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Abstract: Wildfire risk assessment provides important tools to fire management, by analysing
and aggregating information regarding multiple, interactive dimensions. The three main risk
dimensions hazard, exposure and vulnerability, the latter considered in its social dimension,
were quantified separately at the local scale for 972 civil parishes in central mainland Portugal
and integrated into a wildfire risk index. The importance of each component in the level of risk
varied, as assessed by a cluster analysis that established five different groups of parishes, each
with a specific profile regarding the relative importance of each dimension. The highest values of
wildfire risk are concentrated in the centre-south sector of the study area, with high-risk parishes
also dispersed in the northeast. Wildfire risk level is dominated by the hazard component in 52%
of the parishes, although with contrasting levels of magnitude. Exposure and social vulnerability
dominate together in 32% of the parishes, with the latter being the main risk driver in only
17%. The proposed methodology allows for an integrated, multilevel assessment of wildfire risk,
facilitating the effective allocation of resources and the adjustment of risk reduction policies
to the specific reality in each parish that results from distinct combinations of the wildfire
risk dimensions.

Keywords: wildfire risk assessment; hazard; exposure; social vulnerability; mitigation; local scale

1. Introduction

Wildfires are becoming more harmful, with recent events occurred in South-
ern Europe, South America, USA and Australia showing their potential destructive
power [1–3]. In Portugal, wildfire is one of the most impactful hazards, with the
extreme events occurred in 2017 causing the most devastating consequences ever
recorded, including the loss of over 100 human lives [4,5]. Especially in the inner part
of the territory, the combination between the abundance of flammable forest and shrub-
dominated land cover, the warm and dry summers typical of Mediterranean-type
climates, and the irregular topography, creates a particularly challenging fire-prone
landscape [6–9]. Historical data also shows that, between 1980 and 2018, Portugal had
the highest average number of annual wildfires and the second largest annual burnt
area among the top affected countries of southern Europe (Portugal, Spain, France, Italy
and Greece) despite having the smallest territory [5]. Most of the damage occurs in the
summer months as the consequence of a relatively small number of large fires [9–12].

Like other natural hazards, wildfires can be approached from a disaster risk
reduction (DRR) perspective [13–15]. The DRR approach conceives risk as a multi-
dimensional phenomenon, that not only includes the characteristics of natural hazards
and of the environment in which they occur, but also the degree to which populations,
infrastructure and livelihoods are exposed to these hazards, as well as their level of
vulnerability to their destructive and disruptive effects [15]. This integrated perspec-
tive enables organizations of local to global scope to act upon specific dimensions of
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risk, armed with the foreknowledge that a reduction in any one of them will lead to a
reduction in the total risk associated with a given hazard. Available measures for such
purpose are of numerous types, including economic, structural, legal, social, health,
cultural, educational, environmental, technological, political, and institutional [16].

Adopting the risk assessment definitions proposed by the United Nations, wild-
fire hazard can be defined, for a certain area, in terms of the probability, frequency
and intensity that characterize wildfires [17]. This broad definition allows for con-
trasting means of quantification and statistical techniques, depending on the purpose
and application. For example, burn probability maps can be obtained by simulation
approaches [18], to support operational decisions regarding fuel treatments and sup-
pression activities [19], or instead, they can be based on historical fire data to provide a
structural perspective of the propensity to burn based on terrain conditions [20,21], to
define long-term prevention strategies.

Exposure evaluates the elements, or assets, which are located in areas where
hazardous events may occur [15,22,23]. Based on the spatial intersection with the fire
hazard level, potentially affected elements located in the area are analysed, among
which are built-up areas, forests, agricultural lands, protected areas, infrastructures,
and human communities [24–26].

The third component of wildfire risk is vulnerability, which represents the propen-
sity of exposed elements to suffer adverse effects when affected by wildfires [15,27–29].
Given the diversity among the potentially exposed elements, this risk component
has been subject to various approaches, for example focused on physical elements
such as vegetation types [30], environmental elements such as ecosystems [31], social
elements [29,32,33], and often on combinations of these elements [34–38]. Along with
contrasting ways to quantify them individually, the components of risk have also been
articulated in different ways to produce risk indexes, which can be hazard-specific or
not. For instance, the Inform-Index For Risk Management [39] proposes three essential
dimensions: hazard/exposure, vulnerability (which refers to the fragility of the socio-
economic system), and lack of coping capacity (which refers to the lack of resilience
to cope and recover). This index draws a strong conceptual influence from the work
of Cardona and Carreño [40]. A contrasting example is the World Risk Index [14],
which proposes two main risk dimensions, or spheres: the hazard sphere and the
vulnerability-social sphere. The first aims to identify the diverse entities exposed and
prone to be affected by a hazard event (such as communities, resources, infrastructure,
or ecosystems). The vulnerability-social sphere is subdivided into three components:
susceptibility (the likelihood of suffering harm in the case of a hazardous event, de-
fined by factors such as nutrition or economic capacities), coping capacity (the ability
to respond directly to the impact of a hazardous event), and adaptive capacity (the
capacity for implementing long-term strategies for societal change). Neither of the
above is hazard-specific, and therefore they can be adapted to any hazard or combi-
nation thereof. A wildfire-specific example is the wildfire risk assessment framework
proposed by [41], in which wildfire risk for a given area is seen as the combination of
wildfire hazard (in terms of likelihood and intensity), exposure, and expected effects
(the expected changes in value, expressed in percentage). Other examples are the
Wildland Fire Decision Support System (WFDSS) [42], in which fire spread probability
(fire behaviour) is combined spatially with the nature and location of elements at
risk (resource assessment), in order to facilitate rapid decision-making in a context
of escaped wildfires (in this case, the expected degree of damage, i.e., the physical
vulnerability, is not explicitly taken into consideration). Another example is the fire
risk assessment framework proposed by Chuvieco et al. [43], in which risk is the result
of the combination between the probability of fire initiation and propagation, and its
potential damage. Although exposure is not explicitly included in the framework,
it is implicit in its GIS-based implementation, as each pixel represents an exposed
spatial unit.
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In Portugal, Parente and Pereira quantified wildfire risk at the national scale,
considering only damage to vegetation [30]. Using raster data, wildfire hazard was
estimated as the combination of wildfire probability (quantified for each pixel as the
percentage of years from the study period in which that pixel burned) and terrain
susceptibility (defined as the propensity of the terrain to be burned as a function of its
inherent properties, such as land cover or slope). The potential damage (corresponding
to the dimensions of exposure and vulnerability) was quantified using the economic
value by hectare of existing vegetation types, and their expected degree of loss in
case of burning. Antunes et al. [44] used a similar approach to calculate wildfire risk
for a single municipality in central-north Portugal, additionally assessing risk with a
focus on scenically valuable landscape units. More recently, Oliveira et al. [28] assessed
wildfire risk specifically for human settlements (villages) within a civil parish in central
Portugal, combining burn probability scenarios with exposure and vulnerability levels.
The latter was based on a cluster analysis of the social characteristics of resident
population; in addition, coping capacity factors were also integrated, namely the time
required to reach a potential fire shelter and the distance of each village to the nearest
fire station.

