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Abstract: Forest fires are still a large concern in several countries due to the social, environmental and
economic damages caused. This paper aims to show the design and validation of a proposed system
for the classification of smoke columns with object detection and a deep learning-based approach.
This approach is able to detect smoke columns visible below or above the horizon. During the dataset
labelling, the smoke object was divided into three different classes, depending on its distance to
the horizon, a cloud object was also added, along with images without annotations. A comparison
between the use of RetinaNet and Faster R-CNN was also performed. Using an independent test
set, an F1-score around 80%, a G-mean around 80% and a detection rate around 90% were achieved
by the two best models: both were trained with the dataset labelled with three different smoke
classes and with augmentation; Faster R-CNNN was the model architecture, re-trained during the
same iterations but following different learning rate schedules. Finally, these models were tested in
24 smoke sequences of the public HPWREN dataset, with 6.3 min as the average time elapsed from
the start of the fire compared to the first detection of a smoke column.

Keywords: smoke detection; fire detection; wildfires; deep learning

1. Introduction

Forest fires have been one of the most devastating events in recent years, due to their
uncontrollable nature, with a 2002–2016 mean annual global estimated burned area of
4,225,000 km² [1]. Human activities are accountable for over 90 (per cent) of wildland
fires, with sudden lightning discharges accountable for most of the remaining fires [2], as
controlled fires are still used to manage and shape the Earth’s landscapes and ecosystems.
In most of the developed countries, human activities that involve the use of fire are highly
regulated by several laws and are normally policed by government agencies [3]. There have
been recent movements that advocate for limiting, even more, the use of controlled fires, as
they have been linked to ecological and health damages, such as the link to the increase in
Tropospheric ozone level or increased inhalation of smoke particles [4–7]. While the use of
controlled fires has been found to have benefits to some plants and animal species, it has
also been found to leave irreparable damage to the other species [8].

Applications related to the prediction, management and detection of wildfires have
been improved in recent years with the use of Machine Learning methods [2]. A recent
study [3] has shown that investments in detection innovations, such as fire weather services,
fixed lookouts and geospatial technologies can achieve high net benefits in the medium or
long term, when considering that they have a high cost investment at short term (due to
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the services installations), but can provide savings for each fire that was controlled at an
early stage, with most of the developed system with systems ranging from signal-based to
image-based [9–11].

The main difference between these detection systems is based on their strategic ap-
proach leading to their categorization into three main groups: wireless network sensing,
satellite monitoring techniques and large-area remote sensing. The wireless network sens-
ing approach is normally based on local devices patrolling the target region and rely on the
communication capabilities between a large number of sensors (e.g., temperature, humidity
and luminance) [9,12]. Their biggest drawbacks are their very limited restricted range of
operation, their low lifetime and environmental issues with malfunction systems [9]. The
satellite monitoring techniques such as MODIS (MODerate resolution Imaging Spectro-
radiometer) and AVHRR (Advanced Very High Resolution Radiometer) sensor scanners
were deployed respectively in the Aqua/Terra and NOAA satellites and have been ex-
tensively used for earth monitoring activities [13]. Their biggest drawbacks are their low
temporal and spatial resolutions [14]. Examples of this are the SmokeNet platform, which
uses MODIS information to classify six classes of images (i.e., cloud, dust, haze, land,
seaside, and smoke) [15] and a framework based on Inception-v3 a convolutional neural
network architecture developed by GoogleNet [16], which detects fire and non-fire images
from satellite images [17]. The large-area remote sensing system is usually based on an
automated warning system based on optical principles (e.g., cameras or spectrometers) in
order to detect smoke plumes or flames at large distances, whether optical cameras or [11].
Most of these types of networks quickly evolved into commercial systems, such as the
FireWatch and ForestWatch [18]. This is the type of system (fixed lookout) that has been
evolving in our research work [19,20].

The main objective of this research work is to present a fixed lookout system that is
able to acquire real-time images, that can then be processed by deep learning algorithms
in order to perform object detection tasks, using the Detectron2 platform. This system is
able to detect smoke plumes over large areas can be able to communicate and warn the
authorities of fires in the early stages, which can prevent the escalation of wildfires.

2. State of the Art

Some of the above-mentioned systems have been using traditional detection meth-
ods since their first implementation, but the use of Machine Learning techniques has
started to capture more interest in recent years, with Deep Learning techniques gaining
traction in the last two years, as one of the main tools used in the automatic recognition
of forest fires [2,11]. The most common models that are implemented for smoke and fire
detection and classification in images are based on either CNN (Convolutional Neural
Networks) [15,21], Faster R-CNN [21], Fully Convolutional Neural networks [22] or Spatio-
spectral Deep Neural Networks [23]. Some of the most recent studies in fire detection
systems have also been changing their traditional Deep learning approaches to object-based
detection systems [24,25], which has also been rising in popularity in the Industry.

