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Abstract: Fire is a concern for the sustainability of dry forests such as those of the Mediterranean
region, especially under warming climate and high human use. We used data derived from Landsat
and MODIS sensors to assess forest changes in the Talassemtane National Park (TNP) in North Africa
from 2003–2018. The Talassemtane National Park is a protected area in northern Morocco, a biodiverse,
mountainous region with endemic species of concern such as the Moroccan fir (Abies marocana) and
Barbary macaque (Macaca sylvanus). To help the managers of the TNP better understand how the
forest has been impacted by fire vs. other disturbances, we combined information from remotely
derived datasets. The Hansen Global Forest Change (GFC) data are a global resource providing
annual forest change, but without specifying the causes of change. We compared the GFC data to
MODIS wildfire data from Andela’s Global Fire Atlas (GFA), a new global tool to identify fire locations
and progression. We also analyzed surface reflectance-corrected Landsat imagery to calculate fire
severity and vegetation death using Relative Differenced Normalized Burn Ratio analysis (RdNBR).
In the park, GFC data showed a net loss of 1695 ha over 16 years, corresponding to an approximately
0.3% annual loss of forest. The GFA identified nine large fires that covered 4440 ha in the study period,
coinciding with 833 ha of forest loss in the same period. Within these fires, detailed image analysis
showed that GFA fire boundaries were approximately correct, providing the first quantitative test of
GFA accuracy outside North America. High-severity fire, as determined by RdNBR analysis, made
up about 32% of burned area. Overall, the GFA was validated as a useful management tool with only
one non-detected wildfire in the study period; wildfires were linked to approximately 49% of the
forest loss. This information helps managers develop conservation strategies based on reliable data
about forest threats.

Keywords: Landsat; MODIS; Global Fire Atlas; Hansen Global Forest Change; forest loss; fire severity

1. Introduction

Climate change poses challenges for forest sustainability by altering precipitation
rates and average temperatures [1], which will affect forest types differently and have
distinct management implications. Altered disturbances such as wildfire, insect and disease
outbreaks, and drought are leading indicators of the changing climate’s impacts on forests
globally [2,3]. Some fire-dependent ecosystems such as those throughout much of western
North America and Australia have experienced increasingly more frequent and severe fires
in recent decades, although some Mediterranean Basin forests have seen variable patterns
or even declines [4–8]. Rising temperatures in many areas are showing drought-induced
reductions in the productivity of vegetation [9,10]. Interactions of disturbance and climate
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change can increase the rate of tree mortality, damage to soil, and changes to overall forest
structure [11]. Fire influences forest change in many interconnected ways including altered
soils, carbon and hydrological cycles [12–14]. Forest loss is of critical concern because
people all over the world rely on forest ecosystems for resources such as timber, wild
harvest, spiritual and religious needs, and many other ecosystem services [15,16]. Human
pressures such as grazing, logging, urban expansion, altered fire regimes, and agriculture
have disturbed forest ecosystems, which have often degraded forests.

Remotely sensed data is a valuable resource for better understanding the dynamics of
forests to develop improved strategies for reducing loss. Hansen et al. [17] created a dataset
to map all forest change beginning in 2000 using Landsat time-series imagery at a spatial
resolution of 30 m; the map currently has coverage through 2020. The Hansen Global
Forest Change (GFC) data have been widely used to measure deforestation, contributing
to national and global forest resource inventories and carbon accounting [18]. However,
forest change can occur due to many different factors, including land clearing, wildfires,
insect or disease outbreaks, or drought stress. Understanding the specific roles of different
factors is valuable information that managers and governments can use to develop targeted
science-based strategies for forest protection.

Wildfire activity can be directly monitored in real-time through MODIS (Moderate
Resolution Imaging Spectoradiometer) satellite imagery. MODIS is an instrument on the
Terra and Aqua satellites that gathers data on the entire Earth’s surface every 1–2 days.
The Global Fire Atlas (GFA) is one of several recently published databases that integrates
MODIS data over time to map fires, creating ongoing measurements of the duration and
progress of individual events and base information for calculating the contemporary fire
regime [19–21]. The GFA provides data on fires globally from 2003–2018 (through July
of 2018, our time of writing), created using MODIS burned-area data at a lower spatial
resolution of 500 m [19].

