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Abstract: Soil changes, including landslides and erosion, are some of the most prominent post-fire
effects in Mediterranean ecosystems. Landslide detection and monitoring play an essential role
in mitigation measures. We tested two different methodologies in five burned sites with different
characteristics in Central Greece. We compared Unmanned Aerial Vehicles (UAV)-derived high-
resolution Digital Surface Models and point clouds with terrestrial Light Detection and Ranging
(LiDAR)-derived point clouds to reveal new cracks and monitor scarps of pre-existing landslides.
New cracks and scarps were revealed at two sites after the wildfire, measuring up to 27 m in length
and up to 25 ± 5 cm in depth. Pre-existing scarps in both Kechries sites appeared to be active, with
additional vertical displacements ranging from 5–15 ± 5 cm. In addition, the pre-existing landslide
in Magoula expanded by 8%. Due to vegetation regrowth, no changes could be detected in the Agios
Stefanos pre-existing landslide. This high-spatial-resolution mapping of slope deformations can be
used as landslide precursor, assisting prevention measures. Considering the lack of vegetation after
wildfires, UAV photogrammetry has great potential for tracing such early landslide indicators and is
more efficient for accurately recording soil changes.

Keywords: forest fires; landslides; vegetation regrowth; Terrestrial Laser Scanning—TLS; soil erosion;
post-fire effects; Greece

1. Introduction
1.1. Wildfires

Wildfires do not impact only vegetation but can also increase the probability of
occurrence for major secondary post-fire effects such as: landslides; modification of hy-
drogeological characteristics; enhanced soil erosion; and sediment transport [1,2]. Forest
fires, depending on their extent, recurrence and severity of burning, can have severe
geomorphological and environmental impacts [1,3–7]. Indeed, [6] p.7 indicated a direct
correlation between rainfall-induced mass movement events and their average frequency
of occurrence after forest fires, since they alter vegetation and soil properties, making the
burned area susceptible to rapid geomorphological changes [3,8]. The vulnerability of
wildfire-affected areas to debris flows has also been reported as the most important mode
of post-fire erosion [3,4], which is also related to shallow landslides being triggered on the
burnt slopes, mainly after intense rainstorms [4].

1.2. Landslides

Landslides can be studied through conventional methods such as direct field-based
mapping [9], aerial photos [10,11], high-resolution multispectral images [12,13] and multi-
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temporal Interferometric Synthetic Aperture Radar (InSAR) [14,15]. It is common for these
areas to have steep topography, rendering traditional techniques inappropriate and even
hazardous for operators [16–18]. For this purpose, new tools such as Light Detection And
Ranging (LiDAR) [19] and Unmanned Aerial Vehicles (UAV) have been deployed [20,21],
not only for detection but monitoring purposes as well.

Detailed mapping of such areas can reveal cracks at the top of landslide-prone
slopes [22,23]. Detecting and monitoring such landslide phenomena is a challenging topic,
considering that the deformation rates of landslide movements are not constant [23–28]. In
fact, these rates may vary from cm-per-year over several years to cm-per-day [29].

1.3. Early Landslide Phenomena and Detection Techniques—UAV Photogrammetry and t-Lidar

UAV-based scanning and Terrestrial Laser Scanning (TLS) are well-established tech-
niques, producing models with high accuracy in the order of mm/cm. Currently, these
techniques are increasingly common among the many state-of-the-art tools available for de-
scribing natural hazards [23,28,30]. LiDAR scanning techniques and the rapidly developed
UAVs techniques have been widely employed in producing high accuracy Digital Surface
Models (DSM) over the last decade (see also [31] and references therein). A combination
of UAV-based digital imagery and Structure from Motion (SfM) software can provide an
efficient, low-cost and rapid tool. The SfM method is an emerging technique that can be
used to describe variations in topography [31–35]

Indeed, detecting landslide phenomena, especially in smaller areas, is easier, faster and
more efficient using UAV techniques [36]. In fact, after [20,21], numerous researchers have
concluded that UAV scanning techniques can significantly assist in landslide
description [18,23,28,32,34,35,37–39]. Even though most of these studies deployed UAV
along with other techniques (such as Interferometric Synthetic Aperture Radar - InSAR,
TLS etc.), the UAV is paramount for describing pre-existing landslide phenomena. More-
over, t-LIDAR scanning techniques are commonly used to detect and describe landslide
phenomena [19,40–43]. Airborne LIDAR deployed by several researchers has also offered
a unique opportunity to describe and study landslides on a larger scale [44,45].

UAVs and TLS scanning techniques offer an advantage for the description and for
monitoring topographic changes induced by landslide phenomena, where more constant
and persistent methodologies are required [46]. The authors of [20,21] were among the
first who monitored landslide phenomena based on UAV techniques. Another study, [47]
(pp. 3–6), mentioned the accuracy of UAV in monitoring landslide phenomena, while [30]
(p. 10) managed to describe the progress of a landslide based on the correlation of different
DTM extracted from Synthetic-Aperture Radar (SAR) data, TLS and UAV scans in Italy.
The authors of [48] (pp. 3–6) managed to successfully detect, describe and monitor such
phenomena in their study area after four consecutive flight campaigns, and [28] (p. 5)
also monitored landslide phenomena based not only on UAVs but also on SAR images.
Numerous other research supports that UAV and TLS scanning techniques offer a reason-
able opportunity to compare easily extracted DTM of an area and consequently describe
landslide phenomena.

There are limited reports on landslide crack recognition based on remote sensing
techniques [23,49,50]. During the last decade, UAV and LiDAR scanning techniques have
assisted landslide crack recognition [23,37,40,51,52]. The study [47] (pp. 3–6) mentioned
the importance of UAV techniques in monitoring early landslide phenomena. The authors
of [53] (pp. 10–16) deployed UAV techniques combined with space-borne InSAR data to
detect potential early landslide phenomena (cracks) on infrastructures. In [54] (pp. 8–9),
researchers deployed UAV, among other techniques, to detect early phenomena in urban
environments. However, the literature on landslide detection based on remote sensing
techniques, both terrestrial and airborne, is still limited after wildfires [55,56].