In this work, we employ a new detailed parish-scaled approach to characterize a
regional-sized study area in central mainland Portugal with respect to the three dimen-
sions of wildfire risk: hazard, exposure, and vulnerability, the latter considered in its
social dimension. We then combine the three individual dimensions into an integrated
wildfire risk index, based on an adaptation of the INFORM framework [39]. This adap-
tation was recently applied with success by Santos et al. [45] and Pereira et al. [46],
albeit to other hazards (floods and landslides, respectively) and was chosen due to
its simple structure and its versatility, being applicable with varying degrees of com-
plexity depending on the availability of data regarding each of the dimensions of risk.
Cluster analysis is subsequently used to aggregate the 972 parishes into groups sharing
similar wildfire risk dimensions, allowing for a nuanced perspective over the study
area. Finally, we discuss the limitations of the index, as well as its potentialities in a risk
management context. Our objectives are thus threefold: (1) to characterize the parishes
in the study area in terms of wildfire hazard, exposure, and social vulnerability; (2) to
quantify wildfire risk within the study area by means of an integrated index; (3) to
identify wildfire risk profiles within the study region, by investigating the combination
patterns of the components of wildfire risk among the different parishes.

2. Materials and Methods
2.1. Study Area

The study area was the NUTS 2 region “Centro”, which covers a total area of
28,199 km2 in central-north mainland Portugal (Figure 1). It comprises 100 munici-
palities, further subdivided into 972 civil parishes, which were the units of analysis
adopted in this study and correspond to the smallest administrative unit in the country.
The parishes vary in area from 2.0 km2 to 373.5 km2. Elevation ranges from the sea
level to the highest point in mainland Portugal, 1993 m in the Estrela mountain in the
east (Figure 2A), with landforms varying from coastal plains in the west to mountain
ranges, and further to plateaus at different elevation levels in the east. Land cover also
presents much variability (Figure 2B). It is dominated by different forest types, mainly
eucalyptus (Eucalyptus globulus) and maritime pine (Pinus pinaster), concentrated
in a N-S swath across the centre of the study area, and along a narrow coastal fringe.
Elsewhere, forests occur interspersed with agroforestry, with the latter dominating
in the SW and SE limits. In the NE, agroforestry occurs interspersed mostly with oak
forests and shrubland. The SW-NE-oriented Central Mountain Range (Cordilheira Cen-
tral) is marked by large patches of scrub and unvegetated or sparsely vegetated terrain.
Annual rainfall ranges from a minimum of 600 mm in the extreme NE of the study area,
up to 2800 mm in the highest areas of the Central Mountain Range [47]. Regarding
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wildfire incidence, the spatial pattern of burnt areas shows a remarkable correspon-
dence with land cover, with burnt areas corresponding broadly to the distribution of
forest and scrub; Figure 2C shows the number of times burnt between 1975 and 2018,
calculated with reference to a 25 m pixel. Nonetheless, a spatial distinction is evident,
with a large part of the central sector having burned 1 to 4 times, but patches that have
burned a greater number of times (up to a maximum of 15) occurring in a dispersed
pattern in mountainous areas of the N and NE sectors. This high recurrence is mostly
related to the use of fire for pasture renovation [11]. In contrast, the central-south
sector of the study area is characterized by less frequent, but much more extensive
wildfires, promoted by continuous forest patches, interspersed with scrub patches
corresponding to different stages of post-fire succession (Figure 2B) [11]. Figure 2D
shows the cumulative percentage of area burnt by parish for the period 1975–2018,
further illustrating the variability in wildfire patterns within the study area. Most of
the central and NE sectors of the study area are dominated by parishes in which more
than 97% of the area has burned during this 44-year period, with values above 200%
being frequent. In the most extreme cases, all the area of the parish burned between
three and near to five times during the considered period. In contrast, all the coastal
region, as well as the S and SE limits, are dominated by parishes in the lower classes
(less than 50% burned).

Population density also shows a marked variation within the study area, decreasing
generally away from the coast. Its values are below 100 inhabitants/km2 in most of the
study area, reaching values over 500 inhabitants/km2 only in and around the larger urban
centres such as Leiria, Coimbra, Aveiro, Viseu or Guarda [47] (Figure 1).
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Figure 2. Characteristics of the study area: (A) elevation. Source https://www.eea.europa.eu/
data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 1 March 2021);
(B) land cover. Source: Portuguese General-Directorate of the Territory (Direção-Geral do Território);
(C) number of times burnt per 25 m pixel between 1975 and 2018; (D) cumulative percentage of
parish area burnt between 1975 and 2018, classified using quintiles. Source of (C,D): Institute for
Conservation of Nature and Forests (Instituto da Conservação da Natureza e das Florestas).

2.2. Methodology

The general structure of the methodology used the calculate the wildfire risk index
(WRI) is shown in Figure 3. It followed the adaptation of the INFORM framework [39]
recently applied to floods and landslides [45,46]. The three dimensions of risk and their
integration are described in the following sections.

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
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Figure 3. A schematic representation of the methodology employed to calculate the wildfire risk index.

A 25 m pixel was adopted for all spatial data. ArcGIS 10.7.1. software (ESRI Inc.,
Redlands, CA, USA) was used for all spatial analysis operations.

2.2.1. Wildfire Hazard

Wildfire hazard was calculated using the methodology described by Oliveira et al. [21]
(summarized in Figure 4). According to the underlying conceptual framework, wildfire haz-
ard is calculated as the product of susceptibility (the terrain’s propensity to suffer a wildfire
or to support its spreading as dictated by its intrinsic characteristics such as elevation, slope
and vegetation cover) by wildfire probability (the unconditioned probability that a given
spatial unit will burn on any given year). This methodology has been previously adopted
in wildfire studies [20,30,48,49] and is officially used by the Portuguese state agency for the
conservation of nature and forests (ICNF) for producing yearly wildfire hazard maps for
mainland Portugal [50].

For each pixel, susceptibility values are the result of the sum of the likelihood ratios
(LR) associated with the variables elevation (in m), slope angle (in degrees) and land cover,
obtained by cross-tabulating each of these classified variables with past burnt areas. Aspect
was not considered, as this variable does not have a clear spatial relationship with burned
area in mainland Portugal and has been shown not to increase the predictive capacity of
wildfire hazard models [21].