Wildfire effects, such as spatial patterns of fire severity, can be derived from other
sensors that detect reflectance changes due to vegetation mortality. Imagery from Landsat
sensors is widely used to derive burn severity metrics such as the delta normalized burn
ratio (dNBR) and its relativized form (RdNBR) [22]. Both the dNBR and RdNBR are
based on the normalized burn ratio (NBR), which is an index derived by calculating the
ratio between the near infrared (NIR) and shortwave infrared (SWIR) portions of the
electromagnetic spectrum [23]. The RdNBR, developed by Miller and Thode [22], with a
recent update by Parks et al. [24], has two advantages over an absolute index: (1) relative
indices provide a more consistent definition of severity which allows better comparison of
fires across space and time, and (2) classifying from a relative index should result in higher
accuracy in heterogeneous landscapes.

The Mediterranean region is a culturally rich and diverse area that has been heavily
shaped by human influences [25,26] and is characterized by a prominent role of fire [27].
Fires in North Africa are particularly prevalent close to the Mediterranean Sea, where
the climate is sufficient in humid to subhumid regions for abundant fuel production [6].
Intensive land use by rural residents affects forest resources through land-clearing, grazing,
and fire [5,28].

Forests in the Talassemtane National Park (TNP) in the Rif Mountains of Morocco in
northwestern Africa, a critical habitat for several endangered species, are threatened by
wildfires and land clearing for agricultural purposes. The area was set aside as a botanical
reserve in 1972, designated a national park in 2004, and incorporated in the Mediterranean
Intercontinental Biosphere Reserve by UNESCO in 2006 [29]. It is a mountainous area
with small communities located in the valleys. The large changes in elevation allow
many different vegetation types to be present within the boundary of the park, making
this a highly biodiverse area [30]. Endangered or rare species in the park include the
endemic Moroccan fir (Abies marocana Trab.), one of only two forests with Abies in Africa, as
well as the black pine of the Atlas Mountains (Pinus nigra subsp. mauretanica Maire and
Peyerimoff) and the Barbary macaque (Macaca sylvanus). Cannabis was grown traditionally
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in limited quantities, but its cultivation was transformed by imported high-yield varieties
and intensive agricultural production since the mid-2000s [31]. Forest clearing and fires
associated with cannabis cultivation are considered the “main driver” of forest loss in the
park [30].

We used multiple sources of remotely sensed data to quantify the role of wildfires as a
factor of forest loss over a 16-year period, 2003–2018 in TNP. We combined the Global Forest
Change data, the Global Fire Atlas data, vegetation coverages provided by the Moroccan
Department of Water and Forests, and processed Landsat satellite data, to determine the
role of fire in overall forest change from 2003–2018. Our goal was not to detect every ignition
on the landscape, but rather to identify relatively large/severe fires that were associated
with detectable forest loss. A key challenge is that different data sets may have distinct
resolutions, precisions, and definitions of “forest”, adding complications to comparisons.
However, such issues are ubiquitous in the application of remotely sensed data. In our
study, combining data sets can help forest managers better understand the current forest
impacts in the park and highlight areas that are of high concern.

Our objectives were:

1. Compare and analyze overall forest loss (GFC) and large wildfires (GFA) annually
from 2003–2018.

2. Assess the GFA fires with before/after-fire Landsat imagery and examine fire severity
using RdNBR.

3. Determine the overall contribution of wildfire to forest loss at TNP, particularly in the
rare Abies forest, providing actionable information to park managers.