To sum up, state-of-the-art technologies such as UAV and TLS have significantly
assisted in the detailed mapping of examined areas for the description and/or monitoring
of natural hazards both in urban and natural environments. Landslide phenomena are
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an example where these methodologies have proven a valuable asset for researchers.
These phenomena are commonly described after severe wildfires, since the absence of
vegetation renders the soil exposed and vulnerable to heavy rainfall and, consequently, to
sliding phenomena. To our knowledge, there is limited literature regarding the application
of UAV and TLS techniques for early landslide detection and monitoring shortly after
severe wildfires.

The aim of this paper is to detect early surface ruptures and cracks that may be
connected to shallow landslide phenomena and debris flow after severe wildfires, using
UAV-based photogrammetry and t-LiDAR scanning techniques. In addition, we plan to test
how these cutting-edge methodologies perform under different conditions and localities.

2. Study Areas

Five sites from four recently burned areas were selected for detailed analysis
(Figures 1 and 2). The selection methods and criteria are described in Section 3. All
sites were characterised by the same Mediterranean climatic conditions, but different
geomorphological conditions, and they were considered suitable for detecting changes
over a short temporal timescale, where soil movement was expected to occur. Moreover,
these areas were selected because, despite their similarities, different geological conditions
have been described, ranging from limestones (Evia) to conglomerates and marls (Agios
Stefanos) and marls (Kechries). All areas have relatively steep slopes (with a mean value of
30◦, ranging from 25◦ in Magoula to 38◦ to Agios Stefanos), lacking significant vegetation
cover due to the wildfires. Two of the selected areas were burned just a couple of months
before our first fieldwork (Evia and Kechries sites), while the other two areas were burned
7 and 10 years before our first visit (Agios Stefanos and Magoula), respectively.
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Figure 2. The five selected sites. Black and white dots represent the Ground Control Points (GCP)
used for this research. (a) Kechries site one (K1_7–K1_12); and (b) Kechries site two (K2_1–K2_4);
(c) Agios Stefanos (AS1–AS4), (d) Evia (E1–E2) (modified from [31] (p. 170); and (e) Magoula (M1–M6).

Central Greece, where the examined sites are located, is characterised by a typical
Mediterranean climate with mild and wet winters [61,62]. The rainy season is focused
between October and March even though extreme storm events may occasionally occur
from April to September [62,63]. This is also shown in Table 1, where monthly precipitation
is presented, based on data extracted from the National Observatory of Athens (NOA)
meteorological stations [64], located nearest to our study areas. Apart from occasional
storm events during the summer, the maximum precipitation is recorded from October to
March in all stations. Based on [65] (pp. 223), the mean annual precipitation of the Eastern
Peloponnese and Central Greece ranges from ~600 mm to ~722 mm.

Table 1. Monthly precipitation (mm) as recorded by the meteorological stations near the examined sites.

Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Evia
2019 121.8 123.2 7 0 0 0 0.2 0 0 0 0.2 213.4 465.8
2020 86.4 92.4 46.2 122.4 15.6 15.4 0 226 15.2 31 47.4 118 818
2021 53.8 78.2 26 25.8 1.2 19.4 0 5.2 29 59.6 - - 298.2

Ag. Stefanos
2019 183.2 140.6 36.2 114 2.2 0 43 0 4.2 34 194.8 243.8 996
2020 112.3 77 106.2 68.6 71.4 44.2 0 15.2 39.4 50.8 29.8 238.8 853.7
2021 88.8 38.8 29.8 27.8 0.4 15.2 1.2 9.2 5.6 158.8 - - 375.6



Fire 2021, 4, 87 5 of 24

Table 1. Cont.

Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Magoula
2019 89.6 46.2 16.6 71.2 1.4 8 3.4 0 4.2 20 108 123.8 492.4
2020 45.8 22.6 41.8 33.6 37.4 16.2 0.4 27.4 5 31.6 7 156 424.6
2021 82 23 7.6 19.8 0 18.6 0 0 1.4 125 - - 277.4

Kechries
2019 159.4 82.6 49.4 50.8 1 14.4 76.2 0 4 42.4 178 42.4 700.6
2020 12.2 5.6 76.6 76 25.6 6 0 10.6 26.2 14.2 15.8 73.4 342.2
2021 47.6 21 6.4 11.6 2.2 36.2 0 0 0.4 53.6 - - 179

2.1. Evia

Central Evia (Figure 2d) was affected by a large wildfire in August 2019 [66], which
burned a coniferous forest, including woodland and shrubs [67]. We selected an east-facing
30◦ slope located within a small sub-basin, covered by talus cones and alluvial deposits,
for our research. These formations had a considerable soil thickness, as confirmed by
fieldwork. Two scanning campaigns were conducted with the t-LiDAR and the UAV
on 19/10/2019 and 23/02/2020 to monitor early landslide phenomena. The examined
area was completely covered with vegetation during the following months, and further
examination was not feasible.

2.2. Agios Stefanos

Agios Stefanos was affected by a wildfire in August 2012. We selected a steep slope
(~33◦) with an already formed landslide scarp to detect any changes during our study
period (Figure 2c). Before the wildfire, the area was covered mainly by woodland and
shrubs [62]. At the time of our research, the area was almost entirely covered by bushes
and small pine trees. Regarding the site geology, the area mainly comprises Upper Miocene
lacustrine to fluviolacustrine marls to gravels [58]. Two scanning campaigns took place
on Agios Stefanos site. The first one was conducted on 9/11/2019 with the UAV, and the
second on 13/6/2020, both with UAV and t-LiDAR to monitor the existing landslide scarp.

2.3. Magoula

The Magoula site (a steep slope, ~25◦) was affected by a wildfire in August 2009. A
rotational landslide had already started at the time of our first visit (Figure 2e), and a
retaining wall had already been installed to prevent further movements. Before the 2009
wildfire, the area was partially covered by coniferous forest and shrubs [67]. Regarding
the site geology, the wider study area is considered to be part of the Pelagonian unit [68],
and as such, the geological structure mainly comprises Triassic limestones and dolomites.
However, the study area was covered by a thick layer of loose scree. Two scanning
campaigns were conducted with UAV on 9/11/2019 and 13/06/2020. In addition, a
t-LiDAR scan was conducted on 13/06/2020 to record the existing landslide.

