
����������
�������

Citation: Podschwit, H.R.; Potter, B.;

Larkin, N.K. A Protocol for

Collecting Burned Area Time Series

Cross-Check Data. Fire 2022, 5, 153.

https://doi.org/10.3390/

fire5050153

Academic Editor: James A. Lutz

Received: 19 August 2022

Accepted: 23 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Data Descriptor

A Protocol for Collecting Burned Area Time Series
Cross-Check Data
Harry R. Podschwit 1,2,*,† , Brian Potter 3 and Narasimhan K. Larkin 3

1 College of the Environment Special Programs, Quantitative Ecology & Resource Management (QERM),
University of Washington, Seattle, WA 98195, USA

2 Missoula Fire Sciences Laboratory, U.S. Forest Service, Rocky Mountain Research Station, W. Broadway Street,
Missoula, MT 59808, USA

3 Pacific Wildland Fire Sciences Laboratory, U.S. Forest Service, 400 N. 34th Street #201, Seattle, WA 98103, USA
* Correspondence: harryp@uw.edu
† Former affiliation.

Abstract: Data on wildfire growth are useful for multiple research purposes but are frequently
unavailable and often have data quality problems. For these reasons, we developed a protocol for
collecting daily burned area time series from the InciWeb website, Incident Management Situation
Reports (IMSRs), and other sources. We apply this protocol to create the Warehouse of Multiple
Burned Area Time Series (WoMBATS) data, which are a collection of burned area time series with
cross-check data for 514 wildfires in the United States for the years 2018–2020. We compare WoMBATS-
derived distributions of wildfire occurrence and size to those derived from MTBS data to identify
potential biases. We also use WoMBATS data to cross tabulate the frequency of missing data in
InciWeb and IMSRs and calculate differences in size estimates. We identify multiple instances where
WoMBATS data fails to reproduce wildfire occurrence and size statistics derived from MTBS data. We
show that WoMBATS data are typically much more complete than either of the two constituent data
sources, and that the data collection protocol allows for the identification of otherwise undetectable
errors. We find that although disagreements between InciWeb and IMSRs are common, the magnitude
of these differences are usually small. We illustrate how WoMBATS data can be used in practice by
validating two simple wildfire growth forecasting models.

Keywords: data cleaning; data collection; InciWeb; uncertainty; missing data; wildfire growth;
spread; bias

1. Introduction

Rapid wildfire growth can have numerous significant effects on anthropogeic and
environmental systems. Fast spreading fire has been implicated in dramatic changes in
vegetation structure and composition [1,2], which in turn can cause negative downstream
effects on water [3,4] and soil conditions [5]. The sudden emission of large quantities of
smoke [6] and the rapidly advancing flames of a wildfire can pose a threat to human [7,8]
and non-human health [9,10]. In addition to the associated safety risks, fast-spreading
fires are particularly difficult for firefighters to control [11]. Despite fire spread’s rele-
vance to these impacts, final fire size is perhaps the most common wildfire characteristic
researchers analyze [12]. This methodological bias is unfortunate because, in many cases,
the aforementioned impacts occur in fairly moderate-sized fires. The Rattlesnake fire of
1953, the Oakland Hills fire of 1991, and the Cramer fire of 2003 were rapidly spread-
ing events and significant in terms of loss of life [13–15], but not extraordinarily large.
The Rattlesnake fire only burned approximately 500 hectares [13], the Oakland hills fire
burned about 600 hectares [14], and the Cramer fire burned approximately 750 hectares
(see www.mtbs.gov; accessed on 18 September 2022). Final fire size can also be an inap-
propriate proxy of ecological impacts. Fast-growing fires will often burn an area at high
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intensity [1], which can severely affect ecosystem functions such as water and soil quality
over a relatively small-but ecologically important-area [16]. Populations of fire-sensitive
wildlife limited to small geographic areas can be severely impacted by high-severity fires,
even if not particularly large [17,18].

For these reasons, there is a need to not only investigate the drivers and effects of
large fire occurrences, but also the effects and drivers of daily variability in fire growth.
To that end, estimates of the size of an individual wildfire over regular intervals of time,
hereafter referred to as burned area time series (BATS), are immensely useful to researchers
seeking a holistic understanding of relationships between wildfire and the environment.
BATS are used to answer research questions that cannot be revealed with final wildfire
size data alone, and BATS have been critical to modeling how temporal variation in
wildfire growth impacts vegetation [1], public health [8], and firefighting effectiveness [11].
BATS data have also been useful in identifying factors that are relevant to predicting fire
growth [19–22], estimating fire spread rates [23], and validating predictions from wildfire
spread models [24].

Although clearly informative, BATS are notoriously uncommon [25], and data about
the location, date, and final size of wildfires are often all that are available. For instance,
in the United States, although the Monitoring Trends in Burn Severity (MTBS) project has
systematically recorded detailed information about the final burned area and severity using
Landsat satellite data going back to 1984 [26], it cannot be used to determine daily variation
in fire growth. One source of progression data, and a large amount of other information, is
from wildfire case studies. Unfortunately, less than one-tenth of one percent of wildfires
are documented in this manner [27], and the reports must be heavily processed before they
can be used in scientific studies. Historical administrative records are a more commonly
available source of progression data [25], which omit many of the details provided by case
studies but are more widely available and provide a structured presentation of information.
However, these data frequently require some preprocessing in order to convert raw data
into products useful for scientific research [28] and are not available for all wildfires. In the
United States, Incident Status Summary (i.e., ICS-209) forms are an example of historical
administrative records that can produce BATS [28]. ICS-209s are forms that are submitted
throughout most wildfires’ lifetimes, which record up to 53 blocks of information, includ-
ing incident name, location, ignition date, current size, containment levels, and ignition
cause [29]. ICS-209s are closely related to Incident Management Situation Reports (IMSRs),
which are released near-daily to summarize wildfire activity across the United States from
the previous day’s evening ICS-209s and other reports [30]. Where ICS-209s are issued daily
or more often for a single wildfire, IMSRs are issued once daily to summarize multiple wild-
fires in a single report. In addition to case studies or historical administrative reports, recent
advances in cloud-based computing have made satellite-based data increasingly accessible
for research and analysis. Satellite data can produce BATS using data that are available
globally and sampled at regular intervals [31]. Still, many of the problems associated with
other data sources remain. Satellite data can have missing size measurements [32,33], can
require extensive pre-processing to identify individual fires [34] and fill in missing days [32],
and may not accurately reflect actual size estimates [35]. In addition to the case studies,
historical administrative records, and satellite data, partial BATS can also be produced
using information from newspapers [36], photography, personal communications [27],
hand-drawn progression maps [37], and web-based information [27,38].