The use of object-based detection algorithms has been recently and extensively re-
viewed [26], which separated the initial algorithms, stemming from the Viola-Jones Detec-
tors, from the main current research lines which can be split into two large group, as also
mentioned in this review of the latest advances in the area [27]. The division is based on the
number of stages, as the ones based on one-stage detectors are normally associated with
the You Only Look Once (YOLO) algorithm [28] and its newer versions (v2 to 4) [29–31]
and similar alternatives such as the Single Shot MultiBox Detector (SSD) [32]. One of the
main identified problems with single-stage detectors was the large class imbalance between
foreground and background boxes, which prompted the development of the RetinaNet
algorithm which uses focal loss to improve the prediction accuracy, as the estimated loss
added to the algorithm is lower if the box is identified as background and higher if it is
counted as foreground [33].
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The main characteristic of single-stage detectors is that the detection of the bounding
boxes and the object classification task is done by the same single feed-forward fully
convolutional network. One of the main examples of this type of network is the Feature
Pyramid Network (FPN), which is used by RetinaNet but also by two-stage detectors such
as the Faster R-CNN, and is able to generate and crop Region-of-Interest (RoI) features
maps which are then selected in the most proper scale to extract the feature patches based
on the size of the RoI [34].

On the other hand, two-stage detectors, especially the ones that originate from the
Region-Based Convolutional Neural Networks (R-CNN) family, as initially proposed by
Ross Girshick [35], have the same initial step as the single-stage of compilation of bounding
boxes succeeded by a feature extraction method, but are then followed by a final class
prediction step, based on which extracted features [27]. Most of these steps are considerably
slow, which prompted the development of modified versions that are able to accelerate the
first step, such as the so-called Fast R-CNN model proposed in [36], which uses pre-trained
images from a classification backbone model such as ResNet [37] and VGG-16 [38] to
extract the features with a faster efficiency. The Fast R-CNN algorithm, uses a selective
search algorithm to find out the region proposal which is a slow process and becomes the
bottleneck of the object detection architecture, which was later upgraded with a version
called Faster R-CNN and used a Region Proposal Network (RPN) to detect objects regions
from the multi-scale features and incorporate the region proposal in the final step (which is
trained simultaneously with the label classification step), revamping the time and accuracy
of the objection detection task. The final task is completed by the RoI head which crops
and wraps feature maps using proposal boxes into multiple fixed-size features and obtains
fined-tuned box locations and scores via the fully connected layers, which are then checked
for overlap using non-maximum suppression.

In terms of particular cases of fire detection based on remote imaging sensing systems
and applying CNNs for object detection tasks, we identified two types of recent studies, the
first ones classify examples of visible fire from very close distances, such as [39–42], while
the second ones try to detect both fire and smoke columns visible in larger distances [43,44].

The majority of the previously developed image processing platforms have been
tailored to specific sets of images, since designing an algorithm that could achieve high
specificity and sensitivity for an extensive range of cases is still one of the biggest challenges
in Image Processing [45]. Due to this situation, it is important to use benchmark datasets,
which are normally created by independent organisations and have been manually curated
by experts, or online databases created in Contests and Open Challenges [45]. One such
database is the HPWREN Fire Ignition images Library, curated by two groups from the
University of California San Diego and provided several examples from the remote part of
Southern California [46].

3. Data and Methods
3.1. Dataset

The dataset is composed of forest images that were taken with the same acquisition
system as in our previous work [20]. The acquisition system is based on a pan and tilt
optical camera which is controlled remotely by a server. A bi-spectrum temperature
measurement pan and tilt camera IQinVision IQeye 7 Series (IQ762WI-V6) was used for
image acquisition. The images were taken with the visible camera of this device which has
the following specifications: image sensor of 1/3” CMOS sensor, an effective resolution of
1080p, and a 12–40 mm telephoto lens with an 18° wide and 9° tele-oscillatory ventilation.

The images were acquired during daylight and the azimuth of the camera changed at
a pre-defined position using a fixed time rate in order to span the 360° of the horizon. The
acquisition of the dataset was done in ten different systems located in the Peneda-Gerês
National Park in Portugal.

The labelling process was performed with the OpenLabeler platform [47] to annotate
the visible objects by defining a bounding box area where the object is located and tag it
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with a name, this information is saved in the PASCAL VOC XML format. These annota-
tions can then be converted into a JSON file in COCO format which is processed by the
Detectron2 [48].

The initial labelling of the images was done with the smoke label but after some tests,
it was decided to define three subclasses of smoke objects namely: hrz, mid and low, as
this sub-categorisation, allows for more detailed information of smoke columns and also
accounts for a large variation in visual appearances. This sub-categorisation was done
subjectively, based on the distance between the base of the smoke column and its distance
to the horizon and the camera. The first ones, hrz are comprised mostly of smoke columns
above the horizon such as smokes, with the base of the smoke starting at the top of the
mountain or with a base of the smoke column not visible since it starts at the non-visible
side of the mountain. These smoke columns tend to extend fast into the sky and over the
horizon and can be mistaken by clouds due to their high position. The second ones, mid,
are characterised by smoke columns that have a base present predominantly at the middle
of the image (vertical-wise). While the smoke column can extend over the horizon, their
body has a significant background of land. The last type of smoke columns, low, consist
of smoke columns that start close to the acquisition camera, as these can occupy a large
part of the image and the base of the smoke is normally not visible since the distance to the
camera might cut the base from the picture. The size of these smoke columns (in terms of
pixels) also grows very large in a shorter amount of time, due to the distance to the camera.
Examples of these three types of smoke objects are shown in Figure 1.