2.4. Kechries

The area of Kechries (Figure 2a,b) was affected by severe wildfires in July 2020. Two
opposite-facing slopes (~27◦and 29◦) were examined during this research. Prior to the
wildfire, the area was mainly covered by coniferous forests [67]. The main geological
formation of the selected site is Pliocene marl [57], and as such, it favours the formation of
significant soil thickness, which could be prone to landslides. Three scanning campaigns
were conducted both with Lidar and UAV on 29/8/2020, on 8/10/2020, and on 24/3/2021
to monitor any early landslide phenomena.

3. Materials and Methods

The methodology adopted for this research was conducted in three distinct steps:
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3.1. Selection and Characterisation of Landslide-Prone Areas

We first collected data for the recently burned areas as they were described in the
European Forest Fire Information System (EFFIS) portal [66] in order to select suitable
locations for our research. We then calculated the severity of the selected wildfires to
exclude areas where dense vegetation remnants would affect our data acquisition and
would not contribute to further landslide phenomena. Burn severity was calculated by
applying the Difference Normalized Burn Ratio (dNBR) index [69]. Landsat 8 pre-fire and
post-fire images (Bands 5 and 7) were processed, resulting in the delineation of areas with
less remaining vegetation (see also [31]).

Steep slopes were preliminarily selected using the 5 m × 5 m Greek Cadastral Digital
Elevation Model (DEM), while the pre-fire status of the land cover was identified based
on Corine [67] and the most recent satellite images, available at Google Earth. The most
important part of the pre-fieldwork stage was the characterisation of the geological for-
mations to identify landslide-prone conditions. We used the 1:50,000 scale maps of the
Hellenic Survey of Geology and Mineral Exploration (HSGME), namely Psachna Evia [58],
Eleusis [59], Korinthos [57] and Kifisia [60] for a coarse selection of candidate sites, but the
fieldwork refined our selection, at least for the Evia and both Kechries sites.

Regarding the already sliding areas (i.e., Magoula and Ag. Stefanos), we identified
the extent of the landslide scarps onsite, making preliminary flights with the UAV, in
order to acquire a more detailed orthomosaic, since the landslides were not visible even
in the most recent satellite imagery or in the 5 m × 5 m cell size Greek Cadastral Digital
Elevation Model.

3.2. Data Acquisition

We conducted UAV flights and t-Lidar scans for each location in order to compare
results and to identify the most efficient method for landslide detection. The detailed scans
supported the three following goals: (1) the detection of landslides that were not easily
distinguished in the field; (2) the detection of early landslide phenomena, such as activation
of pre-existing scarps or the creation of new ones; and (3) to monitor existing landslides.

In order to achieve high absolute accuracy, we used Ground Control Points (GCPs),
both for the t-Lidar- and the UAV-derived data. GCP distribution and accuracy are critical in
precise UAV mapping [70–72]. At least three GCPs may be required for georeferencing [73–75],
as errors increase with limited GCP numbers, as well as when there is a significant distance
between the GCPs [76]. Two studies, [16] (pp. 2–6) and [77] (pp. 7–10), mentioned the
importance of a dense GCP network for the accuracy of the extracted results. Another
study, [78] (pp. 6–8), demonstrated the importance of GCPs, indicating that 15 GCPs for an
area 420 × 420 m can lead to accurate results, where a ratio of 11760 between scanned area
and GCPs is extracted (at least 15 points for ~ 176400 m2). It is worth mentioning that the
maximum ratio scanned area/GCP in this research was ~76 (11 GCP for 840 m2 in Kechries,
Table 2). Furthermore, to ensure the credibility of the GCPs, all targets were arranged at
different vertical levels [78].

For each case, we used a different number of GCPs, depending primarily on the
extent and the physical characteristics of the sites, to ensure that each area was adequately
covered. Small rectangular aluminium plates (50 cm × 50 cm and 15.8 cm × 23 cm) were
equally spread across the study areas and were surveyed using a Spectra SP60 Real-Time
Kinematic Global Navigation Satellite System (RTK GNSS).

3.2.1. UAV Image Acquisition

For this study, a DJI Phantom 4 was used with a 1/2.3” 12.4 MP camera sensor. For
all sites, the photos were extracted during manual flights, using a nadir camera in Evia,
and a combination of nadir and oblique lines of sight in the other locations, while the
images were acquired when the UAV was in a still position. No automated flight plan was
preset due to the presence of unburned tree canopies in the Evia and Kechries sites and
the occurrence of highly steep slopes and uneven terrain combined with sparse trees in
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Agios Stefanos and Magoula, respectively. As we could not use automated flight software,
we managed to standardise our flights by making consistent flight paths and manoeuvres,
which we repeated for each flight. To this end, we used the GCPs and characteristic spots
on the ground, such as rocks or tree trunks. A minimum forward image overlapping was
set at approximately 80% at the highest part of the slopes, and side overlap reached 95% in
specific areas of high interest at the highest elevations. The mean flight altitude ranged
from 5 m to 35 m above ground level (AGL) following the characteristics of each area,
especially the topography and the remaining vegetation (Table 2). All extracted images
were photogrammetrically processed using the Agisoft PhotoScan Metashape Professional
(v. 1.5.5).

Table 2. UAV flight and image acquisition characteristics for each site.

Site Name Date Number of
Photos

Mean Flight
Altitude (AGL) Mean Slope

Evia 19/10/2019 298 5–15 m 30◦

Evia 23/2/2020 217 5–15 m 30◦

Ag. Stefanos 9/10/2019 142 20–35 m 38◦

Ag. Stefanos 13/6/2020 242 20–35 m 38◦

Magoula 9/11/2019 351 5–10 m 25◦

Magoula 13/6/2020 401 5–10 m 25◦

Kechries (K1) 29/8/2020 411/- 3–15 m 27◦

Kechries (K1/K2) 8/10/2020 432/93 3–15 m 27◦/29◦

Kechries (K1/K2) 24/3/2021 395/134 5–15 m 27◦/29◦

3.2.2. t-LiDAR Scanning Characteristics

For the t-Lidar data acquisition, we used the Optech Ilris 3D LiDAR, which was
installed in the best possible location to obtain an unobstructed view of the examined slope
with respect to the existing vegetation and the distance. For the scanning process (Table 3),
we followed the standard methodology, as described in [31] (pp. 4–11).