Although BATS can be produced from many data sources, the data are not available
for all wildfires and even when available, are often incomplete and contain errors [32,35].
Missing observations are fairly common in historical administrative records and can arise
for a number of reasons. For example, if a wildfire is not under full suppression or if little
growth is anticipated, then reporting may only be required weekly [29]. A wildfire may be
undetected in the early-days of the incident’s lifetime or may not be large enough to warrant
reporting [29]. Missing data can also arise from changes in incident management [29], such
as when an individual wildfire switches to being managed and reported as part of a
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complex. In addition to missing data, measurement errors are another common problem.
In some cases, measurement errors are obvious and can be identified without consulting
multiple data sources. For example, ICS-209 data will often produce a BATS that decreases
at some point in time [28]. Since fires cannot unburn the landscape, these errors are easy to
detect and often occur when improved mapping corrects initial overestimates of burned
area. However, errors within an expected range (e.g., larger than the t− 1th observation and
smaller than the t + 1th observation) require more effort to identify [39]. These errors are
somewhat ubiquitous and can arise for a variety of reasons. Satellite-derived size estimates
are likely to disagree with ground-based observations, particularly in topographically
complex locations [35]. Transcription errors can easily produce plausible, but ultimately
incorrect size measurements. Wildfire size changes over the course of a day and measuring
at irregular intervals (i.e., reporting size in the morning one day and the evening on another)
can result in inconsistencies across BATS data sources. Although these inconsistencies may
not technically be errors in that they faithfully report the size at the time the measurements
were taken, because BATS are presumed to represent a sample of size over regular intervals
of time, they can become a source of measurement uncertainty when used to estimate
daily size.

These missing and erroneous observations are a relatively common characteristic of
BATS data and are problematic for scientific applications [35]. For that reason, various
kinds of data cleaning methods have been proposed to complete and correct BATS [39],
including simple rule-based corrections like those used to produce ICS-209-PLUS data [28],
complex statistical models [32], and hand-cleaning by analysts [40]. Although it is a
relatively time-consuming process, cross-checking the BATS against other information
has two major benefits. Firstly, cross-check data can explicitly fill in missing observations
without making assumptions about wildfire progression. Secondly, cross-checking data
can gauge measurement reliability in a way that is impossible in the absence of multiple
data sources [39].

Given that (1) there is a dearth of BATS data and (2) consultation of multiple data
sources appears likely to improve data completeness and accuracy, we would like to de-
velop a procedure to collect BATS data in a documented and transparent manner [38].
To that end, we describe and apply a method of aggregating wildfire growth information
from multiple data sources to build a novel BATS dataset based on ground-based obser-
vations. We will use these data to assess measurement uncertainty and demonstrate its
application in research contexts. The methods are described in Section 2, which is orga-
nized into two subsections: a data collection protocol subsection and a dataset analyses
subsection. In the data collection protocol subsection, we describe the data collection
methods generally and also demonstrate their specific application to the Saddleridge wild-
fire. The aforementioned data collection protocol is applied to produce the warehouse of
multiple burned area time series (WoMBATS) data, which are a collection of BATS with
cross-check data for 514 wildfires in the United States between 2018 and 2020. In the dataset
analyses subsection, we present the methods used to gauge the quality of WoMBATS data
and a description of the example model validation exercise that is performed to illustrate
the application of WoMBATS data in research. In Section 3, the results of the three analyses
described in the previous section are presented. In Section 4, we discuss the advantages and
limitations of our protocol and highlight potential future research directions. In Section 5,
we summarize our overall conclusions and recommendations.

2. Methods
2.1. Data Collection Protocol
2.1.1. Overview

The data collection protocol generates two products: a BATS table and a metadata
table. The BATS table reports daily size estimates of an individual wildfire from multiple
sources. The metadata table provides information on the data sources used to estimate daily
size. These two data products are created through a three-step workflow. In the first step,
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InciWeb data are used to create a case list of wildfires and record important information
such as the ignition date and location. Second, InciWeb webscrapes, Incident Management
Situation Reports (IMSR), and other data are consulted to build individual daily BATS for
each wildfire in the case list. In the third step, the BATS are aligned side-by-side in a table
(Figure 1), and the source and quality of data are reported in the metadata table.

Figure 1. Graphical depiction of three-step workflow of data collection protocol. (1) a case list of
wildfires that are to have data collected is produced from InciWeb. (2) burned area time series,
represented here as a colored grid, are produced for all wildfires in the case list. (3) the burned area
time series are combined into a single table. Increasingly red colors in the grid represent increases
in reported fire size and white colors represent missing data. Numbers represent step number
of workflow.

2.1.2. InciWeb Case List

Data collected from the InciWeb (www.inciweb.org; accessed between 2 June 2018
and 31 December 2020) website are used to create an initial case list and establish basic
information about the wildfire. Information from InciWeb comes from a variety of sources
that can overlap with that used to produce IMSRs but there are often instances where
the sources are not the same. For example, late-evening infrared measurements may be
reported in InciWeb, but not IMSRs. A scheduled webscraper queries the InciWeb website
at 5:00 UTC (22:00 PST) each day. The webscraper extracts 12 variables for each wildfire
reported on the InciWeb website including size, event category, location name, ignition
date, url, latitude, longitude, and name. This web-scraping program was run near-daily
between 2 June 2018 and 31 December 2020.

