blog-Posts/2021/06/07 / Types-of-Water-Supplies (accessed on 20 August 2021); [h] The Lake Almanor: https://www.uslakes.info/ (accessed on 20 August 2021); [i] Bureau of transportation: https:
/ /www.bts.gov /browse-statistical-products-and-data/state-transportation-statistics /state-transportation-numbers (accessed on 20 August 2021); [j] US Census Bureau: https://www.census.gov/quickfacts/
fact/map/CA,US/HSG445218 (accessed August 2020); [k] US Bureau of labor statistics: https://data.bls.gov/oes/#/geoOcc/Multiple%20occupations%20for%20one%20geographical %20; https:/ /www.
bls.gov/ooh/protective-service/firefighters htm#:~:text=Employment%200f%20firefighters%20is %20projected, have%20the%20best%20job%20prospects (accessed on 20 August 2021); [1] Congressional
Research Service Report 2017: https://fas.org/sgp/crs/misc/R44966.pdf (accessed on); [m] USDA 2010: https://www.fs.fed.us/nrs/pubs/rmap/rmap_nrs8.pdf (accessed on 20 August 2021).; [n] US
Census Bureau: https:/ /www.census.gov/quickfacts/fact/map/CA,US/HSG445219 (accessed on 20 August 2021); [o] US Census Bureau: https://www.census.gov/quickfacts/fact/table/US/PST045219#
(accessed on 20 August 2021); [p] Camping USA: https://camping-usa.com/campgrounds/ (accessed on 20 August 2021); [q] America’s Health Ranking: https://www.americashealthrankings.org/
explore/annual /measure/Smoking/state/CA (accessed on 20 August 2021); [r] NOAA_NCETI: https:/ /www.ncdc.noaa.gov/temp-and-precip /drought/nadm/indices/palmer/div#select-forms%20=%20http:
/ /www.usa.com/rank/us--air-quality-index--state-rank.htm?hl=CAé&hlst=CA (accessed on 20 August 2021); [s] World Media Group, LLC: http:/ /www.usa.com/california-state-air-quality.htm (accessed on 20
August 2021).
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Table A3. Total area (acres) burnt for each state during the 2018 and 2019 year, obtained from the
Wildfire Risk Report [12].

State Total Area Burnt in 2018 and 2019 (acres)

California 1,823,153

Nevada 1,001,966
Oregon 897,262
Oklahoma 745,097
Idaho 604,481
Texas 569,811
Colorado 475,803
Utah 438,983
Washington 438,833
New Mexico 382,344
Wyoming 279,242

Table A4. The Kaiser- Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s Test of Sphericity results for each contributing
factor of exposure, adaptive capacity, and sensitivity.

Kaiser-Meyer-Olkin

Contributing Factor Major Components Measure of Sampling Bartlett’s Test of Sphericity
Adequacy
Wildfires 0.5 0.11
Topography 0.5 0.351
Exposure Weather 0.488 0
Weather extreme events 0.5 0.264
Natural capital 0.612 0.101
Physical capital 0.613 0
Adaptive Capacity Human capital 0.5 0.37
Social network 0.5 0
Financial capital 0.5 0.434
Demographic 0.788 0
Sensitivity Ignition causes 0.5 0.004
Environmental index 0.5 0.04

Table A5. A matrix loading table, showing each indicator variable for the exposure contributing factor and its respective loading into
each major component (wildfires, topography, weather, and weather extreme events).

Exposure Component Matrix

Indicators Wildfires Topography Weather Weather Extreme

Events
Number of wildfires 0.85
Number of acres burnt 0.85
Mean height above sea level 0.797
Highest elevation 0.797
Annual average wind speed 0.166
Annual average humidity 0.968
Annual average precipitation 0.974
Annual number qf (?lay.s with 0.1 inch or more 0.748
precipitation a year
Annual average temperature 0.39
Number of extreme wildfires 0.813

Number of extreme heat occurrences 0.813
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Table A6. A matrix loading table, showing each indicator variable for the adaptive capacity contributing factor and its
respective loading into each major component (social network, natural, physical, human, and financial capital).