The Ilris 3D system included the main sensor, the tripod, the “Controller”, and “Parser”
software which were used for the data acquisition and analysis and the portable computer.
No tilt option was applied for the scanning process. The sensor consists of a 1535 nm laser
wavelength with a 1700 m range in a 40◦ × 40◦ field of view and measurement accuracy of
7 mm at 100 m target distance. It is worth mentioning that we used the last pulse option
in all scans to avoid vegetation obscurance. This option allowed us, where possible, to
avoid some of the vegetation coverage because of the capability of the sensor to discern
the ground and vegetation points by calculating the beam’s time travel. Concerning the
GCP utilisation, for every scan, we used aluminium targets to achieve high reflectance. The
targets were surveyed by the GNSS receiver (projected in EGSA ‘87, EPSG 2100), resulting
in a georeferenced TLS-derived point cloud.

Table 3. TLS parameters for each scanned slope in Evia, Ag Stefanos, Magoula and Kechries 1 sites.

Site Name Date Mean
Distance (m)

Beam
Width (mm) Pulse Mode Spacing

(mm)

Evia 19/10/2019 8.22 14 last 7.1
Evia 23/2/2020 10 14 last 7.1

Ag. Stefanos 13/06/2020 127 14 last 28
Magoula 13/06/2020 39.5 14 last 12
Kechries 29/08/2020 27 14 last 11
Kechries 08/10/2020 25 14 last 10
Kechries 14/03/2021 25 14 last 10
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3.3. Data Processing
3.3.1. SfM Photogrammetry Processing

All acquired data from the UAV-based scans were processed in Agisoft PhotoScan
Metashape Professional, using the high-accuracy option for the dense cloud development
and the mesh, texture, and tiled models. The procedure is described in detail in [31]
(pp. 4–11) and can be summarised in the following steps:

• Removal of photo metadata in order to remove the built-in GPS coordinates, as they
were acquired in a different projection system than the RTK GNSS we used which
might have caused decreased absolute accuracy of the model;

• Selection of all required photos in order to import them to the SfM software;
• Image alignment and development of Dense Point Cloud using high quality settings

and mild filtering;
• Point classification and vegetation removal. The points corresponding to tree branches

and trunks were classified as vegetation and removed from the point cloud;
• Development of mesh, texture and tiled models. The mesh was used for the creation

of the DSM and the orthomosaic, while the texture and tiled models were used for the
final check of our model and the easy distinction of the GCPs;

• Insertion of markers using the GCPs as a proxy. The markers were conventionally put
in the lower right corner of each GCP, which were then surveyed accordingly;

• Markers error inspection using the software built-in routine and also by comparing
known dimensions or absolute GCP locations (see also Section 3.4);

• Development of high-resolution DSM (Digital Surface Model) and orthomosaic of the
whole scanned area. The maximum resolutions for the model, DSM and orthomosaic
are displayed in Table 4;

• Extraction of Dense Point Cloud in order to use it in the CloudCompare software.

Each scan’s high spatial resolution DSM was then imported into ArcMap v10.5.1
to quantify the difference between successive scans. The final raster files represent the
differences in the anaglyph, related either with landslides, erosion or changes in vegetation.
The maximum spatial resolution of the produced Tiled Models, DSM and orthomosaics are
shown in Table 4.

Table 4. SfM-derived models resolution.

Maximum Resolution mm/pix

Tiled Model DEM Orthomosaic

Ag. Stefanos 7.7 15.4 7.7
Magoula

9/11/2019 3.2 6.4 3.2
20/6/2020 4.1 8.4 4.2

C. Evia
19/10/2019 3.7 7.3 3.6
23/02/2020 2.3 4.7 2.3

Kechries (K1/K2)
29/8/2020 6.1/- 12.3/ - 6.13/ -
8/10/2020 6.8/ 3.5 13.5/7.0 6.7/ 3.5
14/3/2021 3.6/3 7.2/5.8 3.5/3

3.3.2. Point Cloud Processing

The CloudCompare freeware was used for the UAV- LiDAR-derived point clouds
comparison. The workflow of the followed process is described in Figure 3, based on [31]
(pp. 4–11).



Fire 2021, 4, 87 9 of 24

Fire 2021, 4, x FOR PEER REVIEW 5 of 5 
 

 

19/10/2019 3.7 7.3 3.6 

23/02/2020 2.3 4.7 2.3 

Kechries (K1/K2)      

29/8/2020 6.1 / - 12.3/ - 6.13/ - 

8/10/2020 6.8/ 3.5 13.5/7.0 6.7/ 3.5 

14/3/2021 3.6 / 3 7.2 / 5.8 3.5 / 3 

3.3.2. Point Cloud Processing 

The CloudCompare freeware was used for the UAV- LiDAR-derived point clouds 

comparison. The workflow of the followed process is described in Figure 3, based on [31] 

(pp. 4–11).  

 

Figure 3. Point cloud processing—CloudCompare workflow. 

During this research, we also focused on TLS– and UAV–SfM-derived point clouds. 

The point cloud processing and final comparison were conducted in CloudCompare soft-

ware. The method of point clouds registration is considered one of the most critical steps 

during point cloud analysis. The different point clouds were co-registered using the align-

ment tool to GCPs by point–pair selection. The georeferencing of the surveyed GCPs with 

the RTK GNSS provided an accuracy in the order of a few centimetres. Following the pre-

vious step, vegetation points were removed using the Cloth Simulation Filter (CSF) algo-

rithm, and some remaining points were manually removed from each point cloud. By 

applying this algorithm, we managed to adequately separate ground and vegetation 

points (see also [79]) for Kechries and Evia sites. Furthermore, the alignment with local 

features enhanced the point clouds’ registration before the final point cloud comparison. 

This method used fixed features such as trees or outcrops within the study area, resulting 

in still higher accuracy (feature alignment error was about 0.01–0.02 m). Finally, the M3C2 

(Multiscale Model to Model Cloud Comparison) algorithm was applied for the compari-

son of multiple point clouds. We computed the vertical normals and compared TLS (e.g., 

Kechries region, 29/08/2020–14/03/2021) and UAV–SfM-derived point clouds for each site 

(e.g., Kechries region, 29/08/2020–08/10/2020 and 08/10/2020–14/03/2021). The M3C2 algo-

rithm computes the local normals, resulting in the vertical distance estimation between 

two point clouds in 3D perspective (see also [80]). For this purpose, for the “guess params” 

Figure 3. Point cloud processing—CloudCompare workflow.

