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Abstract: Large-scale forest monitoring benefits greatly from change detection analysis based on
remote sensing data because it enables characterizing forest dynamics of disturbance and recovery
by detecting both gradual and abrupt changes on Earth’s surface. In this study, two of the main
disturbances occurring in Mediterranean forests, harvesting operations and forest fires, were analyzed
through the analysis of Landsat Times Series images in a case study in Central Italy (Tuscany region).
Disturbances were characterized based on their distinct temporal behaviors before and after the event:
a period of 20 years (1999–2018) was used to extract and analyze at pixel level spectral trajectories
for each disturbance and produce descriptive temporal trends of the phenomena. Recovery metrics
were used to characterize both short- (5 years) and long-term aspects of recovery for harvested and
burned areas. Spectral, recovery, and trend analysis metrics were then used with the Random Forest
classifier to differentiate between the two disturbance classes and to investigate their potential as
predictors. Among spectral bands, the Landsat SWIR 1 band proved the best to detect areas interested
by harvesting, while forest fires were better detected by the SWIR 2 band; among spectral indices, the
NBR scored as the best for both classes. On average, harvested areas recovered faster in both short-
and long-term aspects and showed less variability in the magnitude of the disturbance event and
recovery rate over time. This tendency is confirmed by the results of the classifier, which obtained an
overall accuracy of 98.6%, and identified the mean of the post-disturbance values of the trend as the
best predictor to differentiate between disturbances.

Keywords: wildfire; harvest; forests; forest fires; coppices; classification of forest disturbances;
time series

1. Introduction

The Mediterranean Basin represents one of the five different regions that compose the
Mediterranean eco-region area, with other regions being: California, southwestern and
southern Australia, the Western Cape Region in South Africa, and central Chile [1]. Among
these regions, the Mediterranean Basin is the biggest [2]. It is also estimated that this area
contains more than 10% of the world’s vascular plant biodiversity with about 290 different
indigenous taxa [2–5].

The Mediterranean region is historically subject to significant human pressures that
have determined a profound transformation of the natural landscape [4]. In addition,
during the last two decades, this pressure is further increased due to the action of the climate
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change phenomenon that caused an alteration in the frequency and intensity of disturbance
events [6–10] and a possible modification of the traditionally human activities such as
timber harvesting because climate change could alter species composition, physiology, and
regrowth [10–12].

In Mediterranean areas, and Italy is not an exception, fire represents a common and
important historical natural disturbance agent for Mediterranean forests. Recent statistics
realized by the European Forest Fire Information System (EFFIS) showed that, during
the last year, the wildfire activities increased in all Mediterranean countries, especially
in Italy, where, just in 2021, a series of catastrophic events in the Sardinia, Sicily, and
Calabria regions was registered [13–15]. The increasing of wildfire activities in Mediter-
ranean forest ecosystems, despite forest species having adaptation mechanisms such as
resprouting capacity, seed bank persistence, and better dispersal capacity of seeds [13–15]
to survive wildfire events, can compromise the stability of slopes and the regeneration rate
of forests [16–18].

The other typical historical disturbance of Mediterranean forests is harvesting [19,20].
In Italy, clearcut of coppices forest is the most typical forest harvesting activity [20–22]
and the most typical human forest disturbance, since coppices represent the main forest
management regime. In coppice forests, regrowth after the cut occurs thanks to the rapid
asexual regeneration and the sprouting of new shoots from the stump [23]. However, due to
climate change, it is important to monitor the regrowth rate of harvested forests, to reduce
potential degradation. Therefore, monitoring these two different types of Mediterranean
forests disturbances, their effects, and differences in recovery rates is today fundamental to
support forest strategies at a national and international scale in the context of sustainable
forest management [3,24], biodiversity conservation [25], and carbon sink balance [6].

Optical remote sensing data are considered one of the most efficient tools to map and
monitor changes on a regular and continuous basis at different spatial scales, from the
global/national [12,20,26] to the regional/local [10,22,27] level. The use of optical remote
sensing tools is very common, mainly for six reasons, which are: (i) they provide a complete
painting of the study area, (ii) they are always available, (iii) they have a high degree of
homogeneity and there are not any influence of human actions, (iv) the images are in digital
format and easily integrated with other spatial data, (v) they are available at a low price,
(vi) there is an increasing trend in the production of data [28].

With about 50 years of data, the Landsat series represents the main data source for
large-scale monitoring programs. This aspect, coupled with the free data policy, the high
spatial resolution (30 m), and the low temporal resolution (about 16–18 days), has allowed
the development of temporally dense pixel-level analysis on a large scale and across
different thematic domains [29–32].

Change detection analysis allows the detection and assessment of changes occurred
in a specific area by comparing images of the same area with different acquisition dates.
Change detection can be conducted using a bi-temporal approach, where only two images
are compared (for forest disturbances, an image before and after the disturbance event
are used) or a time series approach [33]. The time series approach enables characterizing
the temporal forest dynamics of disturbance and recovery by detecting both gradual and
abrupt changes. In this case, the spectral trajectory of a given pixel can be interpreted as an
ecological response curve whose shape reveals information about the underlying process
of change [21,34,35].