Adaptive Capacity Component Matrix

Natural Physical Human Social Financial
Capital Capital Capital Network Capital

Acres of forest —0.654
Water area 0.831
Area of lakes 0.847
Miles of public road 0.874

Indicators

Number of major airports 0.964

Number of households with a

0.981
computer

Number of households with

broadband internet connection 0.977

Number of people per household 0.794
Number of timber/wood laborers —0.794
Number of firefighters 0.998
Number of first responders (EMTs) 0.998
Median household income 0.783

Number of fire management

. 0.783
assistance grants

Table A7. A matrix loading table, showing each indicator variable for the sensitivity contributing factor and its respective

loading into each major component (demographic, ignition causes, and environmental index).

Sensitivity Component Matrix

Indicators Demographic Ignition Causes Environmental Index

WUI area 0.985
Number of houses within WUI zone 0.993
Population at risk in WUI zones 0.994
Population density 0.906
Housing units 0.991

Number of camping sites 0.926

Number of smokers 0.926

Annual PDI —0.882

Annual AQI 0.882
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Table A8. This table shows the original LVI value outputs for each state generated from our framework, compared to the LVI scenarios calculated when one indicator variable is omitted
from the calculation under a specific major component. The symbols under some LVI represent the lowest three (—, —, -) and highest three (***, **, *) LVI value among the states.

Indicator LVI for LVI for LVI for
Variable LVI for LVI 'for Califor- Washing- LVI for Olda- LVI ff)r LVI for LVI for LVI for LVI for LVI for Idaho LVI for.New LVI for Arizona
Texas Florida . Montana Wyoming Utah Oregon Nevada Colorado Mexico
Removed nia ton homa
Original 03344 03511 04469 0.5045 0.5055 0.5056 05107 0.5155 0.5267 0.5360 0.5372 0.5443 0.5512 0.5717
In Exposure without:
N&‘ﬁtﬁ;’f 0:3072 0-3508 04156 0.5093 0.5060 0.5085 0.5139 0.5205 0.5277 0.5420 0.5462 0.5497 0.5589 0.5803
Mear; ;elght 0%43 0'3_624 0'4_822 0.5093 0.5060 0.5084 0.5091 0.5036 0.5276 0.5374 0.5335 0.5447 0.5519 0.5798
Annual
average 0-3031 0-3406 04997 0.5046 0.5003 0.4926 0.5060 05112 0.5267 0.5375 0.5326 0.5437 0.5439 0.5776
wind speed
% of
extreme 0:3547 0-3558 04156 0.4838 0.5053 0.5043 0.5139 0.5215 0.5295 0.5304 0.5473 0.5502 0.5584 0.5795
heat events
In Sensitivity without:
WUI area 0:3450 0-3506 04446 0.5045 0.5056 0.5053 05121 05172 0.5275 0.5405 0.5393 0.5483 0.5542 0.5760
Number of 0.3260 0.3442 0.4481 0.5043 0.5044 0.5061 05111 0.5155 0.5219 0.5405 0.5367 0.5421 0.5538 0.5730
campsites — - -
A‘Ef&‘:i‘ty 03269 0:3429 04458 0.5051 0.5033 0.5040 0.5032 0.5068 0.5277 0.5219 0.5293 0.5294 0.5412 0.5592
In Adaptive Capacity without:
Ai;’i ;’f 0%25 0'3:532 0'4_108 0.4984 0.5064 0.5062 0.5090 0.5135 0.5243 0.5360 0.5329 0.5429 0.5487 0.5726
Miles of 0.3525 0.3442 0.4343 0.5023 0.5057 0.5068 0.5090 0.5125 0.5270 0.5345 0.5366 0.5439 0.5509 0.5693
public road — - -
Persons per - 0.3324 0.3453 0.4524 0.5032 0.5047 0.5061 0.5097 0.5267 0.5267 0.5377 0.5371 0.5480 0.5536 0.5758
household — - - * ** i
Number of 0.3390 0.3553 0.4685 0.5034 0.5047 0.5037 0.5090 0.5122 0.5255 0.5343 0.5352 0.5432 0.5491 0.5702
firefighters — - - * ** ot
Median 0.3238 0.3427 0.4685 0.5525 0.5483 0.5763
household 32 34 A 0.5213 0.5067 0.5049 0.5132 0.5246 0.5342 0.5379 0.5468 54
income

— = Lowest LVI, — = Second lowest LVI, - = Third lowest LVI, *** = Highest LVI, ** = Second highest LVI, * = Third highest LVI.
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