The daily webscrape data are aggregated into a master dataset and a case list of unique
events is obtained using the event urls as identifiers. The list was filtered to remove all
non-wildfire events; wildfires with no daily size exceeding 405 ha; wildfires with the text
“complex” in the name; and wildfires with an unknown ignition date.

2.1.3. Construction of BATS

The measurements reported in the master dataset are the same as if one visited the
InciWeb website at the same time every day and recorded the size reported on the website.
These data are used to produce an initial partial BATS that is next cross-checked against
IMSRs and other data.

Initial BATS cross-check data are obtained by querying IMSRs (https://www.pred
ictiveservices.nifc.gov/intelligence/archive.htm; accessed between 5 February 2021 and
27 September 2022). Beginning on the ignition date identified from the InciWeb data,
the relevant IMSRs are manually searched to see if the relevant wildfire name is reported.
If yes, the size is recorded. Otherwise, the size is recorded as NA. Once the IMSR no longer

www.inciweb.org
https://www.predictiveservices.nifc.gov/intelligence/archive.htm
https://www.predictiveservices.nifc.gov/intelligence/archive.htm
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reports the wildfire’s size, the query is terminated. The partial BATS produced from IMSRs
are back-shifted by one day to account for reporting delays [30]. After consulting the IMSR
data, it is likely that the resulting BATS will still have days that have missing observations
and/or InciWeb data that has not been cross-checked. Additional cross-check data could
come from a number of sources [27,31,37–39], but these data will not be included using
the systematic structured methods as were used for InciWeb and IMSRs. Instead, we will
include these additional data sources as convenient using an unstructured search.

We assume that InciWeb and IMSR data provide point estimates of size since there is,
by definition, only one measurement per day, but other data sources may report multiple
observations in a day or offer an interval estimate instead. Rather than discard this infor-
mation, we will report two partial BATS: a daily minimum and a daily maximum BATS.
In most instances, this interval estimate will be redundant since-like the InciWeb and IMSR
data-there will only be a single measurement associated with a given day. However, when
measurement variability is observed, interval estimates can document this in a way that is
superior to point estimates.

The BATS table is produced by aligning the individual BATS side-by-side. The URL,
access date, and quality category (low, medium, or high) are recorded for each web-based
data source in a metadata table. Data quality is defined as “high” if it is a government,
land, or fire management agency; “medium” if it is a credible secondary source such as a
newspaper; and it is “low” otherwise. InciWeb and IMSR data are classified in the “high”
data quality category by default.

2.1.4. Example

The Saddleridge wildfire ignited in Southern California on 10 October 2019, and is
used to demonstrate the real-world application of the data collection protocol. The master
dataset of records produced from the InciWeb webscraper associated with the Saddleridge
wildfire is shown below (Table 1). Note that the wildfire has at least 1 observation exceeding
405 ha, has a known ignition date and location, and is not named as part of a complex.
Note also that the BATS produced by InciWeb is incomplete, with observations unavailable
for the first five days of the wildfire. The mandatory cross-check data produced from the
IMSRs does not fill in any of these missing days, but corroborates most of the InciWeb
estimates following 17 October (Table 2).

Table 1. InciWeb master dataset for the Saddleridge fire (2019).

Access date Ignition Date Latitude Longitude Hectares URL

15 October 19 10 October 19 34.326 −118.481 3396 http://inciweb.nwcg.gov/incident/6643/
16 October 19 10 October 19 34.326 −118.481 3396 http://inciweb.nwcg.gov/incident/6643/
17 October 19 10 October 19 34.326 −118.481 3396 http://inciweb.nwcg.gov/incident/6643/
18 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
19 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
20 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
21 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
22 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
23 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
24 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
25 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
26 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
27 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
28 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
29 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/
30 October 19 10 October 19 34.326 −118.481 3561 http://inciweb.nwcg.gov/incident/6643/

http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
http://inciweb.nwcg.gov/incident/6643/
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Table 2. Incident Management Situation Report cross-check data for the Saddleridge fire (2019).
Accessed on 27 September 2022.

Date Hectares URL

10 October 19 NA https://www.predictiveservices.nifc.gov/IMSR/2019/20191011IMSR.pdf
11 October 19 NA NA
12 October 19 NA NA
13 October 19 NA NA
14 October 19 NA NA
15 October 19 NA NA
16 October 19 NA NA
17 October 19 3396 https://www.predictiveservices.nifc.gov/IMSR/2019/20191018IMSR.pdf
18 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191019IMSR.pdf
19 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191020IMSR.pdf
20 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191021IMSR.pdf
21 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191022IMSR.pdf
22 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191023IMSR.pdf
23 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191024IMSR.pdf
24 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191025IMSR.pdf
25 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191026IMSR.pdf
26 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191027IMSR.pdf
27 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191028IMSR.pdf
28 October 19 3561 https://www.predictiveservices.nifc.gov/IMSR/2019/20191029IMSR.pdf
29 October 19 NA https://www.predictiveservices.nifc.gov/IMSR/2019/20191030IMSR.pdf
30 October 19 NA https://www.predictiveservices.nifc.gov/IMSR/2019/20191031IMSR.pdf

At this point, although the two mandatory sources have been consulted, the size is still
unknown for the first five days. Other data sources are sampled to fill in these values and
better assess the variability in daily size measurements. Specifically, additional high-quality
cross-check data are available in the form of an incident narrative by the Los Angeles
Fire Department (LAFD). The utility of interval size estimates becomes apparent here as,
on some days, the narrative reports the size of the fire multiple times. These supplemental
cross-check data are reported in Table 3 and are available from: https://www.lafd.org/n
ews/saddle-ridge-brush-fire (Accessed on 27 September 2022). The aggregation of all three
data sources describes the fire progression and measurement uncertainty in a way that no
one of the basis sources could (Figure 2).