TS methods can be divided into four different categories: threshold-based, curve
fitting, trajectory fitting, and finally trajectory segmentation [33]. The last two approaches
in particular are widely used to monitor forest disturbance [36,37]. These approaches use a
dense series of images to detect a characteristic spectro-temporal signature [33,38]. Trends
of forested pixels over time are described by a curve characteristic of the phenomenon
occurred: trajectory fitting methods use the end year of the disturbance interval, the pre-
disturbance mean reflectance, and the post-disturbance mean as parameters to build the
spectral signature, with the slope representing an estimation of the rate at which degrada-
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tion or recovery phenomena occur [39,40]. Slope positive or negative values indicate an
increase or decrease in vegetation, respectively. In this sense, Kennedy et al. [38] hypoth-
esized four model or disturbance classes that, fitted to observed time series at pixel level,
could describe long term behavior of the spectral trajectory and the phenomenon occurred:

• simple disturbance;
• disturbance followed by re-vegetation;
• ongoing re-vegetation from a disturbance event occurred before the time

period analyzed;
• re-vegetation from prior disturbance to a stable state reached during the observa-

tion period.

Following these premises, the main objective of this study was to investigate both
short- (5 years) and long-term (>5 years) forests spectro-temporal responses to different
types of disturbance in Mediterranean forests and characterize the behavior of such forest
disturbance. The focus is on two types of disturbance: clearcut and wildfires.

These disturbance events were analyzed using a twenty-year (from 1999 to 2018)
Landsat time series (LTS) composite, realized using one image per year, and two reference
datasets (i.e., clearcut polygons and wildfire polygons for which the years of disturbances
were known). Firstly, temporal spectral trajectories based on time series Landsat bands and
vegetation indices were extracted at a pixel level, fitted and aggregated to produce a single
trajectory for each type of disturbance, and then compared. Secondly, disturbances and
recovery rates of a forest were characterized using existing metrics of short and long term
recovery, already tested in Canadian boreal forests by White et al. [12] and in Mediterranean
forests by Chirici et al. [35] with the spectral signature analyzed using spectral and trend
analysis metrics. Due to the diversity of boreal and Mediterranean forests conditions,
the study was conducted assuming that both disturbances and recovery phenomena in
Mediterranean forests evolve differently than in the boreal forests. Therefore, information
derived from the trends and the metrics were combined with the attempt to answer the
following questions:

1. Which is the most effective spectral variable regrowth trajectory to detect disturbances
and recovery effects in the Mediterranean forests?

2. Are there any differences in the spectral trends and recovery conditions among the
two classes of disturbances (i.e., clearcut and wildfire) captured by LTS analysis and
all derived metrics? Can these differences be used to obtain a distinct profile for
each disturbance?

2. Materials and Methods
2.1. Study Area

The study was conducted in the forested area covered by a single Landsat scene (Path:
192, Row: 030); the area covered falls almost entirely in the administrative region of Tuscany,
Central Italy (Figure 1).

It is mainly a hilly region (mean elevation = 320 m above sea level), characterized by
large altitude differences (from sea level up to 1900 m in the topmost part) and moderate
slopes (mean slope = 11%). The coast line and the immediate areas behind it have a
Mediterranean climate [41], which results in a mixed sclerophyll forest dominated by Holm
oak (Quercus ilex L.) and Cork oak (Quercus suber L.) with other shrubs commonly found in
maquis formations; other tree species include Maritime pine (Pinus pinaster Aiton), Italian
stone pine (Pinus pinea L.), and Aleppo pine (Pinus halepensis Mill.), present mainly as
artificial plantations. These species are well adapted to low intensity wildfires: the Aleppo
pine and the Maritime pine have fire-activated seed banks that germinate, grow, and mature
rapidly following a fire in order to reproduce and renew the seed bank before the next fire,
while the Holm oak resprouts vigorously after clearcut harvesting (coppices) and wildfire
disturbances [15,42].
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Figure 1. Localization of the study area in Central Italy. The shaded area shows the footprint of the 
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Figure 1. Localization of the study area in Central Italy. The shaded area shows the footprint of the
Landsat WRS-2 scene used, while in the subfigures (1–3) are reported the clearcut coppices area by
years of the sample areas.

Moving inland, the climate shifts to temperate oceanic [41] and the vegetation changes
towards a mixed temperate forest dominated by Turkey oak (Quercus cerris L.), Downy
oak (Quercus pubescens L.), and Sweet chestnut (Castanea sativa L.) with other tree species
like European beech (Fagus sylvatica L.) and European hop-hornbeam (Ostrya carpinifolia
Scop.); Black pine (Pinus nigra J.F. Arnold) is present mainly as a species used for artificial
plantations. These broadleaves species are less adapted to wildfire compared to the previous
ones; however, they are largely used for firewood production and intensively managed as
coppices, while Black pine plantations are mostly unmanaged and are characterized by a
large amount of accumulated flammable organic components, which represent a potentially
large fire risk [43].

Six out of the 14 European Forest Types [44,45] are represented in the study area.

2.2. Landsat Time Series Data

For this study, we enlarged the LTS used by Chirici et al. [35], spanning the period
1999–2018. The LTS used is composed by one image per year with cloud cover <5%
acquired by Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI (Table A1). The images
were downloaded from the USGS web service https://earthexplorer.usgs.gov, access on-
line the 15 June 2021, (Table A1) and were pre-processed using the same methodology of
Chirici et al. [35]. The images used were acquired during the summer months due to the
correspondence with the growing season for most forest species in the study area [46] and
to avoid phenological differences. For each image, we used the information of six Landsat
bands (Blue, Green, Red, NIR, SWIR 1, and SWIR 2) and we calculated seven different
spectral indices: Normalized Difference Vegetation Index (NDVI) [47], Enhanced Vegetation
Index (EVI) [48], Soil Adjusted Vegetation Index (SAVI) [49], Modified Solid Adjusted
Vegetation Index (MSAVI) [50], Normalized Burned Ratio (NBR) [51] and Normalized
Burned Ratio 2 (NBR2) [52], and Normalized Difference Moisture Index (NDMI) [53]
(Table A2).