(a) (b) (c)

Figure 1. Different types of identified fire smoke columns. (a) Example of smoke labelled as hrz. Taken at 21 July 2014 15:24
(b) Example of smoke labelled as mid. Taken at 15 May 2015 13:01 (c) Example of smoke labelled as low. Taken at 20 July
2013 12:29.

During the first model training sessions with the smoke class and the three classes
(hrz,mid and low), some clouds were wrongly detected as smoke objects. Then, images
containing clouds but not smoke were labelled as clouds and included in the dataset.
Moreover, it was detected that some images without annotation labels of either smoke or
cloud were being wrongly detected as a smoke object. One of the strategies to overcome this
problem is to introduce it into the dataset as an input image without any smoke or cloud
annotation, similarly to the strategy reported in [49], where they found that the addition
of images without any annotation to the dataset may lead to decrease the number of false
detection’s [49]. These images are characterised to be similar to other forest images but
there is no presence of smoke or cloud so they do not have any annotation and they are
referred to in this paper as empty samples.

Image augmentation techniques were also used, based on the Albumentations library [50],
(which has a widespread usage in deep learning and has been licensed under the MIT
license). Image augmentation allows the creation of additional training examples, without
the time-consuming task of manual labelling, using as a base the existing images. The initial
number of images was doubled using this library, based on three different augmentation
techniques, namely: Horizontal Flip (with a 0.25 probability for each image), Rotation (with
a limit of 15◦ and a probability of 0.5), and finally an RGB Shift (with a limit of 15 for each
colour and a probability of 0.5). These augmentations processes allow the system to be
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more robust to the introduction of new conditions such as different lighting coming from
the sun, or different directions of smoke columns.

The characteristics of the dataset which was used in the training and validation phases
are shown in Table 1. The version name specifies the characteristics of the dataset, the
number denotes the classes cardinality, whether it was labelled using only the class smoke
(1) or if it was labelled with hrz, mid, low classes (3). The letter “A” denotes if the augmented
images were added to the dataset, the letter “C” means that images that were labelled with
clouds were added to the dataset and the letter “E” indicates if empty images (without any
annotation) were included in the dataset. In Table 1, the columns hrz, mid and low indicate
the number of the smoke images which are labelled as hrz, mid and low respectively, so it
has not been added new images. It must be remarked that for one row, the sum of hrz, mid
and low is not equal to the smoke images due to some images being labelled as hrz, mid or
low in different regions. Therefore, these columns specify the number of images that have
been labelled as hrz, mid or low. Furthermore, the number of images of smoke, clouds and
empty was balanced but during the creation of the (hrz, mid and low), it was not possible to
balance these three types of objects, due to the lower presence of hrz and low compared to
mid fire objects.

Table 1. Characteristics of the dataset for training and validation. Y means yes, images with this
characteristic were included in the dataset and N means no, the images with this characteristic were
not included. A means augmentation, C means clouds and E images without any annotation.

Version
Characteristics Number of Images with Object

# Smoke
Classes Aug Clouds Empty Smoke Clouds Empty Hrz Mid Low

1 1 N N N 750 0 0 0 0 0
1A 1 Y N N 1500 0 0 0 0 0
1C 1 N Y N 750 750 0 0 0 0

1AC 1 Y Y N 1500 1500 0 0 0 0
3 3 N N N 0 0 0 111 490 200

3A 3 Y N N 0 0 0 222 980 400
3C 3 N Y N 0 750 0 111 490 200

3AC 3 Y Y N 0 1500 0 222 980 400
1E 1 N N Y 750 0 750 0 0 0

1AE 1 Y N Y 1500 0 1500 0 0 0
1CE 1 N Y Y 750 750 750 0 0 0

1ACE 1 Y Y Y 1500 1500 1500 0 0 0
3E 3 N N Y 0 0 750 111 490 200

3AE 3 Y N Y 0 0 1500 222 980 400
3CE 3 N Y Y 0 750 750 111 490 200

3ACE 3 Y Y Y 0 1500 1500 222 980 400

Two different datasets were used: one for the training and validation phase and the
other for testing the model. The first dataset was randomly partitioned into training and
validation images with 80% and 20% proportions respectively. The dataset which was used
for testing is compound by images that were not used in training or validation. It contains
a total number of 375 images with smokes, 1249 with clouds and 2021 empty images. These
smoke images are grouped in 75 sets of 5 images which correspond to the first 5 images
that were taken at a determined location since the beginning of the smoke. Due to the setup
characteristics, the mean time elapsed between each image is 380 s ± 120 s, so the testing
dataset contains 75 sequences of different smokes originated at different locations to assess
the classification performance of the smoke detection algorithm at different smoke stages.

3.2. Architecture of Object Detection Models and Transfer-Learning

The Detectron2 is an open-source object detection framework that has been developed
by Facebook AI Research and is implemented in Pytorch. This framework can be used to
train various state-of-the-art models for detection tasks such as bounding-box detection.
In this paper, this framework has been used to build the smoke detection model based on
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a two-stage object detection architecture that outperforms single-stage detectors in terms
of accuracy.