2. Materials and Methods
2.1. Study Area

The study area is Talassemtane National Park (TNP) in northwestern Morocco near
the city of Chefchaouen and the Mediterranean Sea (Figure 1). The area of the park is
approximately 58,000 ha, with about 75% occupied by forest lands [32]. The climate in TNP
is Mediterranean, characterized by cool and rainy winters while summers are hot and dry.
The average rainfall is 942 mm per year and the average temperature is 16.◦C at the weather
station in Chefchaouen, which is at an elevation of 630 m [33]. Average rainfall is 1248 mm
per year and the average temperature is 14.9 ◦C at the Bab Taza weather station at 880 m
elevation [32]. Average rainfall is estimated at 1705 mm per year and average temperature
is estimated at 11.0 ◦C at the high-elevation zone between 1400–2000 m of fir forest or
Sapinière, dominated by Abies [32]. There are an estimated 1380 plant species in the park,
314 of which are endemic to Morocco, and 86 are endemic to the park [34]. The dominant
forest types (Figure 1) are Moroccan fir and black pine (Abies marocana and Pinus nigra),
Cedrus atlantica (Endl.) Carrière, and maritime pine (P. pinaster Aiton) forest intermixed with
many different oak species (e.g., Quercus rotundifolia Lam., Q. faginea Lam., and Q. suber L.),
while the lower elevation of the park is composed mostly of Tetraclinis articulata (Vahl)
Mast. and matorral shrubs [34]. The forest types mapped by the Moroccan Department of
Water and Forests are based on aerial photo interpretation and field reconnaissance circa
2004 (Figure 1). The map includes areas of “forest” stands as well as “forest + matorral”
shrub areas where isolated trees or clumps dominate a contiguous shrub midstory. The
subjective nature of the difference between “forest” vs. “forest + matorral shrub” made it
impossible to separate the mapped forests by canopy cover for direct comparison with the
GFC data [17] described below.

The lower slopes of the mountains have been heavily cultivated for agricultural
purposes, especially for high yields of cannabis production since the mid-2000s [31]. Agri-
culture is encroaching into higher reaches of the mountains, deforesting pine and threat-
ening fir forests. The use of fire is a historical practice for clearing land for agricultural
purposes [35] but can be used improperly and start forest fires.
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Figure 1. Talassemtane National Park with forested vegetation and fire polygons. Inset: Global
Forest Change (GFC) map showing forested area, forest loss over the study period (2003–2018), and
fire polygons.

2.2. Global Forest Change (GFC) Data

Disturbance-induced change in forest composition occurs often, whether it be a stand-
replacing forest fire or a timber harvest. Forest disturbances are picked up indiscriminately
by the GFC algorithm [17] to estimate global-scale forest change. This data product maps
forest cover extent and loss between 2000 through the present using Landsat data at a
spatial resolution of 30 m. The forest changes in the GFC dataset are not attributed to any
specific causes. Loss is defined as a stand-replacing disturbance or complete removal of
tree canopy cover more than 5 m in height with a minimum 25% coverage at the Landsat
pixel level, with no distinction between forest types or species. Loss is updated annually.
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In the present study, we used the GFC data set to estimate total forest losses (ha) by year
from 2003 to 2018 in Talassemtane National Park. Annual losses were derived based on the
mapped extent of forest cover in 2003 in TNP and do not include forest gains during the
period of study. We compared the GFC data to the Global Fire Atlas (GFA) data to quantify
the role of fire as an agent of forest loss in the park.

2.3. Global Fire Atlas (GFA) Data

The Global Fire Atlas provides data on fires worldwide from 2003–2018 and was cre-
ated using an analysis of the Collection 6 MCD64A1 MODIS burned area data product [36].
The near daily availability of MODIS data allows for quick updates on fires and detection
of daily ignitions. The algorithm used in the GFA tracks daily progress of individual fires
at 500 m resolution to create fire behavior metrics in raster and vector formats [19]. In the
original publication, Andela et al. [19] reported that the algorithm detected 13.3 million
individual fires globally over the study period, and they showed that specific individual
test case fires had good agreement with other sources of fire information in the United
States. While the GFA is potentially a useful tool worldwide, to our knowledge the present
study is the first test case from outside North America. The data can be accessed freely
at https://www.globalfiredata.org/fireatlas.html (accessed on 8 April 2022). Data can be
downloaded by year for the entire globe. The attributes of the data include ignition date
and location, size of the fire, perimeter, speed, direction of spread, and duration. However,
fire severities are not defined in the data. The 500 m resolution of GFA is coarser than
the 30 m GFC data, but MODIS fire products are used by regional managers and many
scientists due to the high data quality/consistency and the near real-time availability of
such data on fire activity.

Fire boundaries for the GFA fires that occurred in the park from 2003–2016 were
obtained using the data explorer tool on the GFA website. For every year that had a
confirmed fire in or overlapping the park boundary, we downloaded the data in GIS-
ready file formats (shapefiles) that show individual fire perimeters and ignition locations.
Shapefiles for fires that occurred in 2017 and 2018 were obtained directly from N. Andela
(pers. comm).

