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Abstract: New physics-based fire behavior models are poised to revolutionize wildland fire planning
and training; however, model testing against field conditions remains limited. We tested the ability
of QUIC-Fire, a fast-running and computationally inexpensive physics-based fire behavior model to
numerically reconstruct a large wildfire that burned in a fire-excluded area within the New York–
Philadelphia metropolitan area in 2019. We then used QUIC-Fire as a tool to explore how alternate
hypothetical management scenarios, such as prescribed burning, could have affected fire behavior.
The results of our reconstruction provide a strong demonstration of how QUIC-Fire can be used
to simulate actual wildfire scenarios with the integration of local weather and fuel information, as
well as to efficiently explore how fire management can influence fire behavior in specific burn units.
Our results illustrate how both reductions of fuel load and specific modification of fuel structure
associated with frequent prescribed fire are critical to reducing fire intensity and size. We discuss how
simulations such as this can be important in planning and training tools for wildland firefighters, and
for avenues of future research and fuel monitoring that can accelerate the incorporation of models
like QUIC-Fire into fire management strategies.

Keywords: prescribed fire; wildfire; QUIC-Fire; coupled fire-atmospheric models; fuels

1. Introduction

Over the years, wildland fire models have varied substantially in complexity and
performance from simple 1D empirical models that can quickly estimate forward fire
rates of spread to computationally intensive simulators that can simulate complex fire
behavior and associated processes [1,2]. As wildland fire behavior is inherently a complex
result of fuel, weather conditions, and physical processes that vary with the scale and
spatial distribution of combusting material, there are strengths and weaknesses across this
continuum of tools that often trade off the incorporation of relevant factors and scale of
outputs for simplicity in computational requirements. In short, there is a time and place
for a range of approaches, but where the refinement of computationally complex models
and the equipment to run them have grown, there exists untapped potential for their use
and testing as comprehensive tools to accomplish planning, training, and research. In
accounting for spatial and temporal heterogeneity in conditions that drive fire behavior,
these new complex modeling approaches can be used to comprehensively explore diverse
management scenarios and elucidate options to achieve desired outcomes.
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The class of three-dimensional, physics-based fire behavior simulation models in-
tegrate fine-scale (meters), spatially explicit fuel conditions and ignition patterns with
weather and topography to simulate wildland fire behavior processes for planning or
operational purposes [3]. Simulated fire behavior and effect outputs of these simulators are
resolved in three-dimensional space and have been developed and expanded extensively
compared to former models [4–7]. These coupled-fire atmospheric fire behavior models dif-
fer from previous approaches, in that they govern predictions based on physical processes
of fire behavior rather than empirical correlations and are designed specifically to operate
at high temporal resolutions in three-dimensional space. This difference is critical because
it allows for the simulation of marginal burning conditions and spread types of fire (e.g.,
backing, flanking, and irregular or interacting fire lines), which are typical of prescribed
burning and non-catastrophic wildfires, but are also sensitive to the three-dimensional
heterogeneity of fuels [8]. Such tools offer a means to better understand potential fire
behavior conditions and effects, so as to ultimately be able to “game the system” through
rigorous sensitivity testing of conditions that drive fire behavior to estimate how con-
trasting management or weather scenarios may play out in specific management units or
landscapes. Ultimately, this generation of spatially and temporally explicit fire behavior
models will enable advances in planning, student learning, and fire behavior research.

While computational fluid dynamics models, including FIRETEC [9] and WFDS [6],
have provided the most robust research on fire-scale fire behavior, they remain com-
putationally expensive and have not found operational applications. New generation,
3D physics-based fire behavior simulators that simplify solutions but retain the physics-
based coupling of the fire to the atmosphere have emerged in recent years (e.g., WFDS
Level set [10], WRF-SFIRE [7], and QUIC-Fire [4]). Each of these models is a coupled
atmosphere/fire behavior model, which account for spatially explicit flow patterns and
convection with regard to fine-scale heterogeneity of fuel structure, condition, and topogra-
phy. To this extent, these models can represent and predict the impacts of gradients in fuel
conditions or shifting forest community types, fuel breaks of irregular sizes and shapes,
shifting winds, fire-induced meteorology, and irregular or interacting fire lines [8].