Detectron2 has available the Faster Region-based Convolutional Neural Network
(R-CNN) model with Feature Pyramid Network (FPN) backbone which is a multi-scale
detector that achieves high accuracy in tiny to large object detection tasks [34]. The
Detectron2 has been used to train with our dataset a model based on the Faster R-CNN
architecture which was pre-trained on ImageNet.

Both the adopted models (RetinaNet and Faster R-CNN) were available from the
Detectron2 Model Zoo [51]. Their architectures are composed by the ResNet with 50 layers
as backbone combined with the Feature Pyramidal Network. The weights of models
were initialised with their pre-trained architecture on the MS COCO dataset using the full
learning rate schedule (3x, ∼37 COCO epochs).

The RetinaNet and Faster R-CNN models were then re-trained for smoke classification
with specific parameters and datasets. The learning rate scheduler and the number of
iterations of the re-trained process were varied to evaluate the classification performance
of these parameters. The number of iterations were 3500 and 5000 which were chosen
empirically and the learning rate strategies were the warm-up constant (WUP) learning
rate of 0.001 and a triangular cyclical (CYC) learning rate with a maximum learning rate
of 0.01 and a base learning rate of 0.005. The WUP is a simple and commonly used
learning rate strategy while the CYC learning rate is a more sophisticated strategy that
could improve the classification accuracy without a need to tune [52]. Then, the RetinaNet
was re-trained with warm-ump learning and with 3500 and 5000 iterations which were
called RetinaNet_3500_WUP and RetinaNet_5000_WUP respectively. The Faster R-CNN
was re-trained for 5000 following WUP and CYC learning rate scheduler, they were called
FRCNN_5000_WUP and FRCNN_5000_CYC respectively. Moreover, these four models
were re-trained separately over the 16 datasets described in Table 1, so 64 different models
were finally re-trained.

These experiments, which were conducted to train and test the object detection based
models, were all performed on a computer configured as follows: the CPU was an Intel i7
9700 k at 3.6 GHz with 8 cores, the graphics card was a dual NVIDIA RTX2080, the RAM
memory was 64 GB and a hard disk of 2 TB. The software environment was as follows: the
operating system was Ubuntu 18.0.5, the programming language was Python 3.8.5 and the
main Python software libraries were: pytorch (v.1.7.1), torchvision (v. 0.8.2), opencv-ptyhon
(v. 4.4.0.46), Detectron2 (v. 0.3), albumentations (v. 0.5.2) and numpy (v. 1.19.2).

3.3. Performance Evaluation

The intersection over union (IoU) metric is commonly used for the evaluation of object
detection algorithms. The IoU, which is also known as the Jaccard index, calculates the ratio
of the intersection area of the bounding boxes over the area of the union of the bounding
boxes as defined in Equation (1):

IoU =
Area o f Overlap
Area o f Union

(1)

The IoU determines the overlap between the predicted bounding boxes and the
ground-truth bounding boxes from the labelled dataset. Therefore, the predicted bounding
boxes that highly overlap with the ground-truth bounding boxes have higher scores than
those with lower overlap. The IoU can then be used to determine if the object detected by
the model is true or false, by setting the IoU to a fixed threshold in order to determine the
correctness of the detection. If the IoU is higher than the specified threshold the detection
is considered to be correct, otherwise it is discarded [48].

The average precision (AP), which is based on the IoU, is a popular metric in measur-
ing the accuracy of object detection algorithms. The general definition for AP is the area
under the precision-recall curve. The calculation of the AP is based on an interpolation
of 10 points, which is the average over multiple IoU and with each IoU being used as the
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minimum IoU to consider a positive match. In the presence of more than one class in the
dataset, the AP is computed as the mean for each class. Therefore, AP is used to show the
detection performance of the smoke detection model for all classes. Particularly, the AP
metric corresponds to the average AP for IoU from 0.5 to 0.95 with a step size of 0.05, as is
expressed in Equation (2):

AP =
∑i∈{0.5,0.55,...0.95} APi

10
(2)

To test the performance of the deep learning-based model for smoke detection, the
following metrics were computed:

• True positives (TP) is the number of images which was detected as smoke correctly, it
is determined by an IoU is greater than 0.33.

• False positives (FP) is the number of images that were badly detected as smoke, it is
determined by an IoU lower than 0.33.

• False negatives (FN) is the number of images that were not detected as smoke incor-
rectly.

An IoU score greater than 0.5 is normally considered a good prediction but 0.33
was chosen as the smoke object can have a fuzzy appearance, so the intersection of both
bounding boxes was lowered in order to keep positive smoke detections that would be
otherwise discarded.

The F1-score metric (obtained from the aforementioned TP, FP and FN) was used to
evaluate the classification performance in validation and testing. The precision quantifies
the number of the smoke detections that actually belong to the smoke class while recall
computes the number of smoke detections of all images labelled as smoke. In addition,
F1-score is a single indicator that balances both the precision and the recall, as defined in
Equation (3):

F1− score =
2 ∗ TP

2 ∗ TP + FN + FP
(3)

Moreover, other metrics were calculated to evaluate the ratio of false detection of
the model for images labelled with clouds or without annotations but which are wrong
classified as smoke, as defined for the following examples:

• The true negatives (TNc) is the number of images annotated as clouds that were not
classified as smoke

• The true negatives (TNe) is the number of images without annotations that were not
classified as smoke.