Burnt area data was obtained from the Portuguese Institute for Conservation of Nature
and Forests (ICNF). Topographic data were obtained from the European Environmental
Agency’s Digital Surface Model, with a 25 m pixel (https://www.eea.europa.eu/data-
and-maps/data/copernicus-land-monitoring-service-eu-dem; accessed on 1 March 2021).
Land-cover data was obtained from the Portuguese General-Directorate of the Territory
(Direção-Geral do Território).

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
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For each class i of each variable, the LR score Lri is calculated as [51]:

Lri =
Si/S

Ni/N
(1)

where Si is the number of burnt terrain units (pixels) corresponding to class i of variable
Y, S is the number of burnt terrain units, Ni is the number of terrain units associated with
class i of variable Y, and N is the total number of terrain units. For a total of n predisposing
variables, the total LR score of each terrain unit (Lrj) is calculated as:

Lrj =
n

∑
i=1

Xij. Lri (2)

where Xij equals 1 for the classes of the variables that are present and 0 for all others.
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Figure 4. A schematic representation of the methodology used to produce the wildfire hazard map.

Yearly burnt areas between 1975 and 2018 were used to derive LR scores for elevation
and slope angle. As land cover mapping is only available since 1995, with maps existing for
1995, 2007, 2010, and 2015, LR scores were calculated for each class considering the specific
timeframe represented by each landcover map. Likelihood ratio scores were, therefore,
calculated for the 1995 map using annual burnt areas for the years 1995–2006 (12 years),
for the 2007 map using annual burnt areas for the years 2007–2009 (3 years), for the 2010
map using annual burnt areas for the years 2010–2014 (5 years), and for the 2015 map using
burnt areas for the years 2015–2018 (4 years). The final LR score for each land cover class
was calculated as the weighted average of the scores within the successive land-cover maps,
with the number of years covered by each map used as weight.

Wildfire hazard was obtained by multiplying the susceptibility score of each pixel by
its probability of burning each year, obtained as the ratio of times that a given pixel was
burnt (between 1975 and 2018) and the total number of years within this period (44 years).
The resulting map was classified in five classes (very low; low; medium; high; very high)
as required by the Portuguese Forest Authority, according to the breaks of the success-rate
curve and the predictive capacity of the hazard model [21].

Finally, wildfire hazard was quantified for each of the 972 parishes as the percentage
of the parish area classified in the two highest hazard classes (Figure 5).
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“High” or “Very High” wildfire hazard.

2.2.2. Exposure

We approached this dimension of wildfire risk in terms of two complementary sub-
components. The first was the existing number of inhabitants and residential buildings
in each parish, and thus exposed to potential damage. The second was related to the
spatial pattern of human occupation and expresses the degree to which the inhabitants and
buildings in each parish are located outside the boundaries of the consolidated urban area
(or the central area of villages and towns). The underlying assumption is that the degree of
exposure of a parish increases with the increasing spatial dispersion of buildings and people
within the parish, as this spatial pattern reflects a stronger intermix between urban features
and forest/natural areas. Urban areas were defined by extracting all areas classified as
artificialized from the Portuguese government’s 2018 Land Cover Map (Carta de Ocupação
do Solo, produced by the Directorate-General of the Territory), with the exception of roads.
Individual residential buildings were obtained in the form of a point dataset from the
Geographical Database of Buildings (Base Geográfica de Edifícios), produced by Statistics
Portugal (Instituto Nacional de Estatística, 2011).

Residents in each building were estimated using the approach employed by Garcia et al. [52].
Knowing the number of lodgings within each building (included in the Geographical
Database of Buildings) and the number of residents within each statistical subsection
(the smallest spatial statistical unit for which data are available; obtained from Statistics
Portugal, 2011), we estimated the average number of residents within the lodgings of the
buildings in each statistical subsection. As an example, if a statistical subsection has a
total of 100 residents and 20 lodgings, each lodging will have on average 5 residents. If a
building within that statistical subsection has 3 lodgings, this building will be estimated to
have 15 residents.

Using this approach, a total of ten variables were calculated for each of the 972 parishes
as potential descriptors of the two components of exposure identified above: the total
number of residents, the number of residents within urban areas, the number of residents
outside of urban areas, the difference between the numbers of urban and non-urban
residents, the percentage of total residents outside of urban areas, and the same five
variables calculated for buildings instead of residents. A Pearson correlation analysis
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was then performed to understand the relations between all variables (Table 1). Values
confirmed the two components of exposure and their mutual independence: the quantity
of residents and buildings exposed (values highlighted in light grey in Table 1) and their
degree of dispersion outside the urban area (highlighted in dark grey). Based on the
collinearity between variables, two final variables were selected to express exposure for
each parish: the total number of residents (Figure 6A), and the percentage of the total
residents outside of urban areas (Figure 6B).

Table 1. Pearson correlation coefficients between the potential exposure descriptors. Values≥ 0.7 highlighted
in grey. The two grey tones are intended to differentiate groups of collinear variables, considered
to express different dimensions of exposure. TotBui—total number of buildings; UBui—number of
urban buildings; NUBui—number of non-urban buildings; DiffBui—difference between urban and
non-urban buildings; PerNUBui—percentage of total buildings that are non-urban; TotRes—total
number of residents; Ures—urban residents; NURes—non-urban residents; DiffRes—difference
between urban and non-urban residents; PerNURes—percentage of total residents that are non-urban.
** Significant at the p = 0.01 level.

TotBui UBui NUBui DiffBui PerNUBui TotRes URes NURes DiffRes

TotBui
UBui 0.995 **

NUBui 0.596 ** 0.511 **
DiffBui 0.976 ** 0.993 ** 0.408 **

PerNUBui −0.220 ** −0.287 ** 0.410 ** −0.360 **
TotRes 0.912 ** 0.921 ** 0.435 ** 0.919 ** −0.238 **
URes 0.900 ** 0.914 ** 0.394 ** 0.917 ** −0.261 ** 0.999 **

NURes 0.707 ** 0.640 ** 0.922 ** 0.555 ** 0.242 ** 0.584 ** 0.544 **
DiffRes 0.885 ** 0.903 ** 0.350 ** 0.912 ** −0.284 ** 0.995 ** 0.999 ** 0.499 **

PerNURes −0.300 ** −0.358 ** 0.289 ** −0.419 ** 0.950 ** −0.318 ** −0.337 ** 0.139 ** −0.357 **
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To combine both variables into one, each was normalized to the scale 0–1 using the
min-max technique. Following this technique, each value x of a variable j with minimum
value Minj and maximum value Maxj is re-scaled into xres using the formulation:

Xres = (x − Minj)/(Maxj − Minj) (3)

After both variables had been re-scaled, the mean value from both was calculated for
each parish.