During this research, we also focused on TLS– and UAV–SfM-derived point clouds.
The point cloud processing and final comparison were conducted in CloudCompare soft-
ware. The method of point clouds registration is considered one of the most critical steps
during point cloud analysis. The different point clouds were co-registered using the align-
ment tool to GCPs by point–pair selection. The georeferencing of the surveyed GCPs with
the RTK GNSS provided an accuracy in the order of a few centimetres. Following the
previous step, vegetation points were removed using the Cloth Simulation Filter (CSF)
algorithm, and some remaining points were manually removed from each point cloud.
By applying this algorithm, we managed to adequately separate ground and vegetation
points (see also [79]) for Kechries and Evia sites. Furthermore, the alignment with local
features enhanced the point clouds’ registration before the final point cloud comparison.
This method used fixed features such as trees or outcrops within the study area, resulting
in still higher accuracy (feature alignment error was about 0.01–0.02 m). Finally, the M3C2
(Multiscale Model to Model Cloud Comparison) algorithm was applied for the comparison
of multiple point clouds. We computed the vertical normals and compared TLS (e.g.,
Kechries region, 29/08/2020–14/03/2021) and UAV–SfM-derived point clouds for each
site (e.g., Kechries region, 29/08/2020–08/10/2020 and 08/10/2020–14/03/2021). The
M3C2 algorithm computes the local normals, resulting in the vertical distance estimation
between two point clouds in 3D perspective (see also [80]). For this purpose, for the “guess
params” option in CloudCompare software, we used a 0.20 m normal scale diameter and
0.10 m projection scale diameter at Evia (for both TLS and SfM technique) and 0.30 m and
0.20 m, respectively, for the first Kechries location.

3.4. Error Estimation

Four types of errors were estimated in order to provide the most accurate results. The
method for each one is described below:

(i) Feature alignment error. At this step, stable common features such as trees and
outcrops were used to fine-align each point cloud to enhance the final registration and
accuracy. An alignment error of less than 0.02 m or 0.01 m was achieved in all sites;

(ii) GNSS-XYZ error. At least one GCP was used for each point cloud for the XYZ
accuracy assessment by comparing its XYZ coordinates extracted from each point cloud
with the actual coordinates measured by RTK GNSS;
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(iii) GCP registration error. This error was calculated automatically using the registra-
tion tool in CloudCompare. During the registration procedure, the different point clouds
(TLS or SfM-derived) were aligned, by point-to-point picking, with the GNSS-derived
GCP points;

(iv) Aluminum plates error. During this error analysis, we used each point cloud’s
GCP aluminium plate dimensions to compare them with the real world’s rectangular plate
dimensions (stable shape);

In summary, a systematic error of approximately 0.01 to 0.02 m is estimated in order
to provide the most accurate results.

4. Results

The use of t-LiDAR- and UAV-derived high-resolution data provided both qualitative
and quantitative interpretations of the current status in the examined slopes. Both TLS and
UAV techniques were compared for assessing and validating early landslide and debris
flow phenomena through 3D modelling. The high-quality derived DSM and point clouds
appear to replicate the microtopography and texture accurately. The results are different in
each one of the five sites, and so they are presented separately:

4.1. Evia

The Evia site was scanned with the UAV-mounted camera and the TLS on 19/10/2019
and 23/02/2020. The comparison of both DSM revealed slight changes in the topography,
which are interpreted as small soil movements, possible early landslide indicators and
soil erosion. The correlation of the UAV- and TLS-derived point clouds through the M3C2
algorithm revealed two minor offsets (Figure 4), approximately 4–5 ±3 cm high and
1.5 m long, which could be interpreted as the initiation of a small slide. Moreover, the
formation of small rills at the northern part of the slope (right side in Figure 4) suggests the
development of a new erosional landscape after the recent wildfire. These rills are expected
to deepen and widen during the following years and form small gullies that transport
sediment to the base of the slope.

The TLS scans yielded low-quality point clouds because of the inadequate angle
between the scanner and the slope. More importantly, multiple tree and bush remnants
caused many no-data areas because of the related shadows.
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Figure 4. (a) Vertical distance between the October 2019 and February 2020 UAV-derived point
clouds, using the M3C2 algorithm in the CloudCompare software. Two sub-parallel minor offsets are
indicated by white arrows (b), while a fallen tree branch is visible in red colour. UAV–SfM-derived
orthomosaic (map view) of the examined area (c).
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4.2. Kechries 1 & 2

Three consecutive scans with both UAV and TLS took place in Kechries site one, while
two scans, only with UAV, took place in Kechries site two. Regarding Kechries one, the
comparison of the UAV-derived high-resolution DSM revealed early landslide phenomena.
In particular, the comparison between the scan of August 2020 versus the one of October
2020 showed an apparent movement along a major pre-existing scarp, especially in the
northern part (see also Figure 5). In addition, a minor crack, which might have the potential
to turn into scarp, was identified in the central part of the slope, while another crack was
also revealed in the western part of the slope.

The comparison between the October 2020 and the March 2021 scans recorded move-
ment in the major scarp at the eastern part of the slope. More importantly, new cracks were
revealed, either in the northern extension of the previously defined central scarp or in new
locations that were stable during the first three months. These cracks are indicated with
black arrows in Figure 6 and are all parallel to the major scarp in the eastern part of the
slope, having a general NE–SW direction.
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Figure 5. Differences between the August 2020 and the October 2020 UAV–derived DSMs from
Kechries site one: A clear activation of a curved scarp is visible in the eastern part of the slope, and
possible cracks are visible in the central and western parts of the slope. Black arrows indicate possible
cracks in the soil surface.
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Figure 6. Differences between the October 2020 and the March 2021 UAV–derived DSM from Kechries
site one: The pre-existing scarp at the eastern part of the slope is now further expanded, while another
major crack is visible in the central part of the slope. In addition, further smaller cracks parallel to the
two larger ones are traced in the western part of the slope. Black arrows indicate possible cracks in
the soil surface.

The total vertical displacement along the cracks and scarps varies from as low as
10 ± 4 cm in the secondary, smaller cracks and reaches as high as 19 ± 4 cm in the major
scarp at the eastern part of the slope. Likewise, the lateral expansion of the crack in the
central part of the slope reaches up to approximately 27.5 m (Figures 6 and 7).