To assess potential omissions in the GFA [37], we used the Near real-time (NRT)
Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite
(S-NPP/VIIRS) Active Fire detection product (VNP14IMGTDL_NRT) at a 375 m resolu-
tion (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp1
4imgt, accessed on 6 April 2022) [38]). Fires from this product were coupled with the GFA
fires that occurred in the park from 2012–2018, the period of overlap between the two data
sets. Secondarily, this product allowed us to examine the frequency and spatial distribution
of small fires in the park to understand how they impact forest loss compared to larger
fires, the latter of which have a much greater ecological impact and are the primary focus
of this study. Analyses of fires from the VIIRS NRT active fire data product are provided in
the Supplementary Material.

2.4. NBR and RdNBR

We calculated fire severity and vegetation change using the Normalized Burn Ratio
(NBR) and Relativized delta Normalized Burn Ratio (RdNBR) using Landsat 5 Thematic
Mapper (TM), Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) Tier 2 surface
reflectance products. Fire analysis using before/after-fire Landsat pairs is recognized as a
valid technique for assessing MODIS-detected burned areas [39]. Surface reflectance data
have been adjusted for atmospheric effects using atmospheric correction algorithms to have
a Bottom of Atmosphere view (BOA), which can improve results in change detection [40].
We used multiple satellites due to the changes in satellite availability over the study period.
We picked Landsat scenes using the dates provided by the Global Fire Atlas for each
individual fire within the park. A scene was selected pre- and post-fire with the lowest
cloud cover available. Post-fire images were within one year of the end date of the fire.

https://www.globalfiredata.org/fireatlas.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp14imgt
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/v1-vnp14imgt
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Scenes were picked during the summer months (end of June-mid September) to minimize
effects from seasonal change in foliage. The area of the park falls within one Landsat scene
(Path 201, Row 036), so only one scene was needed for pre- and post-fire for every fire
detected (Table 1, Figure 2).

Table 1. Dates of fires detected by the Global Fire Atlas (GFA) and Landsat (LS) imagery used to
assess fire severity.

GFA Fire Years GFA Start Date GFA End Date Landsat Satellite Pre-Fire LS Date Post-Fire LS Date

2003 14 August 2003 17 August 2003 5 22 July 2003 8 July 2004
18 August 2003 30 August 2003 5 22 July 2003 8 July 2004

2007 19 November 2007 30 November 2007 5 17 July 2007 20 August 2008
20 November 2007 29 November 2007 5 17 July 2007 20 August 2008

2012 14 September 2012 2 October 2012 7 7 August 2012 11 September 2013
2014 17 September 2014 22 September 2014 8 6 September 2014 21 June 2015
2015 14 July 2015 17 July 2015 8 21 June 2015 23 July 2015
2017 19 September 2017 19 September 2017 8 14 September 2017 29 June 2018
2018 2 August 2018 3 August 2018 8 29 June 2018 18 July 2019

We calculated NBR using the near infrared (NIR) and shortwave infrared (SWIR)
wavelengths. The bands for NIR are different for Landsat 5, 7, and 8 as follows:

For Landsat 5–7 TM and ETM+, NBR = (Band 4 − Band 7)/(Band 4 + Band 7).
For Landsat 8 OLI, NBR = (Band 5 − Band 7)/(Band 5 + Band 7).
We calculated dNBR as the difference between the NBR from pre-fire and post-fire

images. dNBR values were multiplied by 1000 and converted to integer format. We
calculated RdNBR using the formula of Miller and Thode [22]:

RdNBR = dNBR/|(NBRprefire)|0.5

We digitized fire polygons using the RdNBR rasters displayed at a 4:1 resolution
(monitor pixel:raster cell). Digitizing was achieved following contiguous burned pixels
that showed sharp contrast to adjacent pixels. Areas that had sharp contrast within the
larger polygons were included as part of the polygon and not eliminated. For the one fire
in 2012 that was mapped using Landsat 7 ETM+ imagery, we interpolated the polygon
boundary across the gaps created by the Scan Line Corrector (SCL-off) anomaly.