Of the available physics-based fire behavior models, QUIC-Fire was designed for
use in prescribed fire management and fuel treatment scenarios [4]. QUIC-Fire is a cou-
pled fire–atmosphere model that links a diagnostic wind solver (QUIC-URB), with a
cellular automata fire model (FIRE-CA) [4]. Meant as an operational alternative to HI-
GRAD/FIRETEC, QUIC-Fire is a fast-running model capable of near real-time prediction
with very low system requirements and multiple modules for performing necessary tasks.
QUIC-URB is a diagnostic model for computing mean flow fields that uses empirical
algorithms and mass conservation to quickly compute 3D flow fields [11,12]. Initially
developed for flow around building complexes, QUIC-URB has been extended to include
the influence of forest canopies and fire plumes. FIRE-CA is the fire propagation module of
QUIC-Fire, based on a previously successful cellular automata approach to coupling fire
behavior to the atmosphere [13,14]. QUIC-Fire has been compared with both experimental
results and a high-fidelity model for a variable length fire line, and for complex ignitions
within a canopied domain [4]. QUIC-Fire and similar models represent a promising future
for operational fire behavior use, with a faster-than-real-time runtime and the capability
of running 3D vegetation and wind models in spatially explicit domains. This allows
for ensemble runs to explore fire behavior predictions involving complex ignitions and
heterogeneous fuels.

Testing and exploration of QUIC-Fire and other physics-based fire behavior models
under complex prescribed fire and wildfire scenarios remains limited to numerical sim-
ulations, barring a limited number of field experiments [4,7,15,16]. This is largely due
to the complexity in orchestrating fire experiments on prescribed fires [17,18], let alone
wildfires [8]. Inherently, tracking fire spread progression at sufficient spatial resolutions
is challenging and requires substantial planning and coordination, as does gathering suf-
ficient information about fuels and weather conditions during burns. While many fuel



Fire 2021, 4, 72 3 of 17

conditions can be assessed ahead of prescribed burns (sometimes even years in advance in
vegetation types that change slowly or predictably), there are a limited number of environ-
ments where sufficient research is available to facilitate this [19]. Still, comparisons between
spatially explicit model predictions and field-observed fire progressions are needed to
validate these models and for their continued refinement [20,21].

In response to this need for further field testing of QUIC-Fire and exploration of its
potential to simulate management scenarios, we tested the ability of QUIC-Fire’s ability
to simulate a well-documented wildfire and explore how prior forest management or
repeated previous fires, which can modify fuel structure and composition, may have
impacted the outcome of this fire. The first objective was to reconstruct the 2019 Spring
Hill Wildfire and benchmark the model predictions using field observations of fire spread
rates and other metrics. Then, we used the model to evaluate how the fire may have
behaved differently if repeated wildfires or prescribed burning had shaped fuel conditions
rather than fire exclusion. We accomplished this by modifying the three-dimensional fuel
inputs to represent a series of prescribed fire and wildfire scenarios within the footprint
of the Spring Hill Wildfire. We also examined the influence of spatial positioning of fuel
treatments on the landscape. Finally, we examined the influence of wind on the progression
of the fire.

2. Materials and Methods
2.1. Site and Fire Description

The New Jersey Pinelands National Reserve (PNR) is a 440,000-ha forested area
centered at approximately 39◦40′ N latitude, 74◦40′ W longitude, only a few kilometers
east of the metropolitan continuum that connects the greater Philadelphia and New York
areas. The PNR is a United Nations Educational, Scientific and Cultural Organization
(UNESCO) world heritage site and international biosphere reserve, celebrated for its
ecological importance and rarity as well as its cultural significance. For millennia the
PNR has been a fire-prone landscape and continues as such [22–25]. This is primarily due
to a combination of droughty soils, fire-adapted species which compete and regenerate
remarkably well amidst frequent fires, and weather conditions which can quickly become
conducive to burning.

This study focused on the Spring Hill Plains and West Plains areas of the PNR [26],
where the Spring Hill Fire burned through roughly 4000 ha during a single operation period
(e.g., 1300 on 29 March 2019–0300 on 30 March 2019). These areas reflect approximately
half of the globally rare Pine Plains ecosystems in the PNR and are comprised of a unique
genetic provenance of pitch pine (Pinus rigida Mill.) that exhibits short stature and strong
expression of fire adaptations [27,28]. The compact form of this forest (often not exceeding
3 m in height), extremely droughty soils, and slight elevation of this area historically
supported a fire return interval of 4–8 years [26,29,30]. Pitch pine is the dominant canopy
species in the area of the fire, with a mid-story of blackjack oak (Quercus marilandica
Muenchh.) and younger pitch pines, and an understory comprised primarily of ericaceous
shrubs (Vaccinium and Gaylussacia species), scrub oaks (Q. ilicifolia Wangenh.), and laurels
(Kalmia latifolia Kalm. and K. angustifolia L.) [25]. Contrary to the historic wildfire frequency,
much of this portion of the PNR’s Pine Plains remained fire-excluded through recent
history, following a series of catastrophic wildfires that impacted the area in 1963 [24].