• The false positives (FPc) is the number of images annotated as clouds which were
classified as smoke

• The false positives (FPe) is the number of images without annotations that were
classified as smoke.

The false detection rates FPRc and FPRe were also used to evaluate the wrong classifi-
cations of cloud objects and of empty images respectively (no annotation). These metrics
are defined in Equations (4) and (5):

FPRc =
FPc

TNc + FPc
(4)

FPRe =
FPe

TNe + FPe
(5)

Additionally, the G-mean quality metric was also calculated, which can be applied
in imbalanced datasets. This performance metric evaluates the true detections and the
false detections for smoke, clouds and empty annotations jointly by micro-averaging the
specificity for the samples of three classes: smoke, cloud and empty. The micro-averaging
was performed by weighting each sample equally to compute the average metric. The TPT,
FNT and FPT were defined as the sum of true positives, false negatives and false positives
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respectively for the smoke images located from the beginning of the smoke until the image
of the fifth position. The false-positive rate (FPRT) denotes the number of images wrongly
detected as smoke over the total number of images without any smoke annotation. The
metrics are expressed in Equations (6)–(9):

Sensitivity =
TPT

TPT + FNT
(6)

Speci f icity =
TNc + TNe

TNc + TNe + FPT + FPc + FPe
(7)

G−mean =
√

sensitivity ∗ speci f icity (8)

FPRT =
FPT + FPc + FPe

TNc + TNe + FPT + FPc + FPe
(9)

Finally, the detection rate (DTR) metric was defined to assess the smokes detection
performance over the time-sequenced smoke images. The DRTn is the percentage of
sequences that have at least one true smoke detection in the n first images over the total
number of sequences (75).

4. Results and Discussion
4.1. Test Set with Smoke, Clouds and Empty Images

Table 2 shows the classification performance metrics for the specifically employed model
architectures which were trained with different parameters as described in Section 3.2. It
should be noted that for each architecture, the two initial rows show the configurations
with the best results, following the maximization of the G-mean criteria. In contrast, the
third row shows the worst model obtained in order to illustrate the difference associated to
use different dataset configurations for the same pre-trained model. The F1i denotes the
F1-score of the smoke image at the position ith of the fire sequence and the FPRC, FPRE and
FPRT denote the false-positive ratio for cloud, empty and all images respectively. Finally,
G-mean is shown as a quality indicator that balances the detection rate of smoke and
non-smoke images.

The Table 2 reveals that the inclusion of empty samples improves the FPR for empty
images and it seems to have a positive impact on smoke detection. The addition of cloud
samples improves the FPR for cloud images in most cases but it is not clear their negative
impact on smoke detection. The FPRT for all the images follows a similar trend to the other
two False Positive rates, with the best-case scenario having an FPR value of around 5%.

Moreover, the best F1-score results are achieved in the fourth image for the models
FRCNN_5000_WUP, FRCNN_5000_CYC and RetinaNet_3500_WUP but it can be achieved
in the fourth or fifth image for RetinaNet_5000_WUP. Temporal evolution of the F1-score is
shown in this Table, a positive trend in the evolution can be appreciated for the different
models between F11 and F14 but the direction of trend change between F14 and F15 for
almost all cases.

The results obtained for the two best models of both FRCNN_5000_WUP and FR-
CNN_5000_CYC are quite similar but the FRCNN_5000_CYC with the dataset 3AE can be
considered as the preferable model due to the best performance in terms of G-mean, it
shows the best overall F1 score and also the results of F1-scores are better for the images
located in the three first time positions. Figure 2 shows a sequence of six time-consecutive
images taken in the same fixed position.
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Table 2. Classification performance metrics in the test set. F1i means the F1-score of the image at the
position ith of the fire sequence and the FPRC and FPRE denote the false-positive ratio for cloud and
empty images respectively.

Version
F11
(%)

F12
(%)

F13
(%)

F14
(%)

F15
(%)

FPRC
(%)

FPRE
(%)

FPRT
(%)

G-Mean
(%)

RetinaNet
3500_WUP

3AC 58.6 60.8 67.3 70.8 68.5 4.6 3.3 4.5 70.5
1 54.2 69.7 68.4 71.9 68.5 18.7 5.6 11.4 66.9

1CE 29.3 31.0 29.5 30.2 24.7 0.1 0.0 0.3 41.7

RetinaNet
5000_WUP

1A 55.1 69.7 68.4 69.6 74.3 12.1 2.4 6.9 71.7
1 60.0 69.7 67.3 71.9 70.9 18.3 5.2 11.0 70.4

3CE 35.3 47.3 45.4 54.0 50.5 0.4 0.0 0.4 55.9

FRCNN
5000_WUP

3AE 64.1 75.4 68.4 84.1 78.6 6.3 1.9 4.4 78.6
3CE 61.4 69.7 69.6 76.3 74.3 3.1 0.7 2.6 76.3
3E 52.6 53.6 51.5 61.0 55.1 0.8 0.2 1.2 63.4