We clipped our digitized fire polygons to the previous year’s forest coverage according
to the GFC dataset. This allowed us to estimate the amount of forest within our polygons
each year. We then estimated the area considered “loss” by GFC within our fire polygons.
As the GFC dataset represents median, cloud-free pixel values over a growing season, forest
loss within a given calendar year might be recorded in the year the loss occurred or in the
year after. Therefore, we estimated loss within our polygons by calculating the difference
between forest area in the year before the fire and the year after the fire.

We estimated the amount of high-severity fire in forested areas within our polygons.
Because the GFC defines forest loss as occurring when tree cover declines below 25%, high-
severity fire was likely to be most closely associated with forest loss [41]. Fire severity is
defined by Key and Benson [23] as, “the quality or state of distress inflicted by a force. The
magnitude of environmental change caused by a fire, or the resulting cost in socioeconomic
terms”. Severity is often difficult to quantify. For the present study, we focused on the
environmental impacts of the fire which included physical and chemical changes to the soil,
loss of vegetation, and changes to forest structure or composition. The USGS Landscape
Assessment (LA) Sampling and Analysis Methods [23] recommends the use of ground
measurements called the Composite Burn Index (CBI) to assess burn severity to validate
the satellite data. However, CBI is not widely used in Africa, and no field CBI values exist
for the fires that took place within the boundary of the TNP. The lack of ground data is a
common situation affecting most satellite-based fire severity assessments, even in nations
with more resources available [42]. Following standard practice, we used the modeled
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RdNBR threshold for high severity (≥641) developed by Miller and Thode [22]. Their
thresholds were developed based on CBI field data in Mediterranean-climate coniferous
forests with shrub understories, relatively similar to those of our Moroccan study site. We
also estimated the amount of high-severity fire in Abies marocana/Pinus nigra forest within
our polygons using the vegetation coverage provided by the Moroccan Department of
Water and Forests.
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3. Results

The first objective was to determine overall forest loss and area of large wildfires.
Baseline forest conditions were not consistent between the GFC forest cover data for
the TNP and the vegetation type coverage for the park, likely due to differences in the
definitions of “forest.” The forest coverage from the Moroccan Department of Water and
Forests (Figure 1) showed 43,633 ha of forest cover while GFC data showed 38,570 ha in
2003, a difference of 5063 ha between the base years of both datasets. The Moroccan map
included areas of “forest + matorral shrub” which may have fallen below the minimum
canopy cover requirement for the GFC map (25% canopy cover), possibly explaining the
lower GFC forest area value. From 2003 to 2018, GFC data showed 1695 ha of forest loss
in the TNP, approximately 4% loss of forest cover as defined by the 2003 GFC forest cover
base year, over 16 years (Table 2). The average annual loss of forests according to the GFC
data was 106 ha per year.

Table 2. Comparison from 2003–2018 of Global Forest Change (GFC), fires detected by the Global
Fire Atlas (GFA), and fire areas assessed with Landsat (LS) imagery. Fire severity was assessed from
LS images as described in the text.

Year GFC Forest
Loss (ha) *

GFA Fires;
Area (ha);

No. of Fires

LS Fires
(ha)

LS Fires,
Forested

(ha) +

GFC Loss
within LS
Fires (ha)

LS Fires,
Forested, High
Severity (ha)

Abies/Pinus
Forest Loss to
High Severity

Fire (ha)

2003 36 901; 2 987 710 78 502 204
2004 104 0
2005 23 0
2006 6 0
2007 156 1051; 2 1115 432 91 337 0
2008 188 0
2009 13 0
2010 29 0
2011 82 0
2012 300 1951; 1 2000 1407 329 518 ** 7 **
2013 139 0
2014 153 193; 1 211 186 106 100 90
2015 46 86; 1 145 109 31 78 0
2016 67 0
2017 84 129; 1 263 193 94 6 1
2018 269 129; 1 175 142 104 4 0

Total 1695 4440; 9 4896 3179 833 1545 302

* Starting forest cover from GFC for TNP in 2003 was 38,570 ha. + Amount of forest contained within our digitized
polygons, based on GFC, and therefore subject to loss by fire in a given year. ** Area adjusted for the proportion
of the fire polygon covered by the evenly-spaced Landsat 7 ETM+ line failure data gaps (28%). We used the
percentage of high-severity fire in the area outside of the data gaps to estimate the percentage of high-severity fire
within the gaps.