Regarding Kechries site two, the comparison of two different UAV-derived high-
resolution DSMs revealed that a major pre-existing scarp traversing the entire slope was
active. Figure 8 shows that the Kechries site two slope is cut through by a scarp that appears
to have accumulated a vertical displacement of around 10–15 ± 4 cm over 5 months. The
largest displacements are visible in the NE and SW edges of the scarp, while the central
part appears to have the smallest displacements.
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Figure 7. The gradual expansion of the crack in Kechries site one is visible in the central part of
the slope, towards the northeast, as is described in (a) the differences between the August 2020 and
the October 2020 UAV–derived DSM (crack 1), as well as its possible continuation (dashed line)
and (b) the differences between the October 2020 and the March 2021 UAV–derived DSM (crack
2). It is clear that the described crack (c) has significantly expanded from approximately 4 m to
approximately 27.5 m. Black arrows indicate possible cracks in the soil surface.

The comparison of the UAV-derived point clouds for the Kechries site one revealed
similar findings. The contrast of the first two flights (August 2020 to October 2020) using
the M3C2 algorithm revealed slight differences in the study area. Debris and sediments
had moved over the surface and accumulated towards the foot of the slope. In addition,
minor scarps were traced based on the M3C2 algorithm, possibly indicating the initiation
of landslide phenomena. A clearer demonstration of the cracks is visible in the comparison
of the October 2020 vs March 2021 scans (Figure 9). In this case, the major cracks which the
UAV-derived DSM revealed were also clearly visible, with a maximum height of 20 cm.

Early landslide phenomena and erosional processes can also be seen between the first
TLS scan on 29/8/2020 and the last one on 24/3/2021. During this 7-month period, the
landscape was altered, with clear indications of soil erosion processes in the upper part
of the slope and soil deposition in the lower part. Furthermore, the comparison of the
point clouds using the M3C2 algorithm confirmed the existence of active landslide cracks,
although parts of the slope were not modelled due to the obstruction of the laser beam by
the remaining tree logs. In any case, the maximum displacements that were detected using
the TLS reached up to 20 ± 5 cm (Figure 10).
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Figure 8. Differences between the October 2020 and the March 2021 UAV–derived DSMs from
Kechries site two. A major active curved scarp is visible in the central part of the slope. The SW and
NE parts of the scarp appear to have been more active, showing higher displacement. Black arrows
indicate possible cracks in the soil surface.
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Figure 9. Differences between the October 2020 and the March 2021 UAV SfM–derived point clouds
from Kechries site two. The eastern crack that was visible in the UAV–derived DSM comparison
(see also Figure 5) is unclear, although the linear pattern of the point cloud differences could be
interpreted as preliminary signs of displacement in a landslide scarp.
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Figure 10. Differences between the August 2020 and the March 2021 TLS–derived point clouds from
Kechries site one. The eastern crack that was visible in the UAV–derived DSM comparison (see also
Figure 5) is partly non-visible due to the obstruction of the laser beam by the remaining tree logs.

4.3. Magoula

A pre-existing landslide scarp was mapped in the examined slope, which was burned
in 2009, 10 years before we first visited the area. The landslide occurred next to a vital water
supply canal, and it was monitored by the Athens Water Supply and Sewerage Company.
As a result, a retaining wall was installed shortly before our first scan campaign (Figure 11).
Due to dense low vegetation, mostly grass and bush, it was impossible to model the soil
surface accurately. The UAV-based scanning could not result in the desired DSM or point
cloud quality since it was not possible to distinguish the vegetation from the surface using
the UAV–SfM-derived point cloud. Furthermore, the t-LiDAR could only be installed at
the base of the sliding slope, and the existing vegetation obscured the laser beam in such a
manner that the point cloud was rendered inadequate.

Nonetheless, orthomosaics were developed based on the UAV–SfM data for both
scanning campaigns and the landslide area was mapped in both cases. The comparison
of both scans is shown in Figure 11. The visual inspection of both landslide boundaries
reveals an expansion of the slide towards the base of the slope towards the west, and two
additional minor scarps at the north and south parts, respectively. The total landslide
area in October 2019 was measured as 68 m2, while the total landslide area in June 2020
was measured as 74 m2. This could be translated to an expansion rate of 0.75 m2/month,
despite the mitigation measures and assuming that the landslide is expanding at a stable
pace over time. The latter indicates that the equilibrium has not been reached yet following
the construction of the retaining wall. It would be interesting to monitor whether the
expansion accelerates or decelerates in the upcoming years.

4.4. Ag. Stefanos

A pre-existing landslide scarp was mapped in detail, using the UAV-derived orthomo-
saics of the area (Figure 12). The study area was burned 7 years before our scans, and low
vegetation had completely covered the entire slope, except for the landslide scarp. Since the
low vegetation was very dense, it was impossible to remove it without affecting the final
point cloud and DSM. As a result, we could only measure the length and the maximum
height of landslide scarp, using the orthomosaics and 3D tiled models from both flights,
and compare the lengths. The maximum height of the landslide scarp was measured in
both models at 1.4 m, and the total length was 16.54 m in both orthomosaics.

The TLS method did not provide similar detail and accuracy in those parameters. The
dense vegetation, combined with the large distance from the examined slope, resulted in a
low-resolution point cloud, and for that reason, the LiDAR scans were not used.
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Figure 11. UAV–SfM-derived orthomosaics (map views), showing the differences in the pre-existing
landslide dimensions between October 2019 (left) and June 2020 (right) at the Magoula site. The
white dashed line indicates the landslide boundaries, as inferred by the orthomosaic interpretation
and fieldwork. Secondary minor cracks were visible in the vicinity of the main scarp, mainly in the
southern part. The gabion retaining wall, west of the landslide, was installed shortly before our first
visit to the area.
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Figure 12. Orthomosaic of the Agios Stefanos study area. The entire slope was covered by new
vegetation after the 2012 wildfire, while burned trees were still lying in the ground. The black arrows
show the existing landslide scarp. Four 50 cm × 50 cm aluminium rectangles were used as GCPs and
are visible in white colour.

4.5. Summarised Results

To summarise, the final results show that we were able to identify new potential
landslide cracks or monitor pre-existing landslides in all sites. During the period of our
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scanning campaigns, there were four sites (Kechries one and two, Evia and Magoula)
where we noted changes in the slope surface. On the other hand, we were able to confirm
that no changes occurred in the pre-existing landslide of Ag. Stefanos. Both qualitative
and quantitative results are summarised and displayed in Table 5:

Table 5. Summarised qualitative and quantitative results regarding landslide detection and monitoring for all the
examined sites.