The Spring Hill Fire began on the edge of a former gravel pit as a result of an aban-
doned campfire near the southern portion of the Spring Hill Plains, within Penn State
Forest in Burlington County, New Jersey. The fire was pushed by moderate south winds
and spread extremely rapidly, quickly eliminating the potential for a direct attack on the
fire in the long-unburned fuels. An indirect plan was initiated but required significant
time to close roads and clear the public who had been recreating in the forest, allowing
a classic, unimpeded, wind-driven progression to approximately 35 ha within the first
hour of burning. The fuel domain around the area of the fire was set to the dimensions
2 km × 4 km × 16 m, while the wind domain was set to 2 km × 4 km × 80 m (Figure 1).
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Figure 1. Spring Hill Fire location in the PNR (left). Spring fire perimeter at 53 min following ignition
(estimated from time of detection), final fire perimeter, QUIC-Fire simulation domain (right).

In terms of wildfire reconstructions, the Spring Hill Fire represents a unique oppor-
tunity to test QUIC-Fire and explore hypothetical scenarios to understand how alternate
proactive prior management scenarios could have impacted fire outcomes. Weather data
from multiple weather stations both downwind and upwind of the fire at regular in-
tervals were readily available. Extensive analyses of fuel loading and structure for the
areas representative of the fire and contrasting prior management scenarios were also
available [15,24,31,32]. Spatial data and fire behavior observations from the fire incident
commander and suppression crews were also available to help guide the modeling effort.

2.2. Spring Hill Fire Reconstruction
2.2.1. Fuels Parameterization

For modeling purposes, the three-dimensional arrangement of the fuels was repre-
sented using a numerical domain consisting of a 1000 × 2000 × 16 array of 2 × 2 × 1 m
voxels. The domain’s fuels were represented as three primary components—litter fuels,
shrub fuels, and tree fuels—based on data from previously published studies in this en-
vironment. Each voxel was given two attributes, bulk density of available fuel and fuel
moisture content (FMC), to represent heterogeneity in fuel characteristics.

A numerical representation for surface fuel voxels was built based on field data col-
lected from two heavily studied burn units in the East Plains area of the PNR [15,20,21].
These sites were similar in species composition and structure, fire history, and were ge-
ographically appropriate, being that they were <10 km from the Spring Hill Fire. Fuel
composition, particle type, fuel layer depths, and fuel loading for these sites were acquired
from the published dataset of these experiments, New Jersey Fuel Treatment effects: Pre- and
Post-burn biometric data [32], and were used to inform a normal distribution of mass and
bulk density for available litter and shrub fuels. Thus, surface fuel was distributed across
the domain’s 1 m tall surface cells, with an average bulk density of 1.286 ± 0.386 kg/m3

for litter (mean ± 1 standard deviation) and 0.428 ± 0.213 kg/m3 for shrubs. From analysis
of the pre- and post-burn measurements, it was determined that not all shrub fuel would
have been available for combustion and consumption (e.g., thicker live stems). To account
for available fuel, an array of normally distributed available fuel values with an average
of 69.5 ± 21.8 % was produced. The product of the shrub fuel times the percentage of
available fuel was used to create the final shrub fuel estimates that were added to the
surface voxels.

Stand and canopy characteristics of the simulation domain were simulated using the
formulation presented in [16] and informed by stand data from the two burn sites refer-
enced earlier [23]. Midstory and canopy fuels for the predominant dwarf pine areas were
represented by randomly distributing 2750 stems/ha (1788 as pine as 962 oak) throughout
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the simulation domain. Where tall trees were present (Figure 2), 386 additional stems/ha
of tall pitch pine trees were added. Canopy attributes for each tree type were based on the
average characteristics of trees found on the domain (Table 1). Following the methodology
described in [16], using height, height-to-live crown (HTLC), crown radius, and the CL
factor (percentage of the canopy that is concave down), each tree was converted into a
three-dimensional axisymmetric shape bound to the top and bottom by one concave down
and one concave up paraboloids, to represent an idealized tree. Fine fuels were distributed
within each tree shape, with fuel declining toward the center of the trunk and toward the
bottom of the canopy. Fuel from the trees was subsequently split between voxels based
on how it overlapped with the three-dimensional voxel array. Dwarf and tall pine canopy
fuels were distributed across the domain based on canopy height model data (CHM) of
the burned area that was derived from airborne laser scanner data (ALS) described in [33],
following the methods of [34]. Areas of the domain where ALS data indicated that canopy
height exceeded 10 m were modeled as having tall trees, while the remainder of the domain
reflected short-statured dwarf pitch pine forest conditions (Figure 2).
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Figure 2. Canopy height and distribution of tall trees across the Spring Hill Fire domain.