The GFA recorded nine wildfires in seven years over the 16-year period, with a total
area of 4440 ha (Table 2). For years that fire was recorded in the GFA, total fire areas ranged
from 86 to 1951 ha, with an average of 634 ha. In every year except 2018, the overall area
of GFA polygons was greater than the total GFC loss in that year, even when the area of
GFC loss in the year following the fire was included (before 2014). Possible explanations
for the higher amount of GFA total area as compared to GFC total loss are the fact the GFA
data are relatively coarser than GFC (500-m vs. 30-m pixels) and that fires have variable
severity including non-lethal severities. Using the VIIRS NRT active fire data product for
the period of overlap between the two datasets, 2012–2018, approximately 70 distinct fires
(isolated points and synchronous clusters) were detected in the park. There were five GFA
fires detected during that same period (Figure S1).
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The second objective was to pair the GFA with Landsat imagery and examine fire
severity using RdNBR. All nine fires identified by GFA were confirmed in Landsat scenes
and fire areas were highly correlated. In all instances of comparing the fires, the GFA fire
polygons extracted from 500 m resolution MODIS imagery had a lower area than the fire
polygons we manually digitized from 30 m resolution Landsat imagery (4440 ha GFA,
4896 ha Landsat). However, the areas of GFA polygons were highly correlated with the
areas of Landsat fire polygons (r = 0.99). The year with the lowest difference was 2012
(49 ha, 3%) and the greatest difference was in 2017 (134 ha, 51%) (Table 3). The average
difference between the GFA and Landsat polygons was 65 ha with a total difference of
456 ha (9%) between the totals of the GFA and Landsat areas. Only one fire larger than a
MODIS pixel was detected by a cluster of synchronous ignitions in the VIIRS NRT data but
not by GFA (Figure S1). Analysis of this 2012 fire showed that it was associated with 53 ha
of forest loss in GFC (Table S1).

Table 3. Differences in area (ha) and percent between the Landsat (LS) and GFA fire polygons, as well
as between GFC forest loss and LS-high severity. Negative values mean the first variable was larger
than the second.

Year LS-GFA
Difference, ha

LS-GFA
Difference, %

LS-High
Severity-GFC

Loss, ha

LS-High
Severity-GFC

Loss, %

2003 86 8.7% 466 92.8%
2007 64 5.7% 181 53.7%
2012 49 2.5% 218 42.1%
2014 18 8.5% −53 −53.0%
2015 59 40.7% 32 41.0%
2017 134 51.0% −78 −1300%
2018 46 26.3% −265 −6625%

Landsat fires included a total of 3179 ha of forested areas (Table 2). High-severity fire,
as determined by RdNBR analysis, comprised 1545 ha or approximately 49% of the Landsat
forested fire area. GFA fire areas were well-correlated with Landsat high-severity fire areas
(r = 0.90), but the total of GFA fire polygons (4440 ha) was nearly three times larger than
the total of high-severity fire (1545 ha).

The third objective, estimating the overall contribution of wildfire to forest loss at
TNP, is based on multiple perspectives due to the different data sets involved. Overall,
GFA and Landsat fires were highly similar in total area burned over the 16-year period,
approximately 4700 ha. However, GFA fires included non-forested areas. Restricting the
analysis to forested areas, Landsat fires covered 3179 ha or about 7% of the initial forested
area (43,633 ha) based on the Moroccan forest management map, corresponding to an
average of 199 ha/year. Converting the fire occurrence into an overall fire regime statistic,
the fire rotation (time required to burn an area equivalent to the entire forested area) would
be 219 years. Using the smaller GFC forest map (38,570 ha), the fire rotation would be
193 years. The preceding calculations are generalizations that do not take into account
relief, differences in forest composition, soil, or land use, so they should be considered as
rough approximations.