Site Name Qualitative Quantitative

Evia New crack ~ 4–5 ± 3 cm high and 1.5 m long
Ag. Stefanos Description of pre-existing landslide No measured displacement

Magoula Expansion of pre-existing landslide ~8 % expansion of the landslide

Kechries one Expansion of pre-existing crack & New cracks From ~10 ± 4 cm (smaller cracks) to ~19 ± 4 cm
(major crack) with lateral expansion up to ~ 27.5 m

Kechries two Expansion of preexisting scarp ~10–15 ± 4 cm high

4.6. Errors

During this research, we assumed a mechanical error of 0.02 m on the TLS sensor (see
also [31]). We also calculated errors on the GNSS measurements and registration errors.
The error of point clouds generated from both methods was quite similar in the Evia and
Kechries locations. In the Magoula and Ag. Stefanos locations, the registration errors were
differentiated, probably due to the line-of-sight issue of the TLS laser beam. In Evia we
calculated an error of 0.02 and 0.03 m for the UAV–SfM and TLS methods, respectively,
based on the registration of each point cloud with the GCPs. In the same area, we also
calculated the feature alignment error, which was less than 0.01 m. In Kechries site one,
we had the opportunity to also assess the GNSS error based on the GNSS coordinates
measurements, while the feature registration error was estimated to be about 0.02 m. At
this point, our error estimation was considered adequate regarding the difficulties that we
faced during the data collection (tree stems, other flight and camera obstructions). An error
of about 0.03–0.04 m in UAV-derived models is also described in other studies [31,32,81].
In Kechries site two, the GNSS error estimation was not applicable due to the low number
of GCPs. In this area, we calculated a conservative feature alignment error of about 0.01 m,
while we assessed an error of 0.003 m by measuring the GCP aluminium plates’ dimensions
(see also [31]). During this procedure, we compared the plate dimensions of each GCP
included in every point cloud to the actual plate dimensions. The errors for each flight or
TLS survey are displayed in Table 6.

Table 6. GNSS–XYZ error, GCP registration error and feature alignment error, calculated for each location and scan, using
either the UAV-mounted camera or the t-LiDAR. See text for details in error calculation.

Site Name Date
DSM
Mean

Error (m)
GNSS—XYZ Error (m)

GCP
Registration

Error (m)

Feature
Alignment
Error (m)

Evia (TLS) 19/10/2019 - 0.02 (based on SP60 measurements) 0.03 0.01
Evia (UAV-SfM) 19/10/2019 0.041 0.02 (based on SP60 measurements) 0.02 0.01

Evoia (TLS) 23/02/2020 - 0.02 (based on SP60 measurements) 0.03 0.01
Evia (UAV-SfM) 23/02/2020 0.045 0.02 (based on SP60 measurements) 0.02 0.01
Magoula (TLS) 13/06/2020 - 0.018

(based on SP60 measurements) 0.07 -

Magoula (UAV-SfM) 13/06/2020 0.052 0.018
(based on SP60 measurements) 0.03 -

Ag. Stefanos (TLS) 13/06/2021 - 0.018
(based on SP60 measurements) 0.10 -

Ag. Stefanos (UAV -SfM) 13/06/2021 0.058 0.018
(based on SP60 measurements) 0.02 -

Kechries one (UAV-SfM) 29/08/2020 0.039 0.04 0.03 0.02
Kechries one (TLS) 29/08/2020 - 0.04 0.05 0.02
Kechries one (TLS) 08/10/2020 - 0.03 0.05 0.02

Kechries one (UAV-SfM) 08/10/2020 0.038 0.04 0.04 0.02
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Table 6. Cont.

Site Name Date
DSM
Mean

Error (m)
GNSS—XYZ Error (m)

GCP
Registration

Error (m)

Feature
Alignment
Error (m)

Kechries two (UAV-SfM) 08/10/2020 0.043 0.003 (based on target
measurements) 0.01 -

Kechries one (UAV-SfM) 14/03/2021 0.049 0.015 0.01 0.02
Kechries one (TLS) 14/03/2021 0.047 0.02 0.05 0.02

Kechries two (UAV-SfM) 14/03/2021 0.043 0.003 (based on target
measurements) 0.01 -

5. Discussion

The purpose of this study was to detect early landslide activation and soil movement
by detecting early-stage surface cracks (Evia and Kechries sites) and monitoring existing
landslides (Ag. Stefanos and Magoula sites) in post-fire settings. In the Ag. Stefanos and
Magoula sites, the landslides had already started at the time of our first visit. Usually, the
landslide cracks are identified and monitored through field surveys or visual inspections
of the aerial photographs (see [21] and references therein). Since the behaviour of a
landslide can be monitored by examining the cracks at the landslide site [82], we focused
on developing DSM and point clouds of high resolution and accuracy, both absolute
and relative.

The most characteristic example of landslide cracks with a measurable displacement
during the first year after the wildfire was in the Kechries sites. Although the activation
of the pre-existing scarp was not visible in the field, it was clearly demonstrated when
we processed the high-resolution DSM. More importantly, several secondary cracks were
parallel to the primary scarps that were undetectable in the field and had not formed
during the first observation period (August 2020 until October 2020), but they were visible
when comparing the October 2020 and the March 2021 UAV scans. We speculate that
the enlargement of the primary cracks and the formation of new, smaller ones between
October 2020 and March 2021 was related to the rain season [83,84], which usually lasts
from October until April in Greece [6,85].

Indeed, several researchers define the rain season of Central Greece to be between
October and March [61,62], which is in agreement with the monthly precipitation levels
presented in Table 1. Precipitation levels indicate that the correlation of the rainfall pattern
and the described early landslide processes is reasonable. Furthermore, no considerable
precipitation was recorded between the wildfire events and our first visit to the recently
burned areas (Kehries and Evia, see also Table 1). As a result, we argue that most of the
soil surface cracks were formed after our first visit, and therefore we were able to detect
and monitor newly formed early landslides.