FRCNN
5000_CYC

3AE 69.2 75.4 78.0 80.3 75.4 6.7 2.7 5.2 80.1
3E 64.1 74.3 69.6 71.9 67.9 4.8 1.4 3.7 75.3
1E 22.8 36.8 33.3 37.8 38.6 1.2 0.2 2.0 48.2

(a) (b) (c)

(d) (e) (f)

Figure 2. This is an example of a temporal sequence of smoke fire from before the fire stars until 5 images after the beginning
of the fire. (a) Example of just before fire starts. Examples (b–f) are consecutive images after the fire starts. The red boxes
show the area detected as smoke by our method FRCNN_5000_CYC trained with dataset 3AE. The image sequence was
taken on the same day, 10 March 2014, respectively at 9:23, 9:29, 9:36, 9:42, 9:49 and 9:56.
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4.2. Temporal Evolution of Smoke Detection Rate

Table 3 shows the accumulated true detection rate of images annotated with smoke
over time. This indicator assesses the ability of the trained model to detect smoke at least in
the first images since the smoke starts in the test set. This table shows the results of the same
models as those shown in Table 2. The temporal evolution shows that FRCNN_5000_CYC
achieves a result of over 80% in the DTR3, which is remarkably better than the other models
and for DTR5 it is slightly better than the best of FRCNN_5000_WUP. In addition, the
impact of the training with a different dataset for the same architecture is observed due to
the large difference observed between the worst model of each architecture and the two
best models that are shown in Table 3. As it can be expected, the models with higher F1
scores also have a high DTR percentage and they also achieve a better overall result in the
last image.

Table 3. Accumulated detection rate for different models over time. The DRTn means the detection
rate at the nth image in the smoke sequences.

Version DTR1 (%) DTR2 (%) DTR3(%) DTR4(%) DTR5(%)

RetinaNet_3500_WUP
3AC 38.7 57.3 68.0 77.3 85.3

1 34.7 60.0 72.0 78.7 85.3
1CE 16.0 26.7 29.3 33.3 37.3

RetinaNet_5000_WUP
1A 34.7 54.7 66.7 76.0 80.0
1 40.0 62.7 69.3 77.3 82.7

3CE 20.0 37.3 46.7 56.0 61.3

FRCNN_5000_WUP
3AE 42.7 68.0 73.3 86.7 89.3
3CE 41.3 61.3 68.0 77.3 85.3
3E 33.3 46.7 49.3 60.0 62.7

FRCNN_5000_CYC
3AE 48.0 69.3 80.0 86.7 92.0
3E 44.0 66.7 72.0 80.0 82.7
1E 12.0 28.0 34.7 40.0 44.0

4.3. Average Precision in Validation Set

Table 4 shows the average precision (AP) performance metric of the models selected
based on the same aforementioned criteria. The AP50 and the AP75 represent the AP
obtained using the IoU with a threshold of 0.50 and 0.75 respectively and computed in the
validation set.

As it was previously referred to in the literature, both RetinaNet based models
achieved better results in terms of AP than the Faster R-CNN models. However, these
results can be caused by the nature of the datasets 1A and 1 without the presence of clouds
or empty images. It must be noted that the difference for the same dataset (3CE) between
RetinaNet_5000_WUP and FRCNN_5000_WUP is not such great as RetinaNet_5000_WUP 1A
an FRCNN_5000_WUP 3AE. Moreover, the comparison of AP between models for the same
architecture must be taken with caution because they are obtained with different datasets.

The difference between the AP50 and AP75 values can be attributed to the fact that
although when the object is detected, it might not match totally with the region defined
by the labels. As the main objective of the final application of this model is to detect the
smoke to generate alarms, these differences are not a major issue as long as a high AP50
value can be obtained.
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Table 4. Average precision for the selected models in the validation dataset

Version AP (%) AP50 (%) AP75 (%)

RetinaNet_3500_WUP
3AC 38.7 75.0 36.7

1 39.6 83.3 31.3
1CE 38.0 71.3 35.7

RetinaNet_5000_WUP
1A 52.2 87.7 53.6
1 42.0 84.5 37.5

3CE 38.9 72.3 39.4

FRCNN_5000_WUP
3AE 40.1 81.2 31.6
3CE 34.1 67.1 30.9
3E 37.8 74.4 33.9

FRCNN_5000_CYC
3AE 36.0 73.8 32.2
3E 38.7 73.9 36.5
1E 24.3 55.3 16.4

4.4. Comparison with HPWREN Public Database

This section shows the results of the implemented method using the HPWREN
dataset [46]. This dataset has been selected to obtain comparable results since it con-
tains images of fires originating in non-urban areas with a temporal sequence of images
before and after the fire ignition and the images are publicly available. This dataset was
acquired in areas of southern California, that may have different environments to the ones
trained by our system, although both were acquired from a high-ground position, allowing
the visibility of both ground areas and the skyline.

Moreover, a previous work, which also uses an object detection model based on
deep learning, provides the time elapsed from the fire starts until their model detects
the fire for sequences of the entire dataset [43]. It must be remarked that the videos are
composed have a frame rate of one image per minute. The names of the first eight video
sequences are the same as those mentioned [43], with one more smoke sequence that is not
currently available in the HPWREN database. In addition, 16 more sequences present in
the HPWREN database have been added to this study, which were not available at the time
of the previous publication [43].