However, these burned areas did not uniformly result in forest loss. Of the overall
GFC loss in the park (1695 ha), 833 ha (49%) were within the Landsat fire polygons,
corresponding to a 1.9–2.2% loss of total forest cover compared to 2003 values for the
Moroccan forest map or the GFC forest map. Taking 2% as an average value, the annual
average fire-associated loss over the 16-year period would be 0.13%/year. This value is
likely a minimum because high-severity fire from Landsat analysis was about twice as high
(1545 ha vs. 833 ha).

The rarest endemic forest type in the region, Abies maroccana/Pinus nigra, was dispro-
portionately affected by fire. The area of Abies/Pinus forest was 4766 ha at the start of the
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study period in 2003, including Abies + matorral shrub. Of this area, 302 ha (6.3%) were lost
within the perimeters of high-severity fire during the study period (Table 2).

4. Discussion
4.1. Forest Loss and Fire

The overall annual average forest loss in the park from 2003–2018 averaged 106 ha/year,
ranging from 6 to 300 ha/year, using GFC data. While relatively small at an average of
about 0.3% forest loss per year, evidence of instability is of concern because the forests of
the TNP are unique in North Africa and provide critical habitat for many species, protection
of water resources, ecotourism to stimulate the local economy, and traditional medicine to
local people [43,44]. Despite being a protected area, the TNP trend in forest loss is consistent
with the average trend of deforestation estimated in the surrounding region during the
second half of the 20th century, about 0.3% per year [45].

Fire played a notable role in the forested ecosystems of Talessemtane National Park in
the early twenty-first century, with GFA data showing an average of 278 ha burned per year
between 2003–2018. Knowing where forest loss is happening, and better understanding
the role of severe wildfires, is valuable information when deciding how to manage a
protected area. Identifying areas with high impact can bring attention to areas in need of
post-fire rehabilitation.

Comparison of the MODIS-based GFA data with detailed before-after Landsat anal-
ysis using RdNBR suggests that the GFA and similar MODIS products offer a fast and
straightforward technique for fire estimation. The GFA closely matched Landsat fire areas;
estimates of area differed by about 20% with GFA consistently lower, but the two methods
were highly correlated (r = 0.99), although with a low number of years, n = 7. High con-
sistency was also reported in a previous test of GFA fires with burned area analysis using
Landsat data in the Monitoring Trends in Burn Severity (MTBS) program in the USA [19].
Recently Balch et al. published a new algorithm for interpreting MODIS fire data in fire atlas
form in the USA [20] and other studies are emerging on MODIS accuracy [46,47]. To our
knowledge, the present study is the first comparison of the GFA specifically with Landsat
RdNBR and forest loss data outside of North America, but researchers are increasingly
comparing and cross-validating fire and forest datasets [21,48–50].

The two techniques provide similar data about burned area, but GFA has several
advantages, including automated data collection and specific dates of fire initiation and
termination. The MODIS sensor records fire at a near-daily time scale. Using the data
explorer tool on the GFA website, managers can rapidly estimate fire frequency, peak fire
season, and estimate fire regime statistics such as fire rotation. However, as GFA data
are limited to estimates of fire progression and overall perimeters, fire severity estimates
require Landsat or similar data for calculation of RdNBR or other severity metrics [22].

Integrating forest loss and fire data showed that fire was clearly associated with forest
loss, with approximately half of the GFC forest loss during the study period occurring
within the perimeters of fires. The fire-associated loss at TNP is somewhat higher than
global values, as an average of 38 ± 9% of forest loss worldwide was associated with fire
in the same time period [51]. Fire at TNP was linked with an average of approximately
0.13% of forest loss/year. Differences in the data resolution and in definitions applied in
the creation of forest maps make comparisons imperfect, but the different estimates are con-
sistent in magnitude. Overall fire rotation calculations resulted in a range of 193–219 years
required to burn an area equivalent to the total forested area. However, the different forest
types vary widely in fire adaptations, fuel types, fuel moisture, and other attributes, so
more detailed studies of specific fire regimes within forest types would be useful for better
understanding of the ecological role of fire, especially in the case of low-severity fires that
are not detected well by satellite-borne sensors.

Fire was a particular threat to the rarest forest type, the endemic Abies marocana/Pinus ni-
gra, with over 6% loss within high-severity fires during the study period. While Abies forests
in general are often characterized by infrequent but severe stand-replacing fire regimes
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with adaptations for post-fire regeneration [52], special attention is warranted in the case of
a highly restricted, rare species such as A. marocana [53]. Mapping of the severe fire area
could be applied to post-fire surveys of regeneration, for example, to assess the recovery
trajectory of the burned area.