2.2.3. Social Vulnerability

We adopted the social vulnerability methodology originally proposed by Mendes et al. [53]
and further developed and applied at different spatial scales by Tavares et al. [54] and
Mendes et al. [33]. This approach defines social vulnerability in terms of two dimensions:
criticality and support capability. Criticality expresses individual characteristics that are
related to vulnerability and to the potential for recovery (for example age, employment,
housing conditions, and mobility). Support capability describes the collective equipment
and infrastructure (whether public or private) held by a particular territory that contribute
to the contingency of activities, the collective and individual recovery and rehabilitation,
and the consequential decrease in the impact caused by a disastrous event [45].

Principal Component Analysis (PCA) was employed for the quantification of both
dimensions. This technique has often been applied to social vulnerability with the purpose
of reducing a relatively large set of potentially influencing variables into a smaller set of
underlying dimensions [32,54–56].

Criticality was defined using an initial set of 25 variables, describing social and demo-
graphic characteristics of the population and properties of the built environment (Table 2;
conceptual justification is shown in Table A1). All were obtained from the most recent
national census (2011) at the scale of the individual parish. All values were standardized
prior to use in the analysis. PCA allowed to extract 6 principal components (PC) from
20 variables out of the initial dataset, with a KMO (Kaiser-Meyer-Olkin) value of 0.874
and explaining 73% of the total variance. Support capability was defined from an initial
dataset of 14 variables, obtained from different sources and varying in spatial scale from
the parish to the municipal level (Table 3; conceptual justification is shown in Table A2). All
were standardized prior to use. Of the initial 14-variable dataset, 11 variables were used to
extract 4 PC, with a KMO of 0.773, and explaining 67% of total variance.

Table 2. The set of 25 variables used as input in the PCA for defining criticality. All variables are at
the parish scale and were extracted from the 2011 census, published by Statistics Portugal. Variables
in italic were not selected for the extracted principal components.

Code Variable

ILLIT Illiteracy rate (%)

UNIVDEG Proportion of the resident population with university degree (%)

SING65 Proportion of single-member families constituted by people with 65 or more years of age
(%)

CCHILD Proportion of lodgings formed by couples with children (%)

COMMUT Mean commuting time of the working or studying resident population (min)

RESOTHER5 Proportion of the resident population that resided in another municipality 5 years before
(%)

AUTOM Proportion of the population using automobile for dislocations (%)

—- School dropout rate (%)

—- Proportion of the resident population with 14 or less years of age (%)

FOREIGN Proportion of the resident population of foreign nationality (%)

FEMACT Female activity rate (%)
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Table 2. Cont.

Code Variable

AGE Mean age of resident population (years)

WSOTHER Proportion of the resident population working or studying in another municipality (%)

PROFSOCV Proportion of socially more valued professionals (%) 1

—- Female proportion of the population (%)

SEASON Proportion of seasonally used classic family lodgings (%)

LACKINF Proportion of family lodgings lacking at least one basic infrastructure (%)

SELFOWN Proportion of self-owned lodgings that include expenses (%)

AGEBUILD Average age of buildings (years)

OVERCR Proportion of overcrowded lodgings (%)

—- Proportion of rented or subleased classic lodgings (%)

SINGACCO Proportion of single-lodging buildings (%)

BUILT10 Proportion of buildings built within the previous ten years (%)

FLOORS Floors by building (Nº)

—- Proportion of non-classical lodgings 2 (%).
1 Representatives of legislative power and of executive bodies, directors and executive managers, as well as
specialists in intellectual and scientific fields. 2 Lodgings that, while serving as residence for at least a family, are
either mobile, improvised or otherwise not built for habitation.

Table 3. The set of 14 variables used as input in the PCA for defining support capability. Variables in italic
were not selected for the extracted principal components. INE—Statistics Portugal; DGT—Directorate-
General of the Territory; OSM—Open Street Map.

Code Variable Spatial Scope Source Year

AGEBUILD Ageing ratio of buildings (%) Parish INE 2011

WHEELCH Proportion of buildings having
wheelchair accessibility (%) Parish INE 2011

REPDEGR Proportion of buildings in need of
major reparations or very degraded (%) Parish INE 2011

RESOUT Proportion of the resident population
living outside of urban centres (%) Parish INE, DGT 2011

ROAD Road network density (km/km2) National OSM 2020

——- ATM machines (Nº) Municipality INE 2019

——- Firefighter corporations (Nº) Municipality INE 2018

FIREF Firefighters (Nº) Municipality INE 2018

——- Pharmacies and mobile pharmaceutical
posts (Nº) Municipality INE 2019

NURSES Nurses by workplace (Nº) Municipality INE 2019

ROOMS Rooms in tourist accommodation
establishments (Nº) Municipality INE 2019

URBWAST Urban waste collected by
inhabitant (kg) Municipality INE 2019

GVA Gross Value Added of enterprises (EUR)
(note: does not include financial sector) Municipality INE 2018

MEDSALEV Median sale value by m2 of
family accommodations

Municipality INE 2019

For each of the two dimensions of social vulnerability, the extracted PC were inter-
preted, and any necessary changes were made to the cardinality of the PC scores. Each
parish’s criticality was quantified as the sum of its scores in each criticality PC, weighted
by its proportion of explained variance. Similarly, each parish’s support capability was
defined as the sum of its scores in each of the four PC describing this dimension, weighted
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by the proportion of variance explained by each. The values of both dimensions were
re-scaled to 0–1 using the min-max technique Equation (3) (Figure 7).
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Finally, social vulnerability (SV) was calculated for each parish by integrating its
values of criticality (CR) and support capability (SC) using formulation (4) [45,54]. This
formulation ensures that high values of criticality and low values of support capability will
result in increased social vulnerability (higher value):

SV = CR × (1 − SC) (4)

The spatial distribution of the resulting values is shown in Figure 8.
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2.2.4. Wildfire Risk Index

Following the adaptation of the INFORM methodology [39] employed in [45,46], the
three components of wildfire risk were re-scaled to values between 0 and 1 using the
min-max technique Equation (3). It should be noted that both sub-components of exposure
had already been individually re-scaled (see Section 3.2) prior to their combination by
averaging. As the final values varied only between 0.005 and 0.507, they were re-scaled to
have equal range of variation to the hazard and social vulnerability values.

Finally, the three components hazard (H), exposure (E) and social vulnerability (SV)
were combined into the final wildfire risk index (WRI) using the formulation [39,45]:

WRI = H1/3 × E1/3 × SV1/3 (5)

In practice, the result corresponds to the geometric average of the three dimensions,
with equal weights [39]. As Pereira et al. [46] noted, the exponentiation of the factors to
1/3 allows to highlight the differences among parishes, especially the ones with lower
scores, while keeping their ranking/hierarchy.