Table 1. Attributes for dwarf pitch pine, typical pitch pine, and oak used in the Spring Hill
Fire reconstruction.

Tree Type Height (m) HTLC (m) Crown Radius (m) CL Factor

Pitch Pine (dwarf) 5.50 3.50 2.00 0.80
Pitch Pine (typical) 11.00 7.00 2.50 0.80

Oak 3.50 1.15 1.00 0.99

The fuel moisture content (FMC) of surface fuels was estimated from data collected
during prescribed fire experiments and sampling at the same time of year and under
similar weather and fuel conditions [20,21,35]. FMC values collected during previous
nearby fire experiments in very similar fuels have typically had fuel moisture contents of
approximately 25–31%. Since the Spring Hill Fire began in the afternoon, morning dew
would have evaporated and additional drying would have occurred, so the simulations
used an FMC of 10% for litter fuels [36]. Shrub FMC was set to 60.2 ± 039%. For the
final surface fuel voxel values, the estimated litter and shrub bulk density values were
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summed, and the FMC was calculated with a weighted average. FMC of canopy fuels was
set to 100%.

Sand roads were delineated as 5 m-wide fuel breaks in the simulation domain based
on data from the New Jersey Department of Environmental Protection Bureau of GIS
(https://www.nj.gov/dep/gis/, accessed on 8 January 2021) and the authors’ knowledge
of the area (Figure 3).
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2.2.2. Weather

Meteorological data collected at 4 weather stations located within ≤ 8 km of the
Spring Hill Fire were evaluated for use in the fire reconstruction. Towers at Cedar Bridge
(39.839720 N, −74.380447 W) and Oswego Lake (39.715417 N, −74.514210 W) collected
5 min average wind speed and direction data, while a station at Coyle Field (39.816775 N,
−74.425620 W) collected half hourly data. A research weather tower also at the Cedar
Bridge site independently collected wind data with a 1 min resolution. Important differ-
ences in the observations at each of these stations and lack of congruity with fire manager
observations during the burn challenged the use of these data and required further data
exploration (Figure 4a,b). Thirty-minute data from the Coyle weather station was unusable
due to having a temporal resolution too low to relate to the fire. Data from both towers
at Cedar Bridge were unusable due to initial windspeeds that were far slower than those
reported during the beginning of the burn, and containing large wind shifts that contra-
dicted reported fire behavior. Oswego Lake was selected for simulation purposes due to
most closely aligning with weather reported by fire managers, but also had two issues that
needed to be reconciled: First, directional data was recorded only as a cardinal direction,
and this low-resolution directionality resulted in exaggerated wind shifts. We addressed
this by data smoothing, using the average of the preceding and succeeding directions at
each 5 min time step, and additionally made a 12◦ correction with the assumption that the
windvane at this station was aligned to magnetic north, rather than true north, since the
raw smoothed data appeared to be about 12◦ off—which equaled the offset between true
and magnetic north for this region (Figure 4c). Wind speed of the revised Owego Lake

https://www.nj.gov/dep/gis/
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averaged 5.04 m/s and peaked at 10.73 m/s (Figure 4b). Winds were generally from the
south, with a slight westerly component for the first 20 min of the fire, followed by a slight
easterly shift for the next 20 min of the fire, and then consistently south for the remaining
20 min of the simulation period (Figure 4c).
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Figure 4. (a) Comparison of wind direction data collected at Oswego Lake and Cedar Bridge during
the initial four hours of the Spring Hill Fire, (b) comparison of wind speed data collected at Oswego
Lake and Cedar Bridge during the initial four hours of the Spring Hill Fire, and (c) transformations of
Oswego Lake’s wind direction data. Original data was smoothed to reduce the dramatic fluctuations
in direction due to low reporting precision of direction in the raw data.