Table 3. Supplemental BATS data for the Saddleridge fire (2019) from the Los Angeles Fire Depart-
ment (https://www.lafd.org/news/saddle-ridge-brush-fire; Accessed on 27 September 2022). Daily
size is reported in hectares. The local time of the narrative are reported in the parenthesis.

Date Minimum Size (Pacific Standard Time) Maximum Size (Pacific Standard Time)

10 October 19 24 (22:55)
11 October 19 647 (00:19) 3052 (17:00)
12 October 19 3056 (10:45) 3223 (19:00)
13 October 19 3223 (8:00) 3223 (18:00)
14 October 19 3223 (7:00) 3396 (21:00)
15 October 19 3396 (7:00) 3396 (21:00)
16 October 19 3396 (9:00) 3396 (19:00)
17 October 19 3396 (7:00) 3396 (19:00)
18 October 19 3396 (7:00) 3561 (19:00)
19 October 19 3561 (19:00) 3561 (19:00)
20 October 19 3561 (19:00) 3561 (19:00)
21 October 19
22 October 19 3561 (17:00) 3561 (17:00)

https://www.predictiveservices.nifc.gov/IMSR/2019/20191011IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191018IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191019IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191020IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191021IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191022IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191023IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191024IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191025IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191026IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191027IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191028IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191029IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191030IMSR.pdf
https://www.predictiveservices.nifc.gov/IMSR/2019/20191031IMSR.pdf
https://www.lafd.org/news/saddle-ridge-brush-fire
https://www.lafd.org/news/saddle-ridge-brush-fire
https://www.lafd.org/news/saddle-ridge-brush-fire
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Figure 2. Composite burned area time series from three data sources: InciWeb webscrapes, Incident
Situation Management reports (IMSRs), and narratives from the Los Angeles Fire Department (LAFD).

2.2. Dataset Analyses
2.2.1. Overview

The Saddleridge example was just one of 514 wildfires in the filtered case list for
2018–2020, and the data collection protocol was applied to each. The data produced from
this procedure are available at: https://figshare.com/articles/dataset/WOMBATS_basic
_data_2018-2020/14788206; DOI: 10.6084/m9.figshare.14788206 (Accessed on 27 September
2022). This collection of BATS tables, hereafter the warehouse of multiple burned area
time series (WoMBATS) data, were subjected to three analyses. In the external comparison
analysis, we compare the distribution of variables derived from the WoMBATS data to
those derived from MTBS fire occurrence data. In the internal comparison analysis, we
compare the completeness and consistency of BATS produced from the two main sources of
WoMBATS data: InciWeb webscrapes and IMSRs. In the application analysis, we illustrate
how WoMBATS data can be used in research by validating the predictions from simple fire
growth models. All analyses were performed in the R programming language [41].

2.2.2. External Comparison

MTBS data spans from 1984 to 2016, and systematically records fire information across
all 50 states and are subject to quality controls (see https://www.mtbs.gov/faqs; Accessed
on 27 September 2022). Non-wildfires and fires that were not large (i.e., that did not exceed
405 ha) were omitted from further analysis for both the WoMBATS and MTBS data.

Wildfire counts were modeled using parametric and non-parametric approaches.
The parametric approach assumes that the wildfire counts follow a binomial distribution
and models the space-time distribution of counts conditional on a known total number of
fires. For each state i, the total number of large fires nationally was used as the number of
trials (n) parameter, and the empirical frequency of large fires was used as the binomial
model’s success probability (pi):

n = # of large fires. (1)

https://figshare.com/articles/dataset/WOMBATS_basic_data_2018-2020/14788206
https://figshare.com/articles/dataset/WOMBATS_basic_data_2018-2020/14788206
https://www.mtbs.gov/faqs
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pi =
# of large fires in state i

# of large fires
; (2)

Similarly, for each state i and month t, the number of large fires within the state was
used as the number of trials (ni) parameter, and the empirical frequency of large fires in
each month and state was used as the success probability (pit) parameter:

ni = # of large fires in state i. (3)

pit =
# of large fires in state i and month t

# of large fires in state i
; (4)

These parameters were estimated from MTBS data and were used to calculate the
central 95th percentile of expected values for WoMBATS-derived wildfire counts. The non-
parametric approach uses MTBS data to construct a sample of wildfire counts over a time
period analogous to the WoMBATS data and describes the absolute frequency of fires.
For each state i, the number of large wildfires between 2 June, T and 31 December, T + 2
was calculated for every T ∈ {1984, 1985, . . . , 2014}. This same method was applied to each
state and month to produce the non-parametric version of the monthly wildfire counts.
The distribution of wildfire size were described for each state using empirical cumulative
distribution functions. Two-sample Kolmogorov–Smirnov tests were used to compare the
empirical distribution of wildfire size derived from WoMBATS and MTBS data, and identify
any states where the two distributions differ.

2.2.3. Internal Comparison

In this analysis, we described the level of dependence between the two required
sources (InciWeb webscrapes and IMSRs) used to produce the WoMBATS data with three
methods. First, we described the typical data completeness of BATS and reported the
frequency that size measurements are available from both, one, or none of the sources.
Second, we determined if measurements from one source tended to be systematically larger
or smaller than the other by reporting the relative frequency of days in the BATS with these
characteristics. Third, we measured how close IMSR size measurements were to InciWeb
size measurements when both were available.