It is worth noting that, given the multiplicative structure of the formula, any null
value in any of the three components would result in a parish having null wildfire risk. To
avoid such an outcome, all null values in each driver were converted to a positive, albeit
insignificant value. To do so, the smallest positive value among all three components was
determined (0.00005 for wildfire hazard). Then, each null value in each component was
replaced by a value lower than the lowest positive value in that dimension by a unit of this
same order of magnitude (0.00001).

2.2.5. Cluster Analysis

Hierarchical cluster analysis was performed on the 972 parishes with the purpose of
aggregating them into homogeneous groups regarding the three main risk components
of hazard, exposure, and social vulnerability. This approach was previously applied to
landslide and flood hazards [45,46]. Clustering was performed using SPSS (IBM Corp.,
Armonk, NY, USA) and following Ward’s method, with squared Euclidian distance as
measure of distance between cluster centres. This clustering method consists of a bottom-up
approach, in which the criterion for selecting the pair of clusters to merge at each step is
based on the minimum increase in the total within-cluster variance. The range of solutions
tested varied from 2 to 10 clusters. The optimal number of clusters was evaluated through
Schwarz’s Bayesian Criterion (BIC), the Akaike Information Criterion (AIC) and expert
judgment. The BIC suggested 2 clusters and the AIC 4 clusters. The 2-cluster solution was
considered not to describe adequately the diversity of combinations between the three risk
components within the study area. The 4-cluster solution enabled a better representation
of the wildfire fire risk profiles. However, it grouped too broadly all the parishes with
high hazard in the same cluster (356 cases out of 972 in cluster 3), instead of differentiating
among them. A 5-cluster solution was therefore chosen, allowing for a more nuanced
perspective over the variability of wildfire risk patterns in the study area.

3. Results
3.1. The Dimensions of Wildfire Risk

Parish-aggregated wildfire hazard, representing the percentage of parish area with
high and very high hazard levels, varied between 0 (23 parishes) and 100% (2 parishes),
with a mean value of 47.62%. The frequency distribution of the values (Figure 9) shows
a remarkable contrast with the other dimensions of the wildfire risk index, with hazard
values strongly deviating from a normal distribution (kurtosis = −1.34). The relative
abundance of parishes with very low and very high hazard can be seen across the study
area in Figure 10A. The highest values occur within the central, N, and NE sectors of the
study area. The central sector is homogeneously characterized by very high values, whereas
the N and NE sectors show more variability. In contrast, the western and SW portions of the
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study area, as well as its extreme southern limit, are characterized by mostly low wildfire
hazard values. Few parishes along the seacoast show high wildfire hazard, in contrast with
the predominantly low levels that dominate that sector of the study area. As expected,
the spatial distribution of wildfire hazard follows closely that of its input factors, namely
elevation (and its derivative slope) (Figure 1A), land cover (shown for 2018 in Figure 1B)
and wildfire probability (proportional to the wildfire recurrence map in Figure 1C).

Exposure values vary between 0.005 and 0.507, with a mean value of 0.132. The fre-
quency distribution is positively skewed (skewness 1.63) and strongly leptokurtic (k = 4.42)
(Figure 9). Correspondingly, the spatial distribution of this variable is marked by a predomi-
nance of relatively low values (Figure 10B), with the parishes with highest values forming a
narrow arch along the southern sector of the study area. In contrast, the eastern limit of the
study area is marked by homogeneously low values. The maps of the two input variables
behind exposure show contrasting patterns. The total number of residents per parish is
highest along the coast, diminishing inland, whereas the percentage of resident population
living outside of urban areas shows a concentration of high values, elongated from W to E
in the southern sector of the study area (Figure 6B). The centre-north and northeast sectors
have a heterogenous combination of parishes with high and low exposure levels, whereas
the parishes along the seacoast show homogeneously low values. The averaging of these
two contrasting maps generates a final exposure map showing predominantly low values
and little spatial contrast (Figure 10B).
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Regarding the two dimensions of social vulnerability, the results of the principal
component analysis allowed to interpret the driving components of criticality (Table 4),
by order of importance, in the following manner: PC1—social and demographic dynam-
ics (31.18% of all variance explained); PC2—professional qualification and urban/rural
contrasts (11.81%); PC3—uprooting and long-term mobility (8.41%); PC4—conditions
of the built environment (8.15%); PC5—habitational conditions (7.02%); and PC6—daily
commuting (6.83%). The final values varied between 0.007 and 0.953, with a mean of
0.463. The distribution is slightly positively skewed (skewness 0.164) with nearly null
kurtosis (k = 0.08). The corresponding criticality map (Figure 7A) shows a clear spatial
tendency, with values generally increasing from the seacoast to the interior, and the highest
values occurring in the easternmost limit of the study area, as well as in a small cluster of
parishes in its centre-south. This distribution implies a general increase in the individual
and household-level potential for loss and a decrease in the potential for recovery as one
progresses from the seacoast inland, resulting from characteristics such as an ageing (AGE)
and less educated population (ILLIT), and a larger proportion of elderly people leaving
alone (SING65). Likewise, characteristics such as a larger proportion of smaller residential
buildings (FLOORS) and single-accommodation buildings (SINGACCO), or a larger pro-
portion of seasonally used homes (SEASON) contribute to more isolated households and
make mutual aid more difficult (Table 4).

With respect to support capability, four principal components were extracted, which
can be interpreted in terms of their effect over the capacity to resist and recuperate from dis-
aster, by decreasing order of importance (Table 5): PC1—economy and emergency resources
(30.90% of variance explained); PC2—existing infra-structure (14.42%); PC3—quality of the
habitational setting I (10.64%); and PC4—quality of the habitational setting II and acces-
sibilities (10.62%). The final values varied between 0.084 and 0.959, with a mean of 0.400.
The elevated positive skewness (1.41) and kurtosis (2.35) imply that most of the study area
is characterized by a relatively low support capability (Figure 7B), with the lowest values
occurring in a rather dispersed pattern in the centre-south and the SE sectors. In contrast to
the prevailing pattern, the parishes along the seacoast show relatively high values, with
some well-defined agglomerations of contiguous parishes with similar values. It should be
noted that some of the variables used for quantifying support capability were only available
at the municipal scale (Table 3), which may account for this pattern. A reflection on the
principal components used to quantify this dimension of social vulnerability (Table 5)
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indicates that it is among the more urbanized (ROOMS, URBWAST, RESOUT, ROAD),
economically dynamic (GVA, MEDSALEV, REPDEGR, AGEBUILD) seacoast parishes, with
their relative abundance of services and infrastructure (FIREF, NURSES, WHEELCH) that
the capacity to reduce the impacts of wildfires and to recover and rehabilitate in their wake
are highest.