The reference time of the start of the fire was provided [43] for the 8 first sequences
but for the other 16 sequences, the reference fire start time was defined by us, because the
smoke is not visible in the image frame associated with the time provided in the filename
of the sequence. Figure 3 shows a sequence with the reference provided by the filename
and the fire start time defined by us.

Table 5 shows the time elapsed from the fire ignition, from the time detected for
the first time with the reference method, our two best models (FRCNN_5000_CYC with
3AE and FRCNN_5000_WUP with 3AE), and the worst one (RetinaNet_3500_WUP with
1CE). The first column shows the name of the video sequence as mentioned [43] for the
eight initial sequences and the identification name in the HPWREN database directory
for the other 16 sequences that were also added. The penultimate row of the table shows
the calculated times for the initial eight sequences for comparative purposes with the
reference method, while the last row shows the mean time-averaged for the 24 sequences.
The obtained results with the proposed model FRCNN_5000_WUP with 3AE are relatively
better than those obtained with [43] for the reference 8 images, obtaining a mean detection
of over two minutes faster (it is noted, that our model has a much larger standard deviation,
due to the late detection on the DeLuz Fire example and the very early detection on the
Holy Fire South View example). The model FRCNN_5000_WUP with 3AE detects the smoke
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fire 1.5 min earlier than FRCNN_5000_CYC with 3AE on average for all images. These
differences must be taken with caution due to the limited number of smokes sequences
analyzed in the HPWREN dataset. It is important to note that the difference between the
worst model RetinaNet_3500_WUP with 1CE and the two best models is more significant,
not only comparing the mean of time elapsed until detection but also when checking the
large number of undetected fires until the end of the sequence. Therefore, this suggests
that the type of model and the dataset that are trained can play a significant role in the
early detection of smoke originated from fires.

(a) (b) (c)

Figure 3. Illustrative examples of the 20180504_FIRE_smer-tcs8-mobo-c video sequence, (a) showing the zero reference from
database; (b) showing the fire ignition (see red arrow) with a time reference of 11 min later defined by us and (c) showing
the next image, one minute later. The image sequence was taken in the same day, 4 May 2018, respectively at 14:33, 14:44
and 14:45.

Table 5. Daytime Fire Detection Time of smoke sequences extracted from HPWREN Database. The
best results for each case study are marked in bold.

Video Name Time Elapsed (min)

Method
[43]

FRCNN
5000
CYC
3AE

FRCNN
5000
WUP
3AE

RetinaNet
3500
WUP
1CE

Lyons Fire 8 5 5 8
Holy Fire East View 11 3 2 4

Holy Fire South View 9 2 1 2
Palisades Fire 3 7 5 9

Palomar Mountain Fire 13 18 10 16
Highway Fire 2 4 2 9

Tomahawk Fire 5 5 3 5
DeLuz Fire 11 22 16 136

20190529_94Fire_lp-s-mobo-c N.A 1 3 3 3
20190610_FIRE_bh-w-mobo-c N.A 6 5 N.D 2

20190716_FIRE_bl-s-mobo-c N.A 18 18 N.D
20190924_FIRE_sm-n-mobo-c N.A 17 7 N.D

20200611_skyline_lp-n-mobo-c N.A 5 4 N.D
20200806_SpringsFire_lp-w-mobo-c N.A 8 1 37
20200822_BrattonFire_lp-e-mobo-c N.A 2 5 N.D
20200905_ValleyFire_lp-n-mobo-c N.A 4 3 N.D

20160722_FIRE_mw-e-mobo-c N.A 3 5 N.D
20170520_FIRE_lp-s-iqeye N.A 8 2 N.D

20170625_BBM_bm-n-mobo N.A 23 21 25
20170708_Whittier_syp-n-mobo-c N.A 4 5 6

20170722_FIRE_so-s-mobo-c N.A 6 13 27
20180504_FIRE_smer-tcs8-mobo-c N.A 7 9 16
20180504_FIRE_smer-tcs8-mobo-c N.A 4 3 9

20180809_FIRE_mg-w-mobo-c N.A 6 2 N.D

Mean ± sd for 1–8 7.8 ± 3.8 8.3 ± 7.7 5.5 ± 8.7 23.6 ± 9.7
Mean ± sd for 1–24 7.9 ± 6.3 6.3 ± 5.4 20.8 ± 32.3

1 Not available; 2 Not detected.
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Figure 4 shows three images of sequences that were first detected (with a smoke object)
later than 15 min by the model with the best results FRCNN_5000_WUP_3AE. Regarding
these negative results, the small dimension of the smoke column (due to the large distance
from the lookout) may cause a later first detection as it can be seen Figure 4a, although
Figure 5b shows an example of a small fire that was detected early. The saturation of
the background of the images may also delay the detection of smoke which is above the
horizon as it can be observed in Figure 4b,c. It is noted that examples of early smoke
detections have also been represented in Figure 5, which shows three samples with a
detection time lower than 5 min.

