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Abstract: Fire is one of the most common and harmful disasters in real life. In 2021, firefighting
teams in China reported 748,000 fires, resulting in 1987 deaths, 2225 injuries and CNY 6.75 billion
of direct property losses, which account for 0.05‰ of GDP. Scientific and accurate estimation of
evacuation time can provide decision support for intelligent fire evacuation. This paper aims to
effectively improve the evacuation efficiency of people in large buildings, especially for a scenario
with intricate evacuation passages. There are many factors that make a difference in evacuation time,
such as individual behavior, occupant density, exit width, and so on. The people distribution density
is introduced to effectively assess the impact of unstable pedestrian flow and unbalanced distribution
in the process of evacuation. The verification results show that there is a strong positive correlation
between people distribution density and evacuation time. Combining the people distribution density
with many other factors, the training dataset is built by Pathfinder to learn the relationship between
evacuation time and influencing factors. Finally, an evacuation time prediction model is established
to estimate the consumption time that occupants spend on moving in the evacuation process based
on stacking integration. The model can assist occupants in choosing different channels for evacuation
in advance. After testing, the average error between the predicted evacuation consumption time
and the reference time is 3.63 s. The result illustrates that the model can accurately predict the time
consumed in the process of evacuation.

Keywords: evacuation time estimation; buildings fire; people distribution density; Pathfinder;
stacking integration

1. Introduction

Fire is one of the most common and harmful disasters in real life and is directly related
to people’s lives and property. In 2021, firefighting teams in China reported 748,000 fires,
resulting in 1987 deaths, 2225 injuries and CNY 6.75 billion of direct property losses, which
account for 0.05‰ of GDP. Minimizing the evacuation time is one of the most effective
measures to reducing the final casualty consequences [1]. Many real fire disasters have
illustrated the importance of minimizing evacuation time. For example, 120 people were
burned because of complex and rare escape routes in the fires of the Jilin poultry company
on 3 June 2013 [2]. Six fatalities and a dozen injuries in the corridor were choked by smoke in
the Cook County, Chicago, Administration Building fire on 17 October 2003 [3]. Therefore,
how to improve evacuation efficiency based on the accurate estimation of evacuation time
has become a prerequisite for safe evacuation.

The study of evacuation time has attracted much attention. The occupants inside the
fire site only have a short amount of time to evacuate, which is called the golden evacuation
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time [4–6]. When the available evacuation time (TASE) is longer than the required evacuation
time (TRSE), occupants can evacuate to safe areas, as shown in Figure 1. It has been proven
that total required evacuation time consists of awareness time, pre-movement time, and
evacuation time [4,7–10]. Evacuation time is the sum of movement time and waiting time
during the evacuation process.

TEVA = TMOV + TWAIT
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Figure 1. The composition of evacuation time: fire start: ignition (the point when a fire starts);
detection: the point when the detection systems are activated; i.e., sprinklers; alarm: the point when
the alarm is sounded; awareness: the point when occupants recognize that an emergency situation
is taking place; decision to act: the point when occupants recognize that the emergency situation is
a fire accident; start to move: the point when occupants respond to the situation and begin escape
movement; reach safe location: the point when occupants reach safe location; untenable conditions:
the point when fire components, such as smoke, heat, toxic gases, narcotic gases, and irritant gases,
kill the occupants. The pre-movement time is also known as pre-evacuation time.

Each part of the evacuation time has its unique characteristics, which is the base of
different estimation methods. A widely used method is to build some estimation models
based on the identification of various factors. Therefore, factor identification is the first
step for estimation model building. There are different factors to consider and different
methods to use at each stage of evacuation, as shown in Table 1.



Fire 2022, 5, 204 3 of 19

Table 1. The summary of evacuation time at different stages.