Table 4. Loadings, cardinality and percentage of variance explained for the 6 principal components
extracted to express criticality. Loading values ≥ 0.4 or ≤−0.4 are highlighted in grey. The total
percentage of variance explained was 73.38%.

Variable Code
Principal Component

1 2 3 4 5 6

AGE 0.919 −0.073 −0.065 −0.174 −0.136 0.039
FEMACT −0.886 0.197 0.100 0.125 −0.014 −0.090
CCHILD −0.864 0.016 −0.069 0.176 0.143 −0.045
SING65 0.838 −0.066 −0.066 −0.171 0.020 0.018

SEASON 0.821 −0.017 0.035 0.033 0.122 −0.093
ILLIT 0.783 −0.159 −0.124 −0.042 0.066 −0.016

SELFOWN −0.746 0.359 0.222 0.085 −0.039 −0.085
AUTOM −0.541 −0.049 −0.009 0.123 −0.453 −0.023
FLOORS 0.182 0.763 −0.043 0.079 0.062 −0.048

SINGACCO 0.358 −0.747 −0.272 0.070 −0.087 0.096
UNIVDEG −0.556 0.686 0.212 0.048 −0.174 −0.041

PROFSOCV −0.318 0.677 0.168 0.093 −0.260 −0.049
RESOTHER5 0.084 0.144 0.836 0.121 −0.087 0.173

FOREIGN −0.187 0.138 0.761 −0.038 0.131 −0.109
BUILT10 −0.168 0.057 0.114 0.863 0.090 0.044

AGEBUILD 0.205 −0.053 0.038 −0.843 0.141 0.079
OVERCR −0.264 −0.072 0.161 0.014 0.805 −0.049
LACKINF 0.418 −0.075 −0.283 −0.030 0.530 0.138

WSOTHER −0.201 −0.177 0.179 0.029 −0.144 0.793
COMMUT 0.226 0.004 −0.116 −0.061 0.160 0.788

Cardinality + − + − + +

% Variance
explained 31.176 11.813 8.405 8.149 7.016 6.825

Table 5. Loadings, cardinality and percentage of variance explained for the 4 principal components
extracted to express support capability. Loading values ≥ 0.4 or ≤−0.4 are highlighted in grey. The
total percentage of variance explained was 66.58%.

Variable Code
Principal Component

1 2 3 4
FIREF 0.878 −0.18 −0.019 0.000
GVA 0.858 0.21 −0.084 −0.115

ROOMS 0.787 0.004 −0.069 0.05
NURSES 0.762 0.196 0.100 −0.071

MEDSALEV 0.718 0.404 −0.140 −0.226
URBWAST 0.137 0.787 −0.173 0.195
RESOUT −0.054 −0.742 −0.031 0.172

REPDEGR −0.024 0.039 0.8 −0.057
WHEELCH 0.082 0.28 −0.598 −0.274
AGEBUILD 0.01 0.066 0.176 0.848

ROAD 0.384 0.231 0.264 −0.481
Cardinality + + − −
% Variance
explained 30.897 14.424 10.637 10.620
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The integration of criticality and support capability allowed to obtain a distribution of
values of social vulnerability varying from 0.0003 to 0.791, with a mean of 0.291 (Figure 8).
The distribution is slightly positively skewed (0.275) with a slightly negative kurtosis
(−0.133). It was rescaled from 0 to 1, similarly to the other components of wildfire risk.
The spatial distribution of the final values (Figure 10C) shows two essential patterns.
The coastal and centre-north sectors are characterized by parishes with relatively low
social vulnerability, some forming homogeneous clusters. Contrarily, the parishes in the
eastern and centre-south sectors are characterized by a predominance of fairly high social
vulnerability, with a few dispersed parishes showing the highest values.

3.2. Wildfire Risk Index

The final wildfire risk index varied between 0.005 and 0.839, with a mean value of
0.308. The distribution is slightly positively skewed (skewness = 0.18) with a slightly
negative kurtosis (k = −0.247) (Figure 9). Although the formulation of the index takes
into equal consideration its three components, the final values are more closely linearly
correlated to hazard (p = 0.801) than to exposure or social vulnerability (0.408 and 0.671,
respectively; all correlations are significant at the 0.01 level). The spatial distribution of the
values (Figure 10D) suggests four main spatial patterns. The first characterizes the coastal
region and is marked by the dominance of low to very low-risk parishes, with occasional
isolated parishes with higher values in the middle range. The second pattern occurs in the
centre-south of the study area and is marked by a homogeneous concentration of medium
to very high-risk parishes. A third pattern can be associated with the centre-north and NE
of the study area, where parishes with contrasting levels of wildfire risk are distributed in a
heterogeneous pattern. Finally, a fourth spatial pattern can be defined in the southeast, the
extreme centre-south, and the narrow NE limit of the study area, where there is a relatively
homogeneous predominance of medium-to-low risk parishes.

3.3. Risk Profiles and Cluster Analysis

Five clusters of parishes with similar characteristics were identified (Figure 11A). The
relations between the clusters and the risk components (Figure 11B) show contrasting
degrees of component variability throughout the study area, with wildfire hazard values
varying much more than exposure or social vulnerability, which fluctuate to a similar
degree. The figure also shows that the relative importance of the components of wildfire
risk varies among the five defined clusters, with hazard dominating in clusters 2, 3 and 4,
but not in cluster 1 (where exposure and social vulnerability are more relevant) nor in
cluster 5 (where social vulnerability is more important).

Cluster 1 includes 306 parishes, and it is the largest, closely followed in size by cluster 3.
It is characterized by the lowest average wildfire hazard and social vulnerability values
(Figure 11B), having an intermediate level of exposure in comparison with the other clusters.
It is spatially distributed on a homogeneous N-S swath along the coastline (Figure 11A),
also including a few isolated groups of parishes throughout the study area, namely in the
centre-north, the extreme south, and the SE.

Cluster 2 includes 147 parishes. It presents levels of exposure and social vulnerability
similar to those of cluster 1, but with a higher wildfire hazard level (Figure 11B). Spatially,
it occurs mostly in association to cluster 1 in a broad N-S swath along the coastline, also
appearing as a group of parishes in the centre-north (again in association with cluster 1)
and more isolated in the NE and SE of the study area (Figure 11A).

Cluster 3 includes 303 parishes, the second largest group. It is characterized by
relatively low exposure levels, only surpassed by cluster 5 which has the lowest exposure; it
includes intermediate levels of social vulnerability, and relatively high wildfire hazard levels
(near to the highest values found in cluster 4) (Figure 11B). Spatially, cluster 3 dominates
the centre and NE sectors of the study area, also including a few isolated parishes within
the N-S coastal swath dominated by clusters 1 and 2 (Figure 11A).
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Cluster 4 is the smallest, including only 53 parishes. It stands out by having the highest
values in all the three components of wildfire risk (Figure 11B). Spatially, it occurs mostly
as a homogeneous concentration of parishes in the centre-south of the study area, also
appearing in isolated manner in the S, extreme N, and NE (Figure 11A).