2.3. Simulation Validation

The Spring Hill Fire reconstruction simulation was evaluated using a “threat score”
approach [37], which is a simple spatial metric that represents the overlap between the
predicted and observed burned area. The threat score is comprised from the following
evaluation of predicted fire extent pixels: true positives (TP), false positives (FP), and false
negatives (FN). For this study, TP represents the burned area in the simulation that was
also burned in the actual fire, FP represents the burned area in the simulation that did not
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burn in the fire, and FN represents the area that did not burn in the simulation but did
burn in the actual Spring Hill Fire. The final threat score is calculated as:

Threat score = TP / (TP + FP + FN), (1)

A simulation with a fire footprint that perfectly overlaps with the observed burnt area
would have a threat score of one, while a threat score that approaches zero would indicate
that the simulation’s burnt area predictions did not overlap with the observed fire footprint.
However, although the location of the fire’s head was certain at 1 h into the burn, flank
locations were less certain. To establish flank locations of the fire, we traced the crown
streets visible in Google Earth images that were continuous with the location of the head
fire. These corresponded to the general shape of the perimeter observed from the ground
and air at that time by fire response personnel. We also estimated the rate of spread from
these paths for both the actual fire and the predicted fire and compared them (Figure 5).
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2.4. Modeling Alternate Scenarios

Beyond the Spring Hill Fire reconstruction simulation, which we will denote hence-
forth as “S0”, nine additional simulations were performed to explore how scenarios of
hypothetical prior management and wildfire scenarios would have impacted fuels, and
thus the outcome of the fire (Figure 6, Table 2). For simulations S1–S7, canopies and
surface fuels were adjusted to parameterize fuel distributions and fuel loadings of forests
as though they had experienced prior fire regimes of either repeated prescribed fire or
wildfire (Figure 6, [24,38,39]). Apart from scenarios S0 and S1, all of the scenarios were
parameterized with a 25% reduction in stand density relative to the original reconstruc-
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tion, to reflect the expected thinning effect experienced by a stand with a recent history
of prescribed fire or wildfire. The canopy structure for scenarios S2–S5 was modified to
represent structures characteristic of prescribed fire management. Scenarios S2 and S3
had the midstory removed to reflect long-term prescribed fire management that creates an
open stand with a tall, uniform canopy over a shrubby understory on this landscape. In
scenarios S4 and S5, the midstory was included, but the trees’ shapes were adjusted so that
canopies were elevated, maintaining a gap between surface fuels and fuels above them.
Scenarios S6 and S7 were parameterized to represent a stand that had experienced repeated
wildfire, which skews canopy fuel distribution toward the lower levels in the PNR due to
prolific epicormic sprouting creating strong connectivity between surface, midstory, and
canopy fuels [24]. Each of these conditions was run with original surface fuel load values
(e.g., S0) or 50% surface fuel loading to evaluate the impact of surface fuel reductions on
fire behavior (e.g., S1, S3, S5, and S7 had 50% of fuel removed from the surface cells, see
Table 2). Finally, scenarios S8 and S9 explore the influence of a dense scrub oak layer, which
can dominate understories in pine–oak forests, on fire behavior. Canopy conditions for S8
and S9 were identical to S2, however shrub characteristics were modified to reflect dense
scrub oak domination in S8 or no shrubs in S9 (Figure 6). Modifications to fuel structure
and loading are listed below in Table 2, while visualizations of fuel structure are provided
in Figure 6.
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Table 2. Surface and canopy fuel parameter specifications for each model scenario.

Scenario

Surface Fuels Vegetation Presence General Structure

Original
Loading

50%
Loading Understory Midstory Spring Hill Fire

Original Fuel Structure

Simulated Structure
of Repeated

Prescribed Fire

Simulated Structure
of Repeated

Wildfire

S0 X X X X
S1 X X X X
S2 X X X
S3 X X X X
S4 X X X X
S5 X X X X
S6 X X X X
S7 X X X X
S8 X X * X
S9 X X

* denotes that the understory fuel structure was designed to reflect dense scrub oak understory fuels.

We simulated each scenario (e.g., S0–S9) three times and observed the average rate
of spread (ROSavg), maximum rate of spread (ROSmax), average rate of growth (ROGavg),
maximum rate of growth (ROGmax), and final fire size. We used t-tests to determine if
differences in outputs were related to differences in model parameterization or to stochas-
ticity in QUIC-Fire’s spread functions. We also used t-tests to explore how fire exclusion
influenced the Spring Hill fire and how alternative wildfire history or fuel management
(repeated prescribed fire, repeated wildfire, fire exclusion) could have significantly altered
outcomes during the fire.