Each day of each of the 514 wildfires produced from the case list was classified into
one of four self-explanatory data availability categories: “Both”, “IMSR-only”, “InciWeb-
only”, or “None”. Each day with cross-check data was also classified into one of three
bias categories: “IMSR>InciWeb”, “IMSR<InciWeb”, “Exact”. The average proportion of
the BATS in each of these categories was recorded. The wildfires with cross-check data
were also used to calculate the relative dispersion of size measurements using the average
coefficients of variation (CV):

CVit =
σit
µit

=
|Xit1 − Xit2|/

√
2

(Xit1 + Xit2)/2
; (5)

Here µit represents the average of the measurements for individual wildfire i on day t,
and σit represents the standard deviation. Because there are at most two values per day
and wildfire—one value from an IMSR and one value from an ICS209—this quantity is
equivalent to

√
2 times the range of the burned area measurements divided by the sum of

burned area measures. For each wildfire, the daily CV was averaged across the days with
cross-check data. In addition to size measurements, a square root data transformation was
applied to size measurements to convert them into pseudolinear-spread measurements.
The average CV of the pseudolinear-spread measurements were used to classify each
wildfire with cross-check data into one of four data quality categories: “Exact”, “Close”,
“Adequate”, and “Inadequate”. If there was no disagreement between the InciWeb and
IMSR data, it was classified as “Exact”. If the CV was less than 2.5 percent, then it was
classified as “Close”. If the CV was less than 35 percent, it was classified as “Adequate”.
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If the CV was equal to or greater than 35 percent, it was classified as “Inadequate”. These
categories are based on published data quality thresholds [42].

2.2.4. Application

In this analysis, we used WoMBATS data to measure the relative performance of two
simple fire growth models that predict wildfire size on day t using the size estimates from
day t− 1 and day t− 2. The areal persistence model predicts that the next day’s size equals
the current size plus today’s growth (Equation (6)).

X̂t = Xt−1 + (Xt−1 − Xt−2) = 2Xt−1 − Xt−2; (6)

Here X̂t is the size estimate on day t, and Xt−2 and Xt−1 are the two previous daily
size observations. The areal persistence model described here is already used within
the BlueSky modeling framework to produce more realistic smoke forecasts than those
based on current size estimates [43]. Since the area of a circle increases quadratically with
each unit increase in radius, this model of fire growth implicitly assumes that tomorrow’s
average fire spread rate is less than today’s. An alternative model of fire growth might
instead use radial persistence, where tomorrow’s size estimate is produced assuming a
constant radial spread (Equation (7)).

X̂t = (
√

Xt−1 + (
√
(Xt−1 −

√
Xt−2))

2 = (2
√

Xt−1 −
√

Xt−2)
2; (7)

The performance of the models described in (Equations (6) and (7)) were based on
a sample of fire size predictions that were calculated from contiguous three-day time
windows. This sample was produced from WoMBATS data in a three-step method. First,
an average BATS was calculated for all 514 wildfires. Specifically, on days when both data
sources were available, half the sum of the IMSR and InciWeb estimates was used as the
size estimate. When only one source was available, the available data were used instead.
Second, a sample of days within each BATS that are suitable for validation were identified.
A day of a BATS was deemed suitable if the previous three days monotonically and strictly
increased (Equation (8)).

Xt > Xt−1 > Xt−2; (8)

Using these final validation data, the mean absolute percent error (MAPE) between the
observations and size predictions produced from (Equations (6) and (7)) were calculated.
An average of the MAPE estimates were calculated for days two through nine for 10 states
in the Western United States: California, Arizona, Nevada, New Mexico, Colorado, Oregon,
Idaho, Montana, Utah, and Washington. Sample sizes greater than 1 were not consistently
available after the ninth day. For each state and day, a two-sample t-tests was performed to
determine if MAPE estimates are significantly different in forecasts produced using areal
persistence versus forecasts produced using radial persistence. Significance was defined
using an α = 0.05 p-value threshold.

3. Results
3.1. External Comparison

WoMBATS fire counts in a number of states (Table 4) were anomalous compared to
what would be expected from MTBS data. WoMBATS fire counts were below the binomial
distribution’s central 95th percentile (under-represented) in Alaska, Florida, Idaho, Kansas,
Kentucky, Minnesota, Oklahoma, South Dakota, and West Virginia. WoMBATS fire counts
were above the binomial distribution’s central 95th percentile (over-represented) in Arizona,
California, Colorado, Nevada, and Washington. Only Montana, New Mexico, and Oregon
had WoMBATS fire counts inside the top half of the binomial distribution’s central 95th
percentile. In addition to disproportionately representing wildfire occurrence in some
states, a number of WoMBATS-derived fire counts for individual states were anomalously
low compared to what would be expected over such a time frame. WoMBATS fire counts
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were below the empirical distribution’s central 95th percentile (fewer fires than would be
reported from MTBS) in Florida, Idaho, Louisiana, Minnesota, Nebraska, and South Dakota
(Figure 3). In no case were the WoMBATS fire counts above the empirical distribution’s
central 95th percentile. Arizona and Colorado were the only states where the WoMBATS
fire counts fell inside the top half of empirical distribution’s central 95th percentile.

Table 4. Number of wildfires from two WoMBATS and MTBS, dis-aggregated by state and year.
The number of large (>405 ha) wildfires are reported in the parenthesis. States divided into West-
ern Continental United States (CONUS), Eastern CONUS, and Outside CONUS. The asterisk *
denotes that two long-duration wildfires that ignited in 2017 are included in Oregon 2018 WoMBATS
fire counts.