References Stages Explanation of Each Stage Factors Methods

Ming-Kuan TSAI.
(2015) [11],

Grajdura, S (2021) [12],
Kodur, VKR (2020) [13]

Awareness time

the time from the fire starts
to the point when occupants
recognize that an emergency

is taking place

the efficiency of fire
monitoring systems

image recognition
and knowledge

models

Kuligowski E. (2013) [14],
Chu, GQ (2006) [7,15],
Rogsch, C (2014) [16],

Forssberg, M (2019) [17]

Pre-movement time

the time from the point when
occupants recognize that an
emergency is taking place to

the point when the
occupants start to move

individual behavior the protective action
decision model

W.K. Chow. (2007) [9],
Fang, ZX (2011) [18] Waiting time

the total time of occupants
waiting in the evacuation

process, similar to the
movement behavior, waiting
time is the total time spent
waiting for multiple times.

occupant loadings
numerical

simulations with
BuildingEXODUS

YAN W D. (2021) [19],
Kirik, E (2014) [20]

Koo, J et al. (2012) [21]
Movement time

the time from the point when
the occupants start to move
to the point when occupants

end the escape movement

gender, number,
age, disability

Pathfinder software
simulation

Lin C S et al. (2018) [4],
Aleksandrov, M (2015) [22],

Gao, H (2020) [23]
Evacuation time

the total time of occupants
moving in the evacuation

process; sometimes the
evacuation process is

intermittent; then,
evacuation time is the total

time of multiple movements

floor area, number
of exits, and

per-floor occupant
load

a rapid prediction
model based on the
traditional Togawa

model

Jiang Y L et al. (2021) [24],
Xiao, MF (2022) [25],

Gwynne, S (2012) [26],
Chang-Jun (2021) [27]

Required safe
evacuation time

the time from when the fire
starts to the point when
occupants reach a safe

location

building structure
and personnel

distribution

multi-factor
combined method

Tian F et al. (2019) [28],
Tosolini, E (2012) [29]

Available safe
evacuation time

the time from when the fire
starts to the point when fire
components, such as smoke,

heat, toxic gases, narcotic
gases, and irritant gases, kill

the occupants

concentration of
toxic gas, smoke
layer height, and

temperature,
radiant heat flux

multi-factor
combined method

The influencing factors of evacuation time have been explored by many researchers.
Different evacuation stages have different main factors. The awareness time is studied
by building an intelligent construction site fire management platform [11]. The impact
of individual behavior is analyzed on the pre-movement time using a protective action
decision model [14]. GridFlow evacuation model and probability distribution are utilized
to study the effect of pre-evacuation time on evacuation time prediction under different
occupant densities and exit widths [7,15]. Chow, WK [9] studied the importance of waiting
time in evacuation time prediction under crowded conditions. Pathfinder is a widely used
software simulation to study movement time [19]. Lei et al. [30] explored the influence
of rules about occupant density and exit width on evacuation efficiency. Each period of
the above study is summarized to form the evacuation time. Furthermore, many factors
have direct impacts on evacuation time prediction such as evacuation numbers, minimal
group effect, pre-action time and the stability region [31,32]. Lin et al. [4] analyzed the
impact of floor area, number of exits, and per-floor occupant load on evacuation time. The
length, width, height and the number of exits are also factors influencing the evacuation
efficiency in a building. Moreover, the practicability and correctness of the evacuation
model need to be discussed by comparing the required safe evacuation time with the
available safe evacuation time [24–29]. Fifteen pre-evacuation influencing factors have been
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analyzed using Interpretive Structural Modeling, but all of them are static [8]. According
to previous studies, evacuation time can be influenced by many factors, such as age, sex,
speed, shoulder width, and others [33–35]. Age is utilized to estimate the moving speed
and corresponding shoulder width [36]. Without considering the influence of fire and other
factors, this paper considers two categories of factors, including individual characteristics
and the dynamic congestion degree of the evacuation route. The better an occupant’s
escape ability and the evacuation route’s environment, the less required evacuation time
they need.

Different models or methods are applied to estimate evacuation time based on different
influencing factors. Three popular methods are simulation models, machine learning
approaches, and artificial neural network. Modeling and simulation tools are widely used in
many different scenarios. AnyLogic is used to study emergency evacuation with unbalanced
utilization of exits at the platform level [37]. A model was built with Pathfinder to combine
the personnel escape behavior on mine fire [38]. Moreover, simulation modeling methods are
often developed based on some classic models [11,12]. For example, numerical simulations
with BuildingEXODUS are used to calculate the waiting time under two different densities of
occupants [9]. The combination of numerical simulations with Pathfinder is also used to verify
the impact of occupant number and sex on the movement time [4]. The powerful machine
learning approaches can help scenario building for planning future facilities to provide a
reference for evacuation time prediction. Machine learning approaches such as
cellular automata model, multi-agent modeling, genetic algorithm (GA) with neural
networks (NNs), and fuzzy logic (FL) are widely used to study pre-evacuation stage,
earthquake casualty prediction, evacuation traffic prediction and real-time evacuation [39–44].
In addition, artificial neural network (ANN) is often used to study pre-evacuation behavior
and available safe egress time prediction for its powerful data learning ability [44,45]. A deep
neural network surrogate model is proposed to plan optimal evacuation routes to reduce
casualties in toxic gas leak incidents [46]. The evacuation design simulation is implemented
for subway station building based on the deep neural network model [47]. The methods
mentioned above construct various models mainly based on many factors or parameters
to predict evacuation time under various circumstances. However, most of them mainly
focus on various static parameters. Few research studies consider dynamic changes during
the evacuation process, especially the influence of unstable pedestrian flow and unbalanced
distribution.