Finally, cluster 5 includes 163 parishes. It is characterized by relatively low hazard
levels (the second lowest, following cluster 1), the lowest exposure levels, and relatively
high social vulnerability levels (the second highest, after cluster 4) (Figure 11B). Spatially, it
dominates the SE of the study area, with minor concentrations of parishes in the NE and
the centre-south, and isolated parishes occurring throughout the study area (Figure 11A).

Regarding the percentage of parishes by main wildfire risk dimension, hazard dom-
inates in 51.7% of all parishes (clusters 2, 3 and 4), with exposure together with social
vulnerability dominating 31.5% (cluster 1), and social vulnerability dominating only 16.8%
(cluster 5).
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Figure 11. (A) Division of the parishes in the study area in five clusters based on hazard, exposure,
and social vulnerability levels; (B) Distribution of hazard, exposure, and social vulnerability levels
among the five clusters. Circles identify potential outliers, defined as situated between 1.5× and 3×
the interquartile range below the 1st quartile and above the 3rd quartile. Asterisks identify potential
extreme outliers, exceeding 3 times the interquartile range below or above the 1st and the 3rd quartile.

4. Discussion

The proposed risk index (Figure 10D) allows for a general and integrative perspective
over the spatial patterns and variations of wildfire risk throughout the study area. This
perspective is invaluable in a context of regional-level to country-level spatial planning
and risk management. However, the applicability and value of this index can only be
fully grasped in relation to its hierarchical structure in three increasing levels of detail and
specificity: the final integrated level, the level of the individual dimensions of wildfire risk
(hazard/exposure/social vulnerability), and the level of their individual sub-components
(in the cases of exposure and social vulnerability) (Figure 3). Organizations and individuals
responsible for risk management at municipal and sub-municipal scales can implement
measures adjusted to the dimensions that influence wildfire risk levels in their areas, avoid-
ing untailored, generalist and less efficient approaches. For instance, a risk manager in a
municipal administration can allocate financial and human resources to early detection and
suppression of wildfires in hazard-dominated parishes within the municipality (such as
those in clusters 2, 3 and 4; Figure 11A), while privileging measures such as the promotion
of neighbour support networks or rapid evacuation capabilities in social vulnerability-
dominated parishes (such as those in cluster 5). Prior studies have shown the importance
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of identifying priority measures in exposed areas, regarding fuel and fire management
options [28,57], as well as to engage in proactive and collaborative management to prevent
wildfire losses [58]. Other studies have shown that people’s characteristics and social
context are paramount to understand their perception regarding wildfires, and how it
influences their relations with fire occurrence and their ability to apply protective mea-
sures [28,59]. Moreover, social context and local conditions are crucial to define suitable
mitigation and adaptation strategies to increase communities’ safety and resilience [60,61].

Furthermore, in the case of parishes where the main driving dimensions result from the
combination of more than one component (exposure and vulnerability), risk managers can
resort to the third level of detail—that of the sub-components—to support their decision-
making. For example, it is expectable that similar social vulnerability values among parishes
will result in some cases from a particularly high criticality, and in others from a particularly
low support capability. A consideration at this third and most detailed level would allow
risk managers to focus their policies and measures on the more relevant constituents of the
more relevant dimension of risk within each parish.

Regarding spatial scale, the use of the individual parish as unit of analysis allowed for
a high level of detail to represent wildfire risk and its dimensions, that can be either directly
used or adapted to any level of territorial management. At the municipal level, the results
allow risk managers to differentiate parishes within a given municipality, thus informing
their planning decisions. At higher levels of spatial planning (e.g., region, association of
municipalities), results can be adjusted to a municipal scale of representation, for example
by using area-weighted averages of the values of the parishes within each municipality.
Our choice of the parish as spatial unit of analysis is in accordance with the considerations
put forward by the authors of the Inform index [39], which indicate that the index can be
applied at any spatial scale for which information is available. In our case, spatial data was
available with a 25 m pixel, and most of the statistical data were available at the parish
level. The exceptions were nine of the variables used as input for quantifying support
capability, which were only available at the municipal scale (Table 3). Nevertheless, the
index can be applied to spatial units of any level: municipal, regional, or national (for
multi-country assessments).

A similar consideration can be made regarding temporal scale. Although we employed
a structural approach to assess wildfire hazard by using wildfire factors that change only
on a multi-year scale [21], the applied wildfire risk methodology could be focused on
summer-specific wildfire risk, if summer-specific wildfire hazard data were available. In
this respect, this index could be combined with a seasonal approach to wildfire hazard such
as that recently proposed by [20].

In parallel to the potential advantages of using this wildfire risk index, some limitations
to our approach need also to be considered. The dimension of exposure was expressed
using two variables only: total number of residents per parish, and percentage of resident
population outside of urban areas by parish, due to the high collinearity with other variables
focused on residential buildings. In practice, the first variable quantifies both the number of
people and residential infrastructures exposed to wildfires, whereas the second expresses
the degree of isolation that these elements are subject to in each parish, adding to their level
of exposure. Given the variety of elements that can be at risk within the territory besides
people and buildings, our approach excluded elements such as non-residential structures
(e.g., cultural, industrial, collective equipment such as hospitals) and economic activities,
as well as agricultural lands, forest areas and ecosystems. It also excluded the temporary
residents or seasonal visitors that are present only during summertime, when wildfires are
more frequent. Future work should be dedicated to diversifying the elements represented
within the exposure dimension. A good example in this respect is the HANZE exposure
database [62], which included land cover classes and the estimation of their economic
value. Further examples are the works of Salis et al. [25] and Thompson et al. [26], in
which diverse types of exposed elements (e.g., wildland-urban interfaces, vineyards and
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orchards, various infrastructure types, areas of ecologic value such as wildlife habitats) are
spatially differentiated.

Like exposure, the dimension of vulnerability should also be made more compre-
hensive in future work. Our approach was focused solely on its social component, and
therefore on the characteristics of the residents. Features such as the expected level of
destruction of physical structures [63] and land use parcels (e.g., forests), as well as their
estimated economic value [30,44] would make the quantification of vulnerability more
realistic. Such changes would require the consideration of expected wildfire severity in
the methodology, as well as reliable and accessible estimations of the economic value
and potential recovery costs of the different elements, which may vary depending on the
country or region. Risk is inherently multidimensional, and any application of a risk index
will be more effective the more detailed and exhaustive the available data are for each of its
dimensions and sub-dimensions.