WoMBATS MTBS
Region State 2018 2019 2020 2018–2020 1984–2016

Western CONUS California 27 (27) 16 (16) 41 (41) 84 (84) 1431
Arizona 18 (18) 21 (20) 42 (42) 81 (80) 618
Nevada 24 (24) 9 (9) 19 (19) 52 (52) 819

New Mexico 11 (11) 18 (17) 10 (10) 39 (38) 649
Colorado 21 (21) 4 (4) 9 (9) 34 (34) 245
Oregon * 19(19) 5 (5) 18 (18) 42 (42) 640

Idaho 18 (18) 4 (4) 12 (12) 34 (34) 1243
Montana 14 (14) 6 (6) 14 (14) 34 (34) 617

Utah 13 (13) 6 (6) 4 (4) 23 (23) 554
Washington 14 (13) 3 (3) 14 (14) 31 (30) 418
Wyoming 4 (4) 2 (2) 5 (4) 11 (10) 309

Eastern CONUS Texas 5 (5) 2 (2) 26 (26) 33 (33) 802
Florida 3 (3) 0 (0) 0 (0) 3 (3) 456

South Carolina 0 (0) 1 (1) 0 (0) 1 (1) 30
West Virginia 0 (0) 1 (1) 0 (0) 1 (1) 185

Oklahoma 0 (0) 0 (0) 0 (0) 0 (0) 390
South Dakota 0 (0) 0 (0) 2 (2) 2 (2) 177

Minnesota 0 (0) 0 (0) 0 (0) 0 (0) 170
Kansas 0 (0) 0 (0) 0 (0) 0 (0) 109

Kentucky 0 (0) 0 (0) 0 (0) 0 (0) 101
Louisiana 0 (0) 0 (0) 0 (0) 0 (0) 83

North Carolina 0 (0) 0 (0) 0 (0) 0 (0) 74
Nebraska 0 (0) 0 (0) 0 (0) 0 (0) 73
Georgia 0 (0) 0 (0) 0 (0) 0 (0) 61

Tennessee 0 (0) 0 (0) 0 (0) 0 (0) 54
North Dakota 0 (0) 0 (0) 0 (0) 0 (0) 46

Virginia 0 (0) 0 (0) 0 (0) 0 (0) 45
Mississippi 0 (0) 0 (0) 0 (0) 0 (0) 44
Arkansas 0 (0) 0 (0) 0 (0) 0 (0) 43
Alabama 0 (0) 0 (0) 0 (0) 0 (0) 41
Missouri 0 (0) 0 (0) 0 (0) 0 (0) 41
Michigan 0 (0) 0 (0) 0 (0) 0 (0) 22

New Jersey 0 (0) 0 (0) 0 (0) 0 (0) 18
Maryland 0 (0) 0 (0) 0 (0) 0 (0) 9
New York 0 (0) 0 (0) 0 (0) 0 (0) 6

Pennsylvania 0 (0) 0 (0) 0 (0) 0 (0) 4
Wisconsin 0 (0) 0 (0) 0 (0) 0 (0) 3

Indiana 0 (0) 0 (0) 0 (0) 0 (0) 2
Ohio 0 (0) 0 (0) 0 (0) 0 (0) 2

Delaware 0 (0) 0 (0) 0 (0) 0 (0) 1
Iowa 0 (0) 0 (0) 0 (0) 0 (0) 1
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Table 4. Cont.

WoMBATS MTBS
Region State 2018 2019 2020 2018–2020 1984–2016

Maine 0 (0) 0 (0) 0 (0) 0 (0) 1
Outside CONUS Alaska 0 (0) 7 (7) 1 (1) 8 (8) 984

Hawaii 1 (1) 0 (0) 0 (0) 1 (1) 17

Total 192 (191) 105 (103) 217 (216) 514 (510) 11,757

Figure 3. The number of large (>405 ha) fires for each state as reported from WoMBATS data between
2018 and 2020 compared to historical expectations as derived from Monitoring Trends in Burn
Severity (MTBS) data. Each square represents the number of large wildfires in the WoMBATS data
for each state. Vertical bars are used to represent the central 95th percentile of the expected wildfire
counts from the binomial distribution (expected wildfire counts conditional on national counts) and
empirical distribution (expected wildfire counts for that state and time-window). Squares that fall
outside the central 95th percentile of expected fire counts are colored red.

In addition to revealing spatial biases, the parametric and non-parametric models also
identified several temporal biases. Of the ten states considered, monthly wildfire counts
fell outside the binomial distribution’s central 95th percentile in California, Arizona, New
Mexico, Colorado, Oregon, and Idaho. In most states, these anomalies were restricted
to only one or two months. However, in California, monthly intra-annual patterns of
WoMBATS fire count proportions showed multiple differences from MTBS-derived propor-
tions. Specifically, May-June wildfires were under-represented in the WoMBATS data and
August-September wildfires were over-represented. In eight instances were WoMBATS
monthly fire counts outside the empirical distribution’s central 95th percentile, and the
WoMBATS fire counts did not show any obvious tendency to preferentially overestimate or
underestimate (Figure 4).
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Figure 4. The number of large (>405 ha) wildfires for each state and month as reported from
WoMBATS data between 2018 and 2020 compared to historical expectations as derived from MTBS
fire occurrence data. Each point represents the number of large wildfires in the WoMBATS data for
each state and month. The envelope represents the central 95th percentile of the expected wildfire
counts from the binomial distribution (expected monthly wildfire counts conditional on total state
counts) and empirical distribution (expected wildfire counts for that state, month, and observation-
window based on observations). Points that fall outside the binomial distribution’s central 95th
percentile of identified with an “X”. Points that fall outside the empirical distribution’s central 95th
percentile are colored red.

Differences in the distributions of wildfire size derived from WoMBATS data and from
MTBS data were statistically significant (α < 0.05) in five of the 10 states considered. In the
cases where a difference could be identified, WoMBATS data tended to include more large
fires than what would be expected from MTBS data. The largest differences were observed
in Oregon, where the median fire size was nearly four times as large when calculated from
WoMBATS data than when calculated from MTBS data (Figure 5).

3.2. Internal Comparison

InciWeb-derived BATSs were typically more complete than IMSR-derived BATSs.
The average InciWeb BATS reported size estimates data on 83 percent of the days in
the wildfire’s lifetime. In contrast, the average IMSR BATS only reported size estimates
on 51 percent of the days in the wildfire’s lifetime, and a large majority of these days
(82 percent) were also reported by InciWeb. There were no missing days—a size estimate
was available from at least one of either InciWeb or IMSR data for every day of the wildfire—
in 156 of the 514 wildfires in the case list (Figure 6).
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Figure 5. Cumulative distribution functions of wildfire size derived from MTBS and from WoMBATS.
The former is colored black, and the latter is colored blue or red depending on its statistical distance
from the MTBS data. Specifically, if no detectable difference can be found in the two size distributions,
as quantified via a Kolmogorov–Smirnov using a critical p-value of α = 0.05, the cumulative distribu-
tion function is colored blue. Otherwise it is colored red. Median values from both data sources are
listed in the bottom left and are identified with black points.