2.3. Forest Types Classes

To focus the spectral extraction only on forested areas and to compare the disturbances
among different forest types, we used two cartographic layers that cover the whole study
area: (i) the National Forest mask [54] and (ii) the Tuscany Regional Forest Inventory (TRFI)

https://earthexplorer.usgs.gov
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dataset. The forest mask was used to derive information of undisturbed forest, while from
the TRFI we extracted the information related to forest types [55].

2.4. Disturbances Reference Geodatabase

Three reference spatial polygons geodatabases, available in Tuscany, were used to com-
pare the differences in the spectral trajectory and recovery rates over time between disturbed
(i.e., wildfire and harvest) and undisturbed forest areas (Figure 2). In details, we used:
(i) the geodatabase provided by Carabinieri Forestali for wildfire areas (i.e., 2005–2015) [56],
which consists of a total of 3394 ha of mapped forest fire areas; (ii) the updated version
of the harvesting reference geodatabase (i.e., 1999–2018) provided by Chirici et al. [35]
for three sample quadrats (Figure 2) for a total of 8545 ha of harvested area, and (iii) a
reference geodatabase of undisturbed forests (i.e., 1999–2018) visually interpreted for the
present study by means of high-resolution orthophotos and Landsat images (1999–2018) for
a total of 2902 ha of undisturbed forest. In Table 1, we report the number of pixels for each
class (i.e., wildfires disturbed forest area, harvesting disturbed forest areas, undisturbed
forest area).
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Table 1. Frequency of the pixels before and after the correction process, by disturbance and forest type.

Forest Type
Undisturbed Areas Harvesting Wildfires Total

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Abies alba (Silver fir) 0 0 18 0 0 0 18 0
Alnus glutinosa (Common alder) 224 0 277 229 26 0 527 229
Castanea sativa (Sweet chestnut) 2289 1372 4904 2962 6254 1348 13,447 5682
Cupressus sempervirens
(Mediterranean cypress) 554 334 178 75 252 171 984 580

Fagus sylvatica
(European beech) 0 0 53 0 3006 0 3059 0

Maquis formations 485 0 1262 807 1971 1002 3718 1809
Mixed plantations of
non-native species 0 0 478 338 78 0 556 338

Montane shrubs (Juniperus,
Prunus, Spartium spp.) 701 508 2616 1866 1165 0 4482 2374
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Table 1. Cont.

Forest Type
Undisturbed Areas Harvesting Wildfires Total

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Ostrya carpinifolia (European
hop-hornbeam) 1914 1530 6124 4095 2388 0 10,426 5625

Pinus nigra (Black pine) 178 136 223 96 133 10 534 242
Pinus pinaster (Maritime pine) 252 161 1171 638 11,225 5177 12,648 5976
Pinus pinea (Stone pine) 393 0 96 69 610 471 1099 540
Pseudotsuga menziesii
(Douglas fir) 0 0 88 52 0 0 88 52

Quercus cerris (Turkey oak) 8755 5661 54,224 37,496 1798 628 64,777 43,785
Quercus ilex (Holm oak) 15,184 9995 19,492 11,584 3793 1087 38,469 22,666
Quercus pubescens (Downy oak) 947 631 2915 1753 4233 1735 8095 4119
Quercus suber (Cork oak) 190 0 846 552 47 28 1083 580
Robinia pseudoacacia
(Black locust) 165 0 0 0 761 293 926 293

Total 32,231 20,328 94,965 62,612 37,740 11,950 164,936 94,890

2.5. Spectral Trajectory Extraction and Spectral Trajectory Fitting

Using the disturbances reference geodatabase described in Section 2.4, the spectral
trajectories of each Landsat band and of the seven spectral indices were extracted at a pixel
scale on a scene-by-scene basis. Outliers due to error measurements, clouds, haze, or other
atmospheric effects were detected based on the assumption that they behave as punctual
and ephemeral values (drops or spikes) in a given spectral trajectory [57]. Observations
were classified as outliers if they exceeded a certain standard deviation threshold, instead
of empirical fixed thresholds [58,59]. The threshold was estimated by forest type category,
exploiting the differences in spectral signatures between species. Pixels were first split into
different samples based on disturbance and forest type, followed by year of the image for
undisturbed pixels and temporal distance for the disturbed ones.

Given the fixed response of a species to each wavelength in the same conditions
(time of the year, atmospheric conditions, phenological season, water content, type of
disturbance), values from each sample are inclined to converge to a central value, assuming
a distribution similar enough to a normal distribution: this assumption was checked
through visual inspection with Q-Q (quantile–quantile) plots, which plot the quantiles of
the sample set against the quantiles of the normal distribution.

Spectral trajectories were then plotted and aggregated by disturbance and forest type
to define a range of expectations that were compared with the values assumed by the
standard deviation in a normal distribution; the range of expectations was established to
be approximately two times the standard deviation (2σ) for all forest type classes. The
arithmetic mean (µ) and the standard deviation was then computed for each sample and
all observations that exceeded the µ ± 2σ value were classified as outliers and removed
from the analysis (Table 1). These analyses allow also excluding mixed pixels (pixels on the
edges of damaged areas) that usually introduce noises in spectral trajectories analysis [32].