5. Conclusions

A comprehensive wildfire risk index was proposed and applied to a region in central
Portugal. The index was complemented with the division of the 972 parishes studied, by
means of cluster analysis, into groups characterized by similar relations between the three
wildfire risk dimensions: hazard, exposure, and social vulnerability.

The hierarchical structure of the index, which is based in the INFORM framework,
allows approaching wildfire risk management in different levels. At the most generalized,
the final index values allow for a general perspective over the distribution of wildfire risk
throughout the study area. Results suggest four distinct spatial patterns, with the highest
risk parishes being evidently concentrated in the centre-south of the study area, where
mitigation measures should be applied first. At the level of the three dimensions of risk,
results can inform the decisions of wildfire risk managers, allowing them to more efficiently
allocate resources to the major dimension (or dimensions) that are more relevant in each
parish. In this respect, the five defined clusters illustrate different risk profiles, with three
of them being dominated by hazard (although with values of differing magnitude), and the
other two being dominated, respectively, by exposure together with social vulnerability,
and social vulnerability only. At the most detailed, sub-dimension level, available only in
the cases of exposure and social vulnerability, risk managers can focus their attention on
the most relevant factors behind these dimensions, further adjusting policies and measures
to the specific reality within each parish.

The proposed index provides an integrated and spatially detailed perspective of
wildfire risk that is relevant for disaster risk reduction approaches. It can be easily applied to
other study areas, using any spatial unit for which spatial and statistical data are available.
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Appendix A

Table A1. Conceptual justification for the variables adopted for expressing criticality.

Variable Relation to Criticality

Illiteracy rate (%)
Education is linked to socioeconomic status, with higher educational attainment
resulting in greater lifetime earnings. Lower education constrains the ability to
understand warning information and access to recovery information [29,32,64].

Proportion of the resident population with university
degree (%)

School dropout rate (%)

Proportion of socially more valued professionals (%)
Socially valued professions are associated with higher income and education level
and are likely to be associated with a greater capacity to resist and recover from

wildfire events.

Proportion of single-member families constituted by people
with 65 or more years of age (%)

Extremes of the age spectrum affect the movement out of harm’s way. Parents lose
time and money caring for children when daycare facilities are affected; elderly

may have mobility constraints or mobility concerns increasing the burden of care
and lack of resilience [32,64].

Mean age of resident population (years)
Proportion of the resident population with 14 or less years

of age (%)

Proportion of lodgings formed by couples with children (%) Families with children will have to allocate time and resources to care for them,
which may affect their resilience and capacity to recover from hazards.

Mean commuting time of the working or studying resident
population (min)

The greater the amount of time a resident is absent from home on a regular basis,
the less likely is he/she to be able to react quickly in case of wildfire, and the more
difficult will be the recovery. This will be especially acute in the case of seasonally

used homes.

Proportion of the resident population working or studying in
another municipality (%)

Proportion of seasonally used classic family lodgings (%)

Proportion of the resident population that resided in another
municipality 5 years before (%)

New residents and foreign nationals will be less likely to have established
consolidated networks of social connections, and thus be less likely to benefit from
help from neighbours and more likely to be unaware of warning information. In
the case of foreigners, the language barrier may constrain disaster preparedness

and resilience [29], and cultural barriers may affect access to post-disaster
relief initiatives.

Proportion of the resident population of foreign
nationality (%)

Female activity rate (%) Women can have a more difficult time during recovery than men, often due to
sector-specific employment, lower wages, and family care responsibilities [32].Female proportion of the population (%)

Proportion of self-owned lodgings that include expenses (%)
Home expenses can be a major component of the household budget and impact
the capacity to invest in resilience prior to a disaster, as well as the capacity to

recover from it.

Proportion of family lodgings lacking at least one basic
infrastructure (%)

The quality of residential construction affects potential losses and recovery [32].
Older buildings, those lacking basic infrastructures, or mobile or improvised

habitations are likely to be more vulnerable to the effects of wildfire [29].

Average age of buildings (years)
Proportion of buildings built within the previous

ten years (%)
Proportion of non-classical lodgings (%)

Proportion of rented or subleased classic lodgings (%)

People that rent do so because they are either transient or do not have the financial
resources for home ownership. They often lack access to information about

financial aid during recovery. In the most extreme cases, renters lack sufficient
shelter options when lodging becomes uninhabitable or too costly to afford [32].

Proportion of single-lodging buildings (%)
People in rural areas tend to have limited access to emergency and

contingency-related resources, good and services. Their rehabilitation potential is
also reduced compared to urban areas [56].

Proportion of overcrowded lodgings (%) Overcrowding may be associated with financial constraints, also making
evacuation more difficult [29,64].

Floors by building (Nº) High-density areas (urban) complicate evacuation in case of disaster [29,32].

Proportion of the population using automobile for
dislocations (%)

Residents with access to automobiles will be more mobile, which will facilitate
getting out of harm’s way [29], as well as the capacity to recover from a wildfire.
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Table A2. Conceptual justification for the variables adopted for expressing support capability.

Variable Rationale

Ageing ratio of buildings (%)
Infrastructure that is old or degraded will likely be more

vulnerable to wildfire damage, while possibly constraining the
efficiency of response on the part of authorities. Additionally,

the state and age of constructions is an indicator of the
economic health of a parish (see economic indicators below).

Proportion of buildings in need of major reparations or very
degraded (%)

Proportion of buildings having wheelchair accessibility (%)
An indicator of the capacity of residents with impaired mobility

to efficiently evacuate in case of wildfire, either with or
without assistance.

Proportion of the resident population living outside of
urban centres (%)

Population that is dispersed across the parish territory will
likely be harder to assist by authorities in the case of disaster.
Additionally, rural residents may be more vulnerable due to

lower incomes and more dependent on locally based resource
extraction economies [32].

Road network density (km/km2)
The greater the number of corporations and firefighters, the

greater the capacity of authorities to respond in case of wildfire
[36]. Road density will promote overall accessibility, and

therefore promote the efficiency of this response [36]. High road
density will also facilitate evacuation in case of disaster.

Firefighter corporations (Nº)
Firefighters (Nº)

Pharmacies and mobile pharmaceutical posts (Nº) The number of nurses and pharmacies are likely indicators of
the overall capacity for efficient medical response in case of

wildfire, decreasing its impacts and promoting recovery.
Nurses by workplace (Nº)

Rooms in tourist accommodation establishments (Nº)
All these variables were adopted as indicators of overall

economic health and vitality of parishes.
Wealth enables communities to absorb and recover from losses

more quickly due to insurance, social safety nets, and
entitlement programs [32,64].

Urban waste collected by inhabitant (kg)
Gross Value Added of enterprises (EUR) (note: does not include

financial sector)
Median sale value by m2 of family accommodations

ATM machines (Nº)
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