3. Results and Discussion
3.1. Simulation Validation

The simulation results for the first hour of the Spring Hill Fire were closely matched
to field observations of the fire spread at that time with some minor differences. We found
that out of 151,899 pixels impacted by either the predicted or actual fire footprint, 69%
were true positives, 25% were false positives, and 6% were false negatives (Figure 7). As
is evidenced in Figure 5, QUIC-Fire slightly underpredicted the distance the head had
traveled within the first hour of the fire, with the actual fire traveling a path of 1929 m
to just past Baptist Road versus the QUIC-Fire progression traveling 1805 m to the road
just south of Baptist Road (a 6% difference). Similarly, the distance from the origin to
the farthest point of the fire was estimated to be 1889 m and 1774 m, for the visual and
QUIC-Fire estimates of progression, respectively—also amounting to a 6% difference in
distance traveled.

In addition to the reconstructed fire traveling slightly less distance from the origin, it
was slightly wider than the actual fire (Figure 7). This may have been due to a model error
or input error through an oversimplification in our fuel parameterization or dynamics of
the ambient wind field. Additionally, this variation was potentially due to an assumptions
made in the fuel breaks, such as the failure to incorporate a large gravel pit immediately
upwind of the fire with which the heel of the fire would have interacted. This feature
represented a prominent fuel break that limited the backing spread of the actual Spring Hill
Fire to the south; however, the absence of which allowed the simulated fires to progress
slightly farther south than was realistic (Figure 5). Fire lines in close proximity often
influence each other and localize wind conditions [4,40]; we surmise that the additional
duration of the active backing fire in the simulations would have interacted with the
headfire to slow its initial forward spread and potentially augment its lateral spread at the
beginning of the fire. Nonetheless, these differences were relatively minor in the overall
pattern or burned area. We note that the QUIC-Fire outputs illustrated tree crown streets,
or long linear patterns of unburnt trees (See Appendix A)
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estimated burn plot 1 h after initial ignition. The green area represents the true positives, while the
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3.2. Modeling Alternate Scenarios

Results of each alternative fuel scenario simulation were significantly different in
terms of final fire size, with the exception of S1 and S7 not being significantly different from
each other—indicating that differences in simulation outcomes were due to differences
in model parameterization rather than stochasticity in QUIC-Fire’s wind and fire-spread
functions, that inevitably drive heterogeneity between simulations and are necessary to
represent realistic fire behavior. Reducing fuel loading by 50% had the most important
influence on reducing fire size, ROGavg, and ROGmax. The greatest fire size of any scenario
was 56.5 ha and was produced by the full fuel loading–fire exclusion case (i.e., original
Spring Hill Fire scenario, S0), while the scenario of 50% fuel loading–frequent prescribed
burning (scenario S3) produced a fire size of only 25.4 ha, amounting to a 55% reduction in
area (Figure 8). ROGavg ranged from approximately 21–23% under 50% fuel conditions,
and about 25–26% under full fuel conditions. However, ROGmax in 50% fuel conditions
averaged around 100%, while under full fuel conditions it ranged between approximately
140–190% (Figure 8).

Fuel loading was of primary importance and fuel structure of secondary importance
in controlling fire size. Halving surface fuel loading approximately halved fire size, while
the fuel structure resulting from frequent prescribed burning reduced fire size by about
20%, and the fuel structure resulting from frequent wildfires had minimal effects (Figure 9).
ROSavg was reduced primarily by the fuel structure associated with frequent prescribed
fire, and secondarily by fuel loading; however, ROSmas was actually about 10% greater
when frequent prescribed burning occurred and fuels were reduced by 50%, compared
to other scenarios (Figure 9). Conversely, decreased ROGavg and ROGmax were primarily
related to decreased surface fuel loading, with frequent prescribed fire fuel structure only
having a minor reducing influence. Overall, the fuel structure associated with prescribed
burning significantly reduced average rate of spread, whereas halving the surface fuel
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load significantly reduced final fire size and rate of growth characteristics (Table 3). This
highlights the importance of both fuel loading and structure management to reduce fire
spread and improve fire suppression opportunities or safety during prescribed burning.
Likewise, the sensitivity of the simulations to fuel loading and structure additionally
highlights the importance of precise and accurate fuel inputs. Overly general fuel structure,
and loading and moisture values that do not adequately reflect the heterogeneity of an
actual burn unit of interest are unlikely to provide realistic results, or worse, may provide
misguided results.
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Table 3. T-test results of fuel management scenarios.