Size measurements from Inciweb and IMSRs were often close. The average BATS had
exactly matching data on 73 percent of days when both data sources available (Figure 6B),
and about 21 percent of the wildfires had BATS with InciWeb data in perfect agreement
with the IMSR data (in the 494 BATS where both data were shared on at least one day)
(Figure 6C). Even when the two data sources disagreed, the difference tended to be small.
For wildfires where both data sources are available, the average standard deviation of
size measurements was 2.88 percent of the mean, and only about 6 percent of fires had
average coefficients of variation in excess of 10 percent. In many cases, InciWeb and
IMSRs were in perfect agreement, so the low average coefficients of variation are expected.
However, even if wildfires in which no disagreement between data sources was detected
were omitted, the average coefficient of variation would remain modest. In wildfires with
nonzero coefficients of variation, the average standard deviation of size measurements
was 3.63 percent of the mean, and only about 8 percent of fires had average coefficients
of variation in excess of 10 percent (Figure 6C). Data coherence also appears high when
considering the distribution of data quality classes [42]. Of the 494 relevant wildfires in the
case list, 21 percent had ‘Exact’ agreement, 61 percent had ‘Close’ agreement, 18 percent
had ‘Adequate’ agreement, and none were at levels considered to be “Inadequate” [42].
When and where differences occurred, IMSRs were the larger measurement about 1.7 times
more often than the reverse case.
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Figure 6. Graphical summaries of burned area time series (BATS) data availability and coherence
in the WoMBATS data. Panel (A) describes the data completeness. Each vertical bar represents
the proportion of each BATS where one, both, or none of the data sources are available. Panel
(B) characterizes the level of agreement between InciWeb and IMSRs when both are available in terms
of biases. Each vertical bar represents the proportion of the BATS measurements with cross-check data
where IMSR measurements are larger, InciWeb measurements are larger, or are the same. BATS with
no cross-check data are represented with white space. In Panels (A,B), wildfires are ordered by BATS
completeness and the level of agreement, respectively. Panel (C) shows the empirical cumulative
distribution of the coefficient of variation calculated from the 494 fires with cross-check data. Colored
points are used to represent which data quality category [42] applies to each wildfire’s BATS.

3.3. Application

The data cleaning processes produced a final validation dataset of 3758 3-day partial
BATS from 442 fires. Using these data, we found that the differences in performance
between the areal persistence model and the radial persistence model were generally small.
In approximately 57 percent of the sample, the MAPE was lower in the areal persistence
model than in the radial persistence model. The median absolute percent error (across
the entire sample of 3758 time windows) was 3.91 percent for the areal persistence model
versus 4.27 in the radial persistence model. The slight preference for the areal persistence
model was also seen when the sample was disaggregated by state and day of fire. Of the
10 states examined and eight fire days considered, the MAPE was lower in the radial
persistence model than in the areal persistence model in only nine cases, and in no case was
the radial persistence model’s MAPE significantly lower than the areal persistence model’s
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(Figure 7). Both models appear to produce more accurate predictions as the fire progresses,
with the MAPE generally being highest soon after ignition and then steadily decreasing.
The performance in New Mexico is somewhat of an exception to this trend, but the sample
sizes on days 2 and 3 are too small to accurately estimate the expected MAPE (Figure 7).

Figure 7. The mean absolute percent error (MAPE) of the areal persistence model and radial persis-
tence model as estimated using all available samples from the WoMBATS data. MAPE estimates are
stratified by the state and the days since ignition. Below the x-axis, there are points that are black
except for days in which the radial persistence model performed better than the areal persistence
model, which are instead colored blue. The points are hollow unless the difference in MAPE estimates
in the areal persistence model and the radial persistence model are significant, in which case they are
solid. Sample sizes are reported in the x-axis in parenthesis.

4. Discussion
4.1. Advantages and Limitations

Although it is sometimes possible to produce BATS using a single data source [28],
the use of multiple data sources has a number of apparent advantages. BATS produced
with cross-check data are usually more complete than any of the constituent data sources.
InciWeb webscrape data were particularly effective at filling in missing days, and an
average of 41 percent of the time series would be missing if InciWeb data were not consulted
(Figure 6A). However, it should be noted here that there are other factors to consider besides
the number of days that a data source fills in or corroborates. During the end days of the
fire, there is little-to-no growth, and the scientific value associated with filling in these days
is substantially less than filling in days when there is large amounts of fire growth. As seen
in the Saddleridge example, other data sources can be particularly useful for this task,
even if they fill in relatively fewer days than InciWeb or IMSR data. Although the LAFD
narrative reported size estimates for fewer days of the Saddleridge fire than InciWeb or
IMSR data, it was still a particularly important data source because the estimates it reported
coincided with the most active days of the fire (Table 3). In addition to filling in missing
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data, the use of multiple data sources had the added benefit of allowing us to gauge the
reliability of the size measurements. Although exact agreement between the IMSR and
InciWeb BATS were uncommon, differences were usually fairly small, suggesting that the
reported size data from IMSRs and InciWeb were probably reasonably accurate and robust
to data source substitution. These small differences could not have been identified without
cross-checking, as many would not have otherwise seemed suspicious. This information
about the measurement reliability is not only useful to researchers that want a qualitative
sense of the credibility of the BATS data they are using, but also useful for accurately
calibrating existing BATS data cleaning methods that assume noisy size estimates [32].