The pixel trajectories extracted were then smoothed by constraining them to adhere to
two predefined shape patterns, identified by the known ecological response of a forested
pixel through time based on the phenomenon therein occurred. This approach was applied
following the assumption of Kennedy et al. [34], where a pixel is classified as (i) undisturbed
when the trajectory is characterized by a stable state (i.e., the reflectance values among the
spectral variable of interest are that of a stable trajectory through time, with little or no
fluctuation) or as (ii) disturbed, whether affected by low or high magnitude events, when
the trajectory shows step changes in reflectance, corresponding to the disturbance event,
followed in the next years by a slow recovery of the trajectory to pre-disturbance values).
The R package ShapeSelectForest [60] was used to achieve this analysis. Knowing beforehand
which phenomenon occurred (i.e., fires or harvest) and the relative year of change for each
trajectory, only the following two shapes were used:
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Flat: the pixel trajectory shows a forest in a stable condition;
Jump: the pixel trajectory shows a forest that suffers from abrupt changes in its structure

or canopy cover due to a disturbance event (harvesting, fires).
Trajectories belonging to the undisturbed class (i.e., not disturbed forest) were con-

strained to adhere to the “flat” shape, while the disturbance classes (i.e., clearcut and
wildfire) were constrained to the “jump” shape.

The fitted spectral trajectories were then grouped by type of disturbance and band or
spectral index, which resulted in 13 samples (i.e., 6 Landsat Bands and 7 Vegetation indices)
for each of the 3 classes (i.e., wildfires disturbed forest area, harvesting disturbed forest
area, undisturbed forest area). At the end, an average trend for each Landsat band and
each vegetation index was extracted from each class.

To characterize disturbances and the vegetation recovery, we used the absolute differ-
ence between the pre-disturbance value and the value recorded for the disturbance event
and the recovery trend after the disturbance [61–66].

2.6. Recovery NBR-Based Metrics

The spectral trajectory of a disturbed pixel can be divided into three segments, each
one representing one stage of the change event process: an undisturbed or stable segment,
before the disturbance; a disturbed segment, with a consistent drop in reflectance values,
which goes from the last pre-disturbance year to the year of disturbance; and a recovery
segment, with reflectance values slowly coming back to to pre-disturbance levels.

To characterize each type of disturbance, for illustrative purposes, and because NBR
results as the most sensitive index in detecting harvester and fires disturbances, we used
the fitted NBR spectral trajectories to extract a set of metrics, i.e., conditions before and
after the change event using both information derived from spectral values and linear trend
descriptors (Table 2, Figure 2).

Table 2. Set of recovery metrics that describes conditions pre- and post-disturbance for each trajectory.

Metric Description

Mean pre-disturbance Arithmetic mean of spectral values before the change event
Standard deviation pre-disturbance Standard deviation of spectral values before the change event
Slope pre-disturbance Direction and steepness of the trajectory before the change event
∆NBR pre-disturbance Arithmetic mean of the first two years before the change event
∆NBR disturbance Or magnitude of the event, absolute change in NBR value

∆NBR regrowth Absolute difference between NBR values five years after the change event and NBR values
of the change event

Recovery Index (RI) ∆NBR regrowth / ∆NBR disturbance
First year post-disturbance Spectral value recorded in the first year after the change event
Mean post-disturbance Arithmetic mean of spectral values after the change event
Standard deviation post-disturbance Standard deviation of spectral values after the change event
Slope post-disturbance Direction and steepness of the trajectory after the change event

Although there are a conspicuous number of spectral indices and derived metrics to
characterize disturbances and vegetation recovery [66–68], in this study, the definition of
recovery as “the initial establishment (or pulse of vegetation), as well as a more long-term,
sustained regeneration of forests at a site” proposed by Johnstone et al. [69] was adopted
and the recovery metrics used by White et al. [12] to characterize both longer and shorter
term aspects of the recovery process were calculated.

On the basis of fitted trend trajectories, for each of the recovery metrics we calculated,
as done by Chirici et al. [35], the Years to Recovery (Y2R) metric following the approach of
White et al. [12,70]. The Y2R indicates the number of years required for a pixel to attain
60%, 80%, and 100% (i.e., Y2R60%, Y2R80%, Y2R100%) of its pre-disturbance fitted trend
of the vegetation index value. In our study, the pre-disturbance value used to define the
Y2R was calculated as the average of the fitted index values for the two years prior to
disturbance, consistent with the approach applied in White et al. (2017) [12].
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2.7. Classification Model

A Random Forest classifier [71] was used to differentiate the two disturbance classes
(i.e., wildfires disturbed forest area, harvesting disturbed forest area), using the R random-
Forest package [72]. The final dataset containing the NBR shape-constrained trajectories,
and their relative metrics, was randomly split in a 70:30 ratio, with 70% of the trajectories
used for training the model and the remaining 30% used as a test set, and all computed
metrics mentioned in Section 2.6 were used as predictor variables, for a total of 14 features.
The most important design parameters for Random Forest are the number of trees to be
generated (ntree) and the number of features to be selected randomly for growing each
tree (mtry): the parametrization followed the default recommended values for the ntree
parameter, while mtry was set to 14. The importance of predictor variables was assessed
using the mean decrease in accuracy value returned by the algorithm instead of the mean
decrease in Gini coefficient because this mechanism to compute feature importance is
known to be biased, inflating the importance of continuous or high-cardinality categorical
variables [73]; coefficients were normalized in a 0–100 scale of relative importance score,
while the out of bag (OOB) score was used to assess the performance of the model. To
obtain consistent values, the model was applied 100 times and the results averaged.