Overall, Kechries sites one and two provided the best data for our research. This is
predominantly due to the high burn severity, which resulted in very sparse vegetation
remnants, and the thick soil horizon that became prone to sliding after the vegetation was
burned. Furthermore, the steep slope was in favour of the TLS method since it provided
a line of sight almost perpendicular to the ground (see also [31]). Luckily, we also had
the opportunity to set up the t-LiDAR right opposite the Kechries site one slope at a close
distance, and we were able to produce high-resolution point clouds.

Another question is whether the implementation of the t-LiDAR is superior to the
SfM method using a UAV-mounted camera [86–88]. One of the advantages of the analysis
of the post-fire effects using UAVs is that the vegetation is lacking; thus, there is no
obstruction to the camera view of the ground. However, according to our experience,
within the first year after the wildfire, the vegetation regrowth reached a significant level
(see also [56,89,90]), and as such, it was hard to achieve valuable results. It is important to
note that it is impractical to remove low vegetation (i.e., grass, bush, etc.) during the point
cloud processing, in contrast to tall trees, which can be easily isolated and omitted. More
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complications occurred when using the t-LiDAR because of the obstruction caused by the
remaining tree trunks, which usually resulted in challenging datasets.

T-LiDAR obtained the best results when the line of sight was perpendicular to the
slope. However, this requirement is not easily met. As a result, even the smaller and thinner
vegetation may produce large shadows in the final point cloud. Such obstructions are
important because they might hide an early landslide crack. All in all, having tested both
the UAV-mounted camera and t-LiDAR in such conditions, we suggest that the UAV-based
platform provides more consistent datasets.

The relation between the monitored cracks and the actual landslide regime in the
area is still a question. In the case of pre-existing cracks (e.g., Kechries site one) or scarps
(Ag. Stefanos) we anticipate a continuing slide, depending on the future rainfalls and the
vegetation regrowth rate. Regarding the newly formed cracks, we expect that they will
contribute to further slope failures, as they form parallel structures to the already confirmed
active cracks.

The use of the UAV-based SfM photogrammetry and a GCP survey using GNSS
RTK provided increased accuracy in any measurements [31]. The 3D reconstruction of
the examined areas provided measurable characteristics within a few cm, such as the
height and length of landslide structures that may not be easily measured in the field.
Furthermore, the derived orthomosaics and DSM could have extremely high resolutions,
in the order of centimetres or even millimetres per pixel, allowing the recognition and
monitoring of linear scarps or cracks that were not visible with the naked eye in the field.
Such high-resolution data are not available by traditional means, i.e., satellite and aerial
imagery or airborne LiDAR in conventional aircraft, etc. As a result, recently burned slopes
with a landslide-prone morphology and surface soil properties can be scanned immediately
after a severe wildfire to record early landslide phenomena and help mitigate actions, such
as barriers made by branches and trees trunks and/or retaining walls, etc.

The most important limitations on the herein presented methods originate from
the extent of the vegetation regrowth. The major deficiencies regarding the soil surface
reconstruction are mainly related to low vegetation, which is impossible to remove from
the point cloud. In contrast, trees that remain unburned can be easily removed from the
point cloud, and as such, they pose only minor obstacles. At the recently burned areas,
which we first visited shortly after the wildfire, namely Evia and Kehries, we managed
to only conduct effective scans during the first 7 months (max) after the wildfire. As a
result, we were only able to test the impact of the vegetation for late summer (Kechries)
or early autumn (Evia & Kechries), winter (Evia) and spring (Kechries). In both cases, the
vegetation flourished during the first months of the spring following the wildfire, in such a
manner that it was impossible to make more effective scans. In any case, we concluded
that both UAV-based SfM photogrammetry and t-Lidar scans should be conducted as early
as possible after the wildfire, before the first rainy season and no later than the first spring
season. Another limitation relates to manual vegetation removal, which inevitably results
in different altitude values between the sequential DSM, when comparing vegetated areas.
These differences could reach more than 2–3 m, but at the same time, they could be detected
as outliers.

Overall, this study tested two different methodologies: a passive SfM–UAV surface
reconstruction versus an active laser using the backscattered intensity signal over different
post-fire localities. The selection of sites included different geological, geomorphological
and vegetation characteristics. In addition, the duration since the last wildfire varied
per site from a few months to up to a decade. Usually, published data commonly apply
these techniques in the most favourable sites that are often not reproducible in most other
“ordinary” localities. Herein, we tested to see how each methodology performed in both
“real” and variable conditions. Thus, this study offers a comprehensive approach that is
useful in all post-fire conditions.

The high spatial resolution can support slope deformation mapping of the order of
few cm. These fractures have the potential to trigger landslide phenomena. Therefore, they
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can provide valuable precursors for future landslide activity for the first couple of years
following the wildfire. Later on, as vegetation grows further and stabilises the slope, the
landslide probability decreases. As a result, the first couple of years are critical for tracing
early landslide fractures and applying mitigation measures. Our study has demonstrated,
in the Kechries and Evia sites, that UAV photogrammetry has the capability to provide
such a service.

6. Conclusions

This paper applies two modern methodologies for early landslide detection and
monitoring in recently burned areas. UAV-derived DSM and point clouds, as well as t-
LiDAR point clouds, were used to detect newly formed soil cracks and monitor pre-existing
landslide scarps in five sites with different physical characteristics. We demonstrated that
UAV-derived and t-LiDAR datasets are effective in areas that experienced severe wildfires
no longer than 7 months before the flight campaign, or up to 2–3 months after the rainy
season. The most accurate and detailed results for newly formed cracks and pre-existing
scarps monitoring were obtained from the elaboration of high-resolution DSMs derived
from UAV-based SfM photogrammetry in the Kechries one and two and Evia sites. These
sites were recently severely burned, with insignificant vegetation regrowth for the first
7 months after the wildfire. Agios Stefanos and Magoula, which had experienced wildfires
7 and 10 years before our research, respectively, were not ideal either for UAV or t-LiDAR
scanning due to the dense low vegetation that covered the ground almost completely.
Nevertheless, we were able to monitor the pre-existing landslide scarps in both areas. As a
result, we suggest that inexpensive equipment, such as a small UAV with a standard camera
sensor, can be used for early small scale landslide phenomena detection and monitoring in
severely burned slopes. The use of t-LiDAR can provide additional data in steep slopes
with limited vegetation, provided that it is installed at a close distance, with minimum
vegetation obstructions.
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