Test Metric T-Stat p-Value

Repeated Prescribed Fire
vs.

Other Scenarios (e.g., Repeated Wildfire and Fire Exclusion)

Area Burned −1.190 0.247
ROGavg −0.271 0.789
ROGmax 1.143 0.263
ROSavg −7.809 <0.001
ROSmax −1.845 0.088

100% Fuel Loading
vs.

50% Fuel Loading

Area Burned 10.839 <0.001
ROGavg 13.767 <0.001
ROGmax 10.750 <0.001
ROSavg 1.063 0.302
ROSmax −2.101 0.056
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In practice, the modification of fire-excluded fuels often requires more than a one-
time treatment; however, this work is illustrative in understanding how restoration of
fire-excluded pitch pine forests, or those that are similar, with prescribed burning can
gradually reduce fire danger. Over time, frequent prescribed burning gradually reduces
fuel loading [38,41,42] and shifts canopy structure, most notably in that it elevates the live
crown and promotes a gap space between surface fuels and canopy fuels [24]. Previous
work focusing on fuels and forest structure suggest that between 2–5 prescribed fires may
be required to achieve the maximum levels of fuel and structure modification, which
we suggest are reflected by the scenarios S3 and S5 (Figure 8). Resultant fuel structures
must then be maintained through time as fuel loads gradually reaccumulate and forest
structure densifies [24,43]. We highlight that the simulations presented here only reflect the
specific weather, ignition, fuel moisture, and fuel composition conditions of the Spring Hill
Fire, and caution that other combinations of these conditions (such as additional extreme
fire weather) could challenge fuel reduction strategies in ways not represented by the
conditions seen during the Spring Hill Fire. We also note that shifting fuel structure in a
vertically compact environment like the Pine Plains, where genetically controlled stature
limits maximum tree height to ~3–4 m, may be unrealistic to the degree needed to influence
fire behavior under high wind and low relative humidity conditions that typify large
wildfire events.

3.3. Additional Considerations

In addition to guiding forest management, QUIC-Fire simulations such as this study can
be an important learning tool for training firefighters. As [44] points out, wildland firefighters
need more experience, but gaining the most informative kinds of experience can be dangerous
or infrequently available. For instance, increasingly extreme burning conditions in recent
decades have necessitated that firefighters assume worst-case conditions, which to all but a
well-seasoned firefighter includes many unfamiliar fuels and local conditions that are difficult
to train for. However, QUIC-Fire or similar tools can enable firefighters to explore different
fuel compositions and configurations under a variety of weather and topography scenarios to
hone their knowledge of fire behavior under different scenarios. Similarly, QUIC-Fire can also
account for complex, irregular, and interacting ignition patterns which are critical to success
during extreme fire behavior scenarios, burnout operations, and prescribed burning, but are
difficult to train for use in traditional classroom or field methods.

QUIC-Fire uses a simplified representation of energy transport designed to account
for the wind-dominated fire spread of the head fire and the creeping fire spread that
occurs in the flanking and backing fire [4]. The tool does capture the two-way fire atmo-
spheric feedbacks which are critical to estimating non-linear fire phenomenon listed by
this reviewer. It should be noted that the equations for wind-dominated fire spread do
incorporate randomness when calculating the travel distance for each energy packet, which
capture the effects of short-range spotting. As a result of the model’s ability to account
for short-range spotting, the simulation shows fire-to-jumping road features. Our model
simulations included short range spotting and we point to Figure 7, which illustrates the
fire crossing a fuel break (i.e., a road), which was possible due to the firebrand component.
However, long-range spotting was not an issue in the actual fire and thus we did not
consider it in the modeling effort; however, QUIC-Fire has functions that are capable of
estimating long-range spotting. We also highlight that our simulation produced similar
tree “crown street” features as were observed at the original fire, highlighting the model’s
ability to predict emerging fire behavior characteristics and fire effects that result from
coupled fire–atmospheric interactions (See Appendix A).