3. Results
3.1. Spectral Response of Bands and Indices

To study the differences in the spectral trajectory of the two types of disturbances,
i.e., wildfires disturbed forest area, harvesting disturbed forest area, and undisturbed forest
area, run charts (Figures 3 and 4) were generated using the raw and shape-smoothed values
of the six Landsat bands and each of the seven spectral indexes, measured, respectively, in
surface reflectance or band ratio on the y-axis, change over time, displayed on the x-axis.

The trends for the bands were almost stationary for undisturbed areas. For each class
of disturbance, we can see that the reflectance values in the segment before the detection of
a disturbance event were equal to the ones computed for the undisturbed areas (Figure 3),
while a sudden change in reflectance can be seen in the year of disturbance: every band
is sensitive to the disturbance event, with the blue band recording the least significant
absolute change in mean in all classes of disturbance. The SWIR 1 band recorded the highest
values for the harvesting class followed by the SWIR 2, while the opposite was found for
wildfires. However, both SWIR bands in the wildfires class recorded the highest value in the
trend not in the year of disturbance, but the following year (y = 1). The recovery segment
displayed a stable trend for all bands in the harvesting class, while more fluctuations can
be seen in the wildfire class.

Trends in spectral indices (Figure 4) had the same pattern found for the bands: a
stationary trend for the undisturbed areas and drops in the band ratio value in the year of a
disturbance. However, the recovery segments showed consistent differences depending
on which spectral index is considered; the NDVI index showed values that were equal to
pre-disturbance levels after only three years, confirming its behavior to saturate rapidly
after the detection of a disturbance event [35,74,75], while the NBR and the NDMI were the
most useful spectral indices in detecting disturbances, showing values in absolute change
in mean close to each other (Table 3).

3.2. Characterizing Recovery with NBR-Based Metrics

Five years after the disturbance event, 10% of the pixels belonging to the wildfires
class had a value of ∆NBRregrowth ≤ 0 in contrast with the harvesting class with only 0.02%;
all remaining pixels had values of ∆NBRregrowth above that threshold, which is a sign of
spectral recovery.
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Figure 3. (Panel A)—Mean value of the bands over the 20 years analyzed for undisturbed areas.
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Table 3. Absolute changes in mean values by spectral band or spectral indices and disturbances; the
best results for each class of disturbance are indicated in bold.

Landsat Spectral Bands Absolute Change in Mean
Harvesting Wildfires

Blue 0.0123 0.0050
Green 0.0163 0.0037
NIR 0.0537 0.0360
Red 0.0336 0.0132

SWIR 1 0.0681 0.0184
SWIR 2 0.0671 0.0384

Landsat spectral index
EVI 0.2245 0.1250

MSAVI 0.2181 0.1152
NBR 0.3710 0.2645
NBR2 0.1746 0.1233
NDMI 0.3144 0.1947
NDVI 0.2417 0.1706
SAVI 0.1847 0.1149

On average, wildfires had higher absolute values and variability than harvesting, with
8% of the pixel distribution having ∆NBRregrowth > 0.6: the average value of ∆NBRregrowth
for the wildfires class was 0.245 with a standard deviation of 0.224, while for the harvesting
class the average was 0.357 with a standard deviation of 0.118 (Figure 5).
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The magnitude of the disturbance event (∆NBRdisturbance) showed values once again
higher in absolute value for the wildfires class, with 20% of them scoring more than 0.6 in
drop of NBR values in the year of disturbance, and a higher variability than the harvesting
class. The average value for the wildfires class was 0.337 with a standard deviation of 0.277,
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compared to the average of 0.384 and a standard deviation of 0.124 of the harvesting class
(Figure 5).

Scaling the ∆NBRregrowth by the magnitude of the disturbance event (∆NBRdisturbance),
the second metric, a relative indicator of recovery (Recovery Index, RI) is obtained. The
definition of RI classifies pixels with RI values ≤ 0 as non-recovering; while all pixels of
the harvesting class were recovering in the first five years after the disturbance, 11% of
the wildfires class did not show signs of recovery. The same trends observed for both
the ∆NBRregrowth and ∆NBRdisturbance are maintained, with lower average and higher
variability values for the wildfires class (µ = 0.744, σ = 0.490) compared to the harvesting
class (µ = 0.925, σ = 0.118).

To evaluate the long-term aspects of recovery, the Y2R metric was calculated with
three different recovery scenarios (Figure 6). Disturbances that happened before 2001 for
the harvesting class could not be included in the analysis because there was not a two-year
period pre-disturbance available to compute the NBRpre-disturbance; from the 62,612 analyzed
pixels, only 55,540 were included in the long-term recovery analysis.
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harvesting class (Panel B).

For the Y2R60% scenario (Figure 6), the recovery NBR threshold of 60% of the NBR
pre-disturbance value was reached after only one year from the disturbance event by both
classes, with the wildfires class being the slowest, recovering approximately 87.5% of the
disturbed pixels. The first year after disturbance recorded the highest proportion of pixels
recovered for both classes, value that decreased in the following years.

The harvesting class observed that 100% of the disturbed pixels were recovered by
the end of 2018. A complete recovery was observed for the harvesting class after only
two years from the disturbance compared to the six years of the wildfires class. The average
Y2R60% value for the harvesting class was 1.02 years (σ = 0.16 years) compared to 1.21
(σ = 0.7 years) for the wildfires.