Clearly, consulting multiple data sources has the potential to increase data complete-
ness, accuracy, and credibility. However, the catalog of wildfires produced from the protocol
is also quite small relative to existing final burned area data (Table 4) and even other BATS
data sources [28]. From our statistical analyses (Figure 3), it is clear that the InciWeb website
only reports some of the wildfires that are larger than 405 ha, and that the case list is not
exhaustive. If these fire detection probabilities were the spatially uniform, then the use of
WoMBATS data for describing the statistical characteristics of fire across the United States
may not be excessively problematic. However, there are some states that are more likely
to report wildfires to InciWeb than others. In Arizona, we can see that the number of fires
reported in WoMBATS data is generally consistent with what would be expected from a
sample of MTBS data over the same time window, and that the percentage of all WoMBATS
fires occurring here is noticeably higher than what would be expected based on MTBS data.
We can also see that in Idaho and Florida, the number of fires is well below what would be
reported from MTBS over the same time window, and that the percentage of all WoMBATS
fires occurring here is noticeably below what would be expected based on MTBS data. We
can infer from these results that the probability that a fire is reported to InciWeb is probably
relatively high in states like Arizona compared to states like Idaho and Florida, and that
InciWeb fire detection probabilities are not spatially uniform (Figure 3). Monthly wildfire
counts could be anomalously low in some contexts too, suggesting that WoMBATS data
may sometimes fail to recreate actual seasonal wildfire trends (Figure 4) and that the distri-
bution of wildfire size derived from WoMBATS data tends to be upwardly biased relative
to the MTBS-derived distribution (Figure 5). These statistical biases are consistent with
the nature of InciWeb data, which are primarily intended to provide relevant information
to the public, and fires that are small or do not pose a threat to human populations may
not be reported by InciWeb. Analysts should then be cautious when interpreting results
derived from WoMBATS data and consider whether the intended application requires
correcting for these biases. If these biases are problematic, as might be the case in a national
analysis, researchers may consider instead using ICS-209-PLUS data, which may have less
accurate day-to-day estimates of fire size, but will have a more complete case list [28]. It
is worth mentioning that just because the reported size of a fire is similar between two
data sources does not necessarily imply that the reported size is correct. As described
in the introduction, there are multiple reasons why errors can arise in fire size estimates,
and because there is a fair amount of information sharing, it is possible that two sources
can report the same, but incorrect, estimates. Still, this epistemological uncertainty is likely
impossible to correct in most contexts, and the protocol that was presented here incorpo-
rates more safeguards against this problem than any protocol based on a single data source.
Consumers of WoMBATS data should be aware of these measurement errors because the
protocol is particularly inclusive about the collection of supplemental data sources and
allows consideration of lower-quality size estimates. The data collection protocol permits
the inclusion of these low-quality supplemental data sources because it can sometimes
provide useful information despite being less reliable [40] For that reason, analysts should
make use of the data quality flags within the metadata table and deliberate whether these
supplemental data should be used for the given application.
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4.2. Future Research

Given that BATS data can be used to answer many questions that final burned area
data cannot, and that BATS are relatively rare, there are clearly a wide range of analyses that
could be performed using WoMBATS data. Beyond adopting WoMBATS data in wildfire
research to assess questions about day-to-day variation in fire size, we recommend that
future work prioritize two aspects of BATS data: cleaning and collection. As mentioned
earlier, there are multiple methods of converting a collection of partial BATS into a final
“clean” BATS. Since the choice of data cleaning method will influence the final product
and is often context-specific [39], it was deliberately avoided in the data collection protocol.
Still, data cleaning is an important research area that should be explored further since
it is a necessary step for applying BATS data to scientific problems. The InciWeb data
used in this paper was collected in a semi-automated fashion, and so long as InciWeb
data can be collected to produce case lists and IMSRs are available, the BATS data can be
updated at regular intervals like already existing wildfire datasets such as the MTBS [26].
Data collection is also ongoing in terms of the consultation of supplemental data sources.
Since exhaustive consultation of all available supplemental sources is impractical, future
data collection efforts should search for supplemental data in a systematic and effective
manner [39]. For instance, the approximately 8 percent of days with missing data and
50 percent of days without cross-check data could be prioritized, or individual wildfire’s
that are missing a large amount of data could be prioritized. Moreover, satellite data are
collected regularly on a global scale, and future collection efforts might then focus on
including this source as a third cross-check data source. Satellite data have already been
shown to be a helpful data source when data are missing and erroneous [32]. Data from
the GlobFire project may be a potentially useful cross-check source, as it will have already
been clustered into individual wildfires [34], avoiding much of the preprocessing and
cleaning that would otherwise be required. Spatially explicit maps will clearly provide
more information than simple time series, and the development of an analogous warehouse
of burned area progression maps data collection protocol would be an ambitious but
immensely valuable future area of research.

5. Conclusions

BATS are a notoriously uncommon but critically important data for developing a
holistic understanding of the relationship between wildfire behaviors and the environment.
Even when available, BATS are vulnerable to a number of data quality issues, many of
which can only be corrected by consulting multiple data sources. In this paper, we described
a protocol for collecting BATS cross-check data from Incident Situation Management
Reports, InciWeb webscrapes, and other data sources, which we use to create the warehouse
of multiple burned area time series (WoMBATS) dataset. In our analysis of WoMBATS data,
we found that this data collection protocol can greatly improve data completeness and
identify errors that would not have been detected without cross-checking data. However,
a comparison of WoMBATS data to long-term quality-controlled fire occurrence data from
the Monitoring Trends in Burn Severity project identified noticeable spatial and temporal
biases in the WoMBATS-derived distributions of fire occurrence, as well as biases in the
WoMBATS-derived distributions of fire size. We demonstrated how WoMBATS data could
be used in research applications using a model validation analysis of simple fire growth
models as an example. Given the relative rarity of these data, we anticipate that WoMBATS
data can be immensely valuable to wildfire researchers, but also highlight some potential
limitations. To facilitate the continued use of WoMBATS data, we make it freely available
and plan to continue to collect data in accordance with the protocol we have described.
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