(a) (b) (c)

Figure 4. (a) 20170625_BBM_bm-n-mobo was taken at 25 June 2017 12:15 (b) 20190716_FIRE_bl-s-mobo-c was taken at
16 July 2019 13:04 and (c) DeLuz Fire was taken at 05 October 2013 12:54. The red boxes show the area detected as smoke by
our method FRCNN_5000_WUP trained with dataset 3AE.

(a) (b) (c)

Figure 5. (a) Holy Fire South View was taken at 6 August 2018 13:10 (b) 20200806_SpringsFire_lp-w-mobo-c was taken
at 6 August 2020 18:36 and (c) 20190529_94Fire_lp-s-mobo was taken at 29 May 2019 15:08. The red boxes show the area
detected as smoke by our method FRCNN_5000_WUP trained with dataset 3AE.

Moreover, the detection time in forest fires was also calculated for the 75 sequences
of images in the test set, as described in Section 3.1. A mean value of 5.3 min for the first
detection was obtained with the FRCNN_5000_CYC version with the 3AE configuration and
a mean value of 5.4 min with the FRCNN_5000_WUP version with the 3AE configuration.
This value is similar to the one obtained using the HPWREN database, even though the
average time elapsed between these images is 380 s which is higher than the ones originated
from the HPWREN (60 s).

4.5. Limitations

The limitation of this study is that most of the images assembled for the training
and testing datasets and also for the HPWREN dataset have a clear view of the horizon
without obstructions. The obstructions which are located close to the camera can eventually
produce some false smoke detections, so artefact detection or removal techniques need to
be designed to increase the feasibility of the system in such situations. A second limitation
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is that all the datasets are originated from day-time time-series, leading to a problem of
solving night-time detection of fires, which is not discussed in this paper. Moreover, the
nature of the fire was not controlled in the examples of the employed datasets, so the time
elapsed from the fire ignition until the fire is detected can be affected by the magnitude of
the initial available natural fuel or the fire propagation speed.

The existence of clouds with similar characteristics to smoke columns may limit the
proposed method. Figure 6a shows an example of a correctly identified as a cloud object,
while Figure 6b shows an example of an incorrectly identified cloud as an hrz object. The
main difference between both objects is the shape and colour, where the first is denser
and has whiter shades, while the second is similar to smoke objects, being less dense
and with grey shades. Figure 6c shows an example of the morning fog, which can also
be interpreted wrongly as a smoke column (in this case it was detected as a mid object.
Morning fog objects also have a less dense border and can have similar shapes to smoke
columns. Finally, Figure 6d shows an example of a smoke column that was not correctly
identified, mainly due to its low visibility, due to background saturation, and the presence
of structures (windmill and cables) in front of the smoke column.

(a) (b)

(c) (d)

Figure 6. (a) Example of a correctly identified cloud object. Taken at 22 June 2015 17:30. (b) Example of a cloud incorrectly
identified as a smoke object. Taken at 22 June 2015 17:38. (c) Example of fog, incorrectly identified as a smoke object. Taken
at 25 April 2015 10:13, (d) Example of a smoke object that was not correctly identified. Taken at 21 May 2015 15:22.

5. Conclusions

A deep learning object detection model based on the Detectron2 platform was imple-
mented for smoke detection in outdoor fires. The deep learning model was obtained from
transfer-learning of pre-trained RetinaNet and Faster R-CNN models for object detection.
The datasets, which were used to re-train the models, and were compounded following
different strategies. A DTR of over 86% and an F1-score of over 80% at the fourth image
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were obtained for an independent test set by the two best models. Both of these models
were trained with the dataset labelled with hrz, mid and low smoke classes and with aug-
mentation; Faster R-CNN was the model architecture, they were re-trained during the same
iterations but following different learning rate schedules, namely: FRCNN_5000_WUP and
FRCNN_5000_CYC.

The proposed models were also tested in a time series dataset which are sequenced
with a time resolution of one minute. This database is publicly available and a smoke
detection assessment of some examples of this database was previously reported [43]. The
time elapsed from the start of the fire until it is first detected was 5.5 min on average for
the same 8 sequences of this dataset that were previously reported [43]. Moreover, this
time is 6.3 min on average for a total number of 24 sequences of the HPWREN dataset.
Using the 75 sequences of the test dataset, a mean detection time of 5.4 min was obtained,
maintaining similar performance to the observed with the independent HPWREN dataset.
It is important to note that both datasets were acquired using different hardware and in
different geographic settings (Portugal and South California), which also shows that our
system might be able to adapt to novel conditions. These times can already be considered
to have the appropriate specifications to be integrated into a commercial system and can
provide an early warning of outdoor fires to the fire prevention authorities.

In the future, it will be important to analyze the temporal evolution of the shape of
the smoke column, as it might provide additional help in distinguishing it from other
objects such as clouds or smog. After the detection of an object, it will also be beneficial
to apply post-processing techniques inside the bounding box. These image processing
techniques will be able to segment the detected objects, namely when smoke was found
(true positive and all the false detections), inside the bounding boxes and will provide
additional information, such as specific features of the objects (namely, spectral, texture
and shape) that will be able to be used as an input to recognise some of the mistakes done
during the previous object detection steps and increase the recognition rate of this system.
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