By distinguishing which areas were not affected by fire, the non-burned GFC data can
be used by managers to indicate areas that are potentially being targeted for agricultural
expansion. Areas outside of the fire polygons that show loss could identify areas being
encroached upon by agriculture. Paired with the vegetation coverages, the GFC and GFA
data can highlight areas where important forest types are being lost to help conserve biodi-
versity in the park. For example, a study using similar techniques in Brazil recently reported
increased deforestation and fire in the Chico Mendes Reserve, arguing for increased global
attention to the threats to biodiversity [54].

4.2. Limitations

Attempts to reconstruct fires and forest change on large landscapes over time are inher-
ently challenging, especially where resources for field assessments are limited. However,
this situation is common across most of the world. It is fortunate that remotely sensed
data on fire and forests are widely and freely available, especially when organized through
user-friendly packages such as GFC and GFA.

Key limitations of this study were the differences in spatial data resolution and in
development of forest maps, as discussed in Section 2. We dealt with these limitations by
bracketing results by minimum and maximum measures of forest area. Results regarding
forest loss associated with fire differed in magnitude but were relatively consistent across
different forest definitions (GFC forest map vs. Moroccan forest management map), lending
confidence to interpretations for management.

The means of fire detection used in this study, MODIS for detection of energy released
by combustion, and Landsat for before–after comparisons of vegetation change, are most
accurate at identifying relatively severe burns. A global validation study found that MODIS-
detected burned area tended to be smaller than Landsat-derived burned area [39], which
matches our findings at TNP. Importantly, both methods are less likely to detect fires that
primarily burn as low-intensity surface fires [39]. Low-severity fires may not emit enough
energy to be picked up by the MODIS sensor or affect forest structure severely enough
to trigger forest loss through the GFC algorithm, but surface fires can play important
ecological roles [55]. Field measurement of fire-affected sites across a range of fire severities,
coupled with tree-ring-based studies of fire occurrence and severity that can provide data
much farther back in time, would be valuable information for developing conservation
strategies across scales from individual trees to landscapes.

One region in the southeastern area of the park had four fires that overlapped during
the study period. Overlapping fires may have resulted in inaccuracies in total forest
cover/forest loss from the GFC data. In 2017 and 2018, the high severity area was much
lower than the forest loss area, possibly linked to the overlap in the fire areas. During the
overlapping period when VIIRS NRT data and GFA data were both available (2012–2018),
only one fire larger than a MODIS pixel was not detected in the GFA dataset. The VIIRS
NRT product picks up more individual ignitions than the coarser-scale MODIS product.
Fires that are small in area and/or of low intensity may have important ecological effects,
especially in relatively dry forests characterized by frequent, low severity fire regimes,
adding to the utility of our recommendation for additional field study of fire ecology.
However, in the context of the present study on forest loss, only 53 ha of GFC forest loss
was associated with the fire not detected in the GFA, representing 5% of the total forest loss
during the period of overlap between the GFA and VIIRS NRT data sets (2012–2018).

4.3. Conclusions

Baseline data on how and why forest loss occurs can help managers understand
current trends brought on by human activities and warming climate. Using multiple
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remote sensing data sets, we were able to compare the forest loss and fires over 16 years
in the TNP, identifying severe wildfires as the likely proximal cause for about half of the
forest loss. The park has undergone forest loss averaging 106 ha/year, approximately 0.3%
of forest area, annually. While still a relatively small value, the high value of unique, fire-
vulnerable forest ecosystems in the TNP merits management attention. Additional research
on fire ecology of individual ecosystem types over the rugged topographic gradient of
the park, coupled with analysis of climate-fire-forest relationships, would be beneficial to
reduce threats of increasing forest loss. The fact that approximately half the forest loss is not
associated with fire indicates that it would be beneficial to managers and social scientists
to address tree cutting, agricultural expansion, and the socioeconomic factors driving
human activities in the TNP and surrounding landscape. The combination of free and
user-friendly datasets applied in this study is beneficial across many landscapes worldwide
to understand the role of fire in forest loss.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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