For the Y2R80% scenario (Figure 6, Table 4), the threshold was reached after the
first year: once again the harvesting class observed the highest recovery rate, reaching
complete recovery (>99%) after only three years from the disturbance, while by 2018 only
77% of the pixels of the wildfires class reached complete recovery, even after eight years
from the disturbance. The average Y2R80% value for the harvesting class was 1.1 years
(σ = 0.4 years) compared to 1.4 years (σ = 1.02 years) for the wildfires class.

For the Y2R100% scenario, the threshold was still reached after the first year by
both classes (Figure 6); however, complete recovery was not reached by any of them: the
harvesting class scored the highest proportion of pixels recovered (48%), with the last pixels
recovering after 11 years from the disturbance event; the wildfires class recovered only
33% of the total, with the last pixels recovering after eight years from disturbance. The
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average Y2R100% value for the harvesting class was 2.1 years (σ = 2.02 years) compared to
1.89 years (σ = 1.50 years) for the wildfires class.

Table 4. Summary of the three recovery metrics; a “+” classifies the pixel for that metric as recovered,
while the “−” as not recovered.

∆NBRregrowth RI Y2R80% Description Proportion of Disturbed Pixels
for the Harvesting Class

Proportion of Disturbed
Pixels for the Wildfires Class

+ + + Recovery indicated by
all 3 metrics 99.752 76.510

+ + −

Short-term recovery
indicated; long-term
recovery not attained

by 2018

0.072 22.166

+ − + Recovery indicated by
∆NBRregrowth and Y2R 0.000 0.000

+ − − Recovery indicated by
∆NBRregrowth only 0.000 0.000

− + + Recovery indicated by
RI and Y2R 0.000 0.000

− + − Recovery indicated by
RI only 0.000 0.000

− − + Long-term
recovery indicated 0.176 0.493

− − −
No recovery was

indicated by any of
the metrics

0.000 2.241

The highest proportion of recovered pixels according to all the metrics analyzed was
scored by the harvesting class, with >99% of the pixels classified as recovered, compared to
the 76% of the wildfires class; wildfires also recorded <2.5% of the pixels as not recovered
by any of the three metrics.

The harvesting class had a <0.01% of pixels that did not attain long-term recovery by
the end of 2018 and <0.2% that did not attain short-term recovery but was able to recover
by the end of 2018. Wildfires had approximately 23% of the pixels that did not attain
short-term or long-term recovery: the highest proportion, approximately 22%, did not
attain long term recovery but observed short-term recovery signs; the lowest did not attain
short-term recovery indicated by both short-term metrics, but was able to recover by the
end of 2018, indicating a longer timespan needed to recovery with a slow increase and fast
growing afterwards.

It is worth noting that when short-term recovery was attained, such a condition was
indicated by both short-term recovery metrics: in our case study, there were not any cases
with recovery indicated by only one of the two metrics.

3.3. Trajectories Classification

The averaged out-of-bag (OOB) error indicated a high accuracy of the model, showing
the default value for the ntree parameter as optimal for the classification (Figure 7). The
model had an averaged overall accuracy (OA) of 98.6%, with class errors relatively well
balanced: averaged producer’s accuracy (PA) scored values ranging between 94% and 99%,
while averaged user’s accuracy (UA) between 99.08% and 99.4%.

The mean decrease in accuracy values were averaged and used to evaluate the predic-
tor variables importance: the mean post-disturbance metric scored as the most important
predictor to differentiate between the two disturbance classes trajectories (Figure 8). Most
of the recovery metrics scored extremely low on the scale, while metrics derived from
spectral values or trend analysis occupy the highest part. It is worth noting that the first
two most important metrics refer to post-change event conditions of the spectral trajectory.
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4. Discussion

The aim of the study was to conduct a full temporal characterization of two disturbance
agents in Mediterranean forest ecosystems. The characterization focused on the more
frequent disturbances recorded for the study area, which were harvesting operations and
wildfires, using a period of observation of 20 years. To provide baseline information
for future disturbance monitoring and forecasting, the analysis used the widest range
of spectral variables available from the Landsat archive and both short- and long-term
recovery metrics used in the past to characterize similar disturbances in boreal forests.

Post-disturbance forest spectral recovery is an ongoing, continuous process described
by the slow increase (indices) or decrease (bands) in the spectral variable temporal pattern.
After the trajectory extraction, all spectral variables analyzed have shown a degree of
sensitivity to disturbances, having different mean values before and after the year of the
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disturbance event even though the disturbances analyzed and their inherent dynamics
are different.

Knowledge about post-disturbance recovery capacity is fundamental information
for forest management and planning. Recovery capacity represents a useful indicator
for ecosystem resilience, in general, a fast recovery rate means a high level of ecosystem
resilience [74]. In addition, post-disturbance recovery could influence the climate due to
the effect on surface radiation balance, carbon budgets, water balance, surface albedo, soil
moisture, erosion, and, finally, evapotranspiration [75]. Substantial differences in absolute
change in mean values between bands and indices (Table 3) confirmed the utility of the latter
over the former for change detection analysis: as hypothesized, spectral indices magnified
the effects of change due to disturbance events, with change in mean values for the indices
differing by one order of magnitude compared to the bands (Figures 3 and 4); singular
bands remain useful to give insights on the location of disturbances in the spectro-temporal
space, but spectral indices maintain the upper hand in detecting more subtle responses
to disturbances and recovery from vegetation (Table 3). This study also confirmed for
Mediterranean forests the major sensitivity of the Landsat NIR, SWIR 1 and SWIR 2 bands,
among all bands, to detect forest disturbances [76].