Even though the model is non-deterministic, we have found that the final burn plot
is relatively consistent in longer simulated runs and that localized fire behavior became
less relevant in simulations over an hour long. The ability to predict specific instances of
extreme fire–atmospheric interactions such as fire whirls, eruptive fire, and downburst
requires coupled fire–atmospheric feedbacks; local to “whole-fire” feedbacks are within the
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capabilities QUIC-Fire but will be dependent on the scale and complexity of the initializing
windfield, whereas larger events such as outflows or seabreeze interactions would require
coupling to larger mesoscale atmospheric models. As an analogy, predicting the specific
location and movement of eddies in a turbulent flow is computationally intensive, but
representing the overall effect on the speed of the flow is a tractable and achievable goal.

There were multiple challenges associated with data use that we encountered in this
study that must inform future users. First, despite the numerous weather stations in the
vicinity of the fire, the correlation between these data and observations during the fire were
weak due to a variety of factors that could not all be corrected. We found that wind data
was often stored in formats that were too imprecise with regards to fire behavior (e.g., half
hourly or in terms of cardinal directions) and may be worth considering in long-term fire
weather monitoring efforts. In addition, creating fuels in the model required integrating
fuel data from multiple sources, which was time consuming and required substantial
formatting from raw data to model parameters. Experience with fuel parameterization
would reduce the burden of this task almost to the point of negligibility; however, a
sophisticated understanding of actual fuel distributions and actual fire behavior are critical
skills for the successful user. We point out that no single person involved in this study
possessed all skills necessary to parameterize, simulate, validate, and analyze the fire
scenarios, and thus a diverse team of local fire managers, fire scientists, and fire behavior
modelers will be helpful in the success of simulation efforts.

While this study represents a successful evaluation of QUIC-Fire performance, there
remains a substantial need for additional test simulations against fine-scale fire behavior
data collected in the field under a broader range of fuel, weather, and ignition conditions
to fully understand the strengths and weakness of QUIC-Fire or other physics-based fire-
behavior models [45]. Identifying and utilizing “model landscapes” where fuel and fire
behavior have been well documented in high-resolution existing datasets would enable
rapid model parameterization and efficient model testing and refinement. At the same time,
new fuels and fire effect monitoring efforts that account for three-dimensional heterogeneity
in fuels can also fill in critical gaps in our ability to represent fuels at fine scales in other
landscapes and expand the testing of QUIC-Fire. To that extent, not all existing fuels and
fire effect strategies incorporate the appropriate data to parameterize QUIC-Fire or other
physics-based models, and there is a need for new monitoring strategies that include highly
resolved representations of vertical fuel load distributions, fuel species distributions, and
live and dead fuel moisture [46,47]. Likewise, there is a need for datasets that account for
the spatial heterogeneity in fine-scale fire behavior and interacting firelines to accelerate the
testing and refinement of QUIC-Fire and other physics-based fire behavior models (such as
the Wildland Fire Dynamics Simulator, WFDS [15]).

All models are simplifications of reality, and different fire behavior models have differ-
ent strengths and weaknesses. The utilization of ensemble approaches can be immensely
helpful in identifying model prediction uncertainty, but the ability to leverage this approach
hinges on the pace at which physics-based fire behavior models develop together. This
also reflects the need in future research for the testing and refinement of computational
fluid dynamics models of smoke emissions and dispersion and linkages that will enable
them to be run in concert with physics-based fire behavior models [48,49]. This simulation
of the Spring Hill Fire, however, highlights the opportunity to test new models under
high-resolution data conditions, as well as the need for compiling and archiving high
resolution datasets like this one for future model testing and user training purposes.

4. Conclusions

Through rapid solving coupled-fire–atmospheric modeling tools, there is the potential
for fire behavior modeling to follow a similar path as other types of disaster forecasting via
ensemble modeling that integrates multiple different models to identify ranges of outcomes.
We successfully evaluated QUIC-Fire simulation of a wind-driven wildfire and demon-
strated how alternate fuel conditions that contrasted the actual fire exclusion condition
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leading up to the fire may have reduced the complexity of suppressing the 2019 New Jersey
Pinelands Spring Hill Fire. The results of our exploration into alternate scenarios highlight
the importance of fuel management in reducing fire spread and growth, but also how
fuel reduction and structural modification from frequent prescribed fires limit different
aspects of fire behavior. This study provides a demonstration of how fire managers can use
physics-based fire behavior models like QUIC-Fire to explore management scenarios for
planning fuel management strategies and for training purposes, and highlights important
considerations for data needs to maximize the success of simulation efforts.
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