This study aims to build an evacuation time estimation model (ETEM) based on both
static and dynamic factors in large buildings with intricate evacuation channels. Although
evacuation time can be divided into many parts, this paper mainly focuses on the stages
of movement and waiting during the evacuation process. The movement time can be
determined by the occupants’ moving ability and the different degrees of crowdedness
in the crowded environment. The waiting time is determined by the movement speed
of the crowd in front of you and the degree of congestion. Pedestrians are not uniformly
distributed in the evacuation space, and their movement is also random and dynamic.
The people distribution density is introduced to describe the impact of such unstable flow
and uneven distribution on people’s evacuation process. It is defined by some typical
scenarios with unstable flow and an uneven distribution of occupants. The accuracy of the
evacuation time estimation can be improved through the introduction of people distribution
density in the prediction model. Various factors are analyzed by multi-methods, including
some static factors and dynamic information. Combining these factors with the people
distribution density, an evacuation prediction model is proposed to calculate the evacuation
time through the stacking integration strategy. Finally, the effectiveness of our model can
be verified with a small difference from the simulation time by Pathfinder.
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2. Materials and Methods
2.1. Framework

The ETEM can estimate evacuation time in different scenarios by learning the correlation
between the evacuation time and influencing factors based on the stacking integration method.
The framework of ETEM consists of four phases, as shown in Figure 2. First, many factors
influencing evacuation time are analyzed with a literature research and case analysis. These
factors include individual characteristics of evacuees, evacuation environment, and the dynamic
information. Second, datasets should be built to lay the foundation for correlation learning
and model training and validation. Multi-scenarios are set to establish simulation models
by Pathfinder. Then, the data corresponding to influencing factors and their corresponding
evacuation time can be recorded to create the dataset. Within the dataset, 85% of them are
randomly selected as the training data, and the remaining 15% are the test data. Third, the
stacking integration method is applied to learn the relationship between evacuation time and
factors on the training set. XGB, LGB, and GBoost classifiers are integrated into the stacking
strategy to make the evacuation time prediction model. Finally, the test dataset is used to verify
the accuracy of the model through the comparison with the real simulation results.

Fire 2022, 5, x FOR PEER REVIEW 5 of 19 
 

 

evacuation time through the stacking integration strategy. Finally, the effectiveness of our 
model can be verified with a small difference from the simulation time by Pathfinder. 

2. Materials and Methods 
2.1. Framework 

The ETEM can estimate evacuation time in different scenarios by learning the corre-
lation between the evacuation time and influencing factors based on the stacking integra-
tion method. The framework of ETEM consists of four phases, as shown in Figure 2. First, 
many factors influencing evacuation time are analyzed with a literature research and case 
analysis. These factors include individual characteristics of evacuees, evacuation environ-
ment, and the dynamic information. Second, datasets should be built to lay the foundation 
for correlation learning and model training and validation. Multi-scenarios are set to es-
tablish simulation models by Pathfinder. Then, the data corresponding to influencing fac-
tors and their corresponding evacuation time can be recorded to create the dataset. Within 
the dataset, 85% of them are randomly selected as the training data, and the remaining 15% 
are the test data. Third, the stacking integration method is applied to learn the relationship 
between evacuation time and factors on the training set. XGB, LGB, and GBoost classifiers 
are integrated into the stacking strategy to make the evacuation time prediction model. 
Finally, the test dataset is used to verify the accuracy of the model through the comparison 
with the real simulation results. 

 
Figure 2. Development flow chart of evacuation time prediction model. 

2.2. Stacking Integrating Method 
Stacking integrating strategy is an integrated learning technology, which was pro-

posed by Wolpert in 1992 [48]. The output of the first-layer classifiers is the