The results indicate a similar temporal pattern for every spectral index (Figure 4),
showing no sign of dispersion in mean values neither before nor after the disturbance,
with the NBR2 index having the least inter-annual variability. This could be attributed to
the fact that the NBR2 contrasts both SWIR bands and is not affected by fluctuations in
the NIR or Red band like the other indices [77,78]; this information could be extremely
useful to map long term aspects of disturbances in future studies [79]. The SAVI scored
as the least sensitive index both to disturbance detection and recovery, the MSAVI and
EVI reached values close to the NDVI: this reflects what was found by Storey et al. [78]
in Mediterranean-type ecosystems dominated by shrublands formations (chaparral) in
California. However, differences for all the indices found in this study are less enhanced
and the reason could be attributable to vegetation density: chaparral vegetation is generally
more open than sclerophyll forests and maquis formations of the Mediterranean Basin. It
can be assumed that soil-adjusted indices gain significance in change detection analysis the
denser the forests formations analyzed are.

Greenness indices (EVI, NDVI, SAVI, and MSAVI) addressed disturbances correctly
but failed to portray post-disturbances conditions accordingly: wetness indices (NBR,
NBR2, NDMI) patterns remarked that mean values similar to pre-disturbance conditions
take some years, from three to 10 depending on the class of disturbance, to be reached;
instead, all greenness indices displayed pre-disturbance mean values, and in some cases
even higher, after only two or three years for every class of disturbance. This suggests a
fast regain in photosynthetic activity after the disturbance that could be attributable to
colonizing grasses and shrubs in clearings and epicormic shoots, but also as fast regrowth
after coppicing as showed by Chirici et al. [35], being that the coppice system is the most
common form of forest management in our study area.

The NBR was found to be the most sensitive index to capture disturbances, which
aligns with the results obtained by Chirici et al. [35] and Giannetti et al. [27] in Mediter-
ranean forests, and by Kennedy et al. [57] in boreal forests. However, an in-depth analysis
of our results on the recovery metrics pointed out a difference between the two biomes
(i.e., boral and Mediterranean forests) in magnitude of disturbance events, regrowth pattern,
and rate of regrowth. In fact, the recovery of Mediterranean forests is faster than the ones
observed by Kennedy et al. [57] and White et al. [80], confirming the results shown by
Chirici et al. [35], Giannetti et al. [27], and Francini et al. [32].

The results of short-term recovery metrics showed that harvesting disturbances are
on average of medium intensity (85% of the pixels had a ∆NBRdisturbance value comprised
between 0.2 and 0.5) with scarce variability, meaning that harvesting operations had reg-
ular intensity on all forest types across all 20 years. They also indicated a high rate of
recovery, with the long-term metric (Y2R80%) assessing only <0.1% of pixels recovering
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after five years from the disturbance. That could be expected since as with natural distur-
bances, forest harvesting varies in frequency, distribution, and intensity but differs from
them because it is essentially driven by socioeconomic factors and human decisions [81],
especially in privately owned properties. Harvesting simulates effects produced by natural
disturbances [82] and management systems try to do so to sustain forest dynamics and
biodiversity while still allowing harvesting operations.

In some situations, harvesting practice could create less damage to forest vegetation
with respect to the action of natural disturbance agents [83]. Traditionally harvesting
operations are realized on the most productive sites where the combined force of forest
management and site characteristics allows harvest areas to return to the forest state in a
brief period of time. These sites are strongly influenced by humans, which have strongly
altered the natural fire regime and excluded fire from these ecosystems. Human actions
have created a dense forest with lower structural variation and complexity that are ideal
for the development of megafire [83–85]. In this sense, the reintroduction of the natural fire
regime could be particularly useful in improving the ecological variability in forests [85].

This is especially true for coppice stands, where, after cutting, plants and shrublands
grow between the stools and cover the open area, as confirmed by LiDAR analysis done
by Chirici et al. [35], left by and, after five or so years, the increasing shade made by the
closing coppice canopy rapidly eliminates most of the foliage beneath. There are no further
changes in the forest structure until the next cut, apart from the growing coppice stems.

Overall, information derived from recovery metrics and the classification model shows
that harvested areas recovered faster in both short-and long-term aspects and showed less
variability in magnitude of the disturbance event and rate of recovery over time than
wildfires. Even though recovery metrics did not score very high on the feature importance
scale, the model identified a different behavior in the spectral pattern between disturbances
based on the spectral values recorded in the recovery segment of the trajectories, from which
the recovery metrics are derived. Taking the averaged NBR trend and the first two most
important metric selected by the model as an example, there is a huge relative gap between
mean post-disturbance and first year post-disturbance values for the two classes: higher
values and a faster recovery rate for harvesting mean a different collocation of the trend in
the spectro-temporal space, which allows clearly distinguishing between disturbances.

Fire intensity determines the effects of fire on vegetation: low intensity events usually
leave residual vegetation on site in the form of standing snags or living trees, high intensity
events can kill all living biomass; both influence regeneration processes, with residual
vegetation offering protection to new saplings and seedlings, while high intensity fires can
release soil nutrients to the soil, making them readily available to the soil seed bank, or
help pyrophyte species seeds to germinate.

Short term recovery metrics indicated a great variability in the magnitude of observed
fire events, with very different recovery rates: all pixels that suffered high intensity events
(∆NBRdisturbance ≥ 0.8) also displayed a high positive recovery rate (RI > 0.8 on average) and
belonged to only three of the eleven forest types analyzed (Downy oak, Maquis formations,
and Maritime pine); instead, pixels interested by low intensity events showed a wider
range of behaviors, with fast recovery (RI > 1) or no recovery at all (RI < 0).

The long-term recovery metric indicated a longer period needed to achieve full recov-
ery than harvested areas (1.4 years against 1.1 on average); pixels recovered in the first year
were interested by low intensity events (∆NBRdisturbance ≤ 0.2 on average), while all pixels
interested by high intensity events, despite the displayed high recovery rate, achieved full
recovery only after four years on average. However, also if fire damaged areas need in
average more time to recover, compared to harvested areas, it is important to remember
that most of the forest tree species present in the fire damaged areas are well adapted to fire.

These results lead to a better understanding of the dynamics of fire events in Mediter-
ranean forests: fire events have higher variability in intensity and area coverage (the largest
observed in this study covered more than 300 hectares) and need a longer period to achieve
full recovery (up to nine years) than harvested areas. High intensity fire events are less
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likely to occur than low intensity ones and interest only certain forest types that are well-
known for being adapted to fire or require fire to germinate [83]: this interpretation explains
the high recovery rates found for pixels with high ∆NBRdisturbance values. The exception
is the Downy oak, a species with poor resprouting capabilities, but the understory veg-
etation of these stands is composed of the same pyrophyte species found in the maquis
formations [84]; thus, the high recovery rates observed are attributed to the understory
component and not to the main species of the forest type. It is important to remember
that for forest fire damaged areas from satellite, we can just understand the recovery of
photosynthetic activities, and it is not possible to distinguish if the species responsible for
the recovery are the previous forest tree species or invasive species. However, suppose we
have a recovery of photosynthetic activities, even invasive species can have a beneficial ef-
fect on the area: for example, they can contest the erosion of the slope and start a secondary
succession in the area.

5. Conclusions

This study contributed by outlining the differences among two classes of disturbance
in Mediterranean forest ecosystems through the information derived by Landsat spectral
trajectory analysis based on bands and vegetation indices and NBR based spectral, trend
analysis, and recovery metrics. The obtained results offer opportunities for future studies
in multiple directions to understand disturbance phenomena and recovery processes,
including the creation and application of new NBR based recovery metrics adapted to
the significative shorter temporal recovery domain of Mediterranean areas compared to
boreal forests, a more accurate characterization of the disturbances using longer, more
dense, and intra-annual LTS in Mediterranean areas, or the characterization of other agents
of disturbance with patterns not clearly documented. With these pieces of information,
the development of approaches for automating the attribution of disturbance type could
not be far. Future studies need to take into consideration also other types of abiotic and
biotic disturbances, such as windthrow and insect disturbances, that were considered in
this study since we do not have a reference dataset useful for trajectory analysis.
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Appendix A

Table A1. Specification of the Landsat images used in the study.

Satellite Sensor Processing
Level

WRS2
Address Acquisition Date Collection Tier Product

Landsat 5 TM L1TP 192/030 26 June 1999 01 T1 sr
Landsat 5 TM L1TP 192/030 15 August 2000 01 T1 sr
Landsat 5 TM L1TP 192/030 2 August 2001 01 T1 sr
Landsat 5 TM L1TP 192/030 18 June 2002 01 T1 sr
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Table A1. Cont.

Satellite Sensor Processing
Level

WRS2
Address Acquisition Date Collection Tier Product

Landsat 5 TM L1TP 192/030 8 August 2003 01 T1 sr
Landsat 5 TM L1TP 192/030 7 June 2004 01 T1 sr
Landsat 5 TM L1TP 192/030 26 June 2005 01 T1 sr
Landsat 5 TM L1TP 192/030 13 June 2006 01 T1 sr
Landsat 5 TM L1TP 192/030 18 July 2007 01 T1 sr
Landsat 5 TM L1TP 192/030 21 August 2008 01 T1 sr
Landsat 5 TM L1TP 192/030 23 July 2009 01 T1 sr
Landsat 5 TM L1TP 192/030 10 July 2010 01 T1 sr
Landsat 5 TM L1TP 192/030 27 June 2011 01 T1 sr
Landsat 7 ETM+ L1TP 192/030 8 August 2012 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 16 June 2013 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 6 August 2014 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 6 June 2015 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 27 August 2016 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 14 August 2017 01 T1 sr
Landsat 8 OLI/TIRS L1TP 192/030 17 August 2018 01 T1 sr

Appendix B

Table A2. Landsat spectral indices used in the study.

Index Type Spectral Index Formula Used by USGS Processing

Greenness Enhanced Vegetation Index (EVI)

G × (NIR−Red)
(NIR+C1×Red−C2×Blue+L)

Where:
G = 2.5
C1 = 6

C2 = 7.5
L = 1

Greenness Normalized Difference Vegetation Index (NDVI) NIR−Red
NIR+Red

Greenness Modified Soil Adjusted Vegetation Index (MSAVI) (2×NIR+1−
√
(2×NIR+1)2−8×(NIR−Red)

2

Greenness Soil Adjusted Vegetation Index (SAVI)

(NIR−Red)
(NIR+Red+L) × (1 + L)

Where:
L = 0.5

Wetness Normalized Burned Ratio (NBR) NIR−SWIR 2
NIR+SWIR 2

Wetness Normalized Burned Ratio 2 (NBR2) SWIR 1−SWIR 2
SWIR 1+SWIR 2

Wetness Normalized Difference Moisture Index (NDMI) NIR−SWIR 1
NIR+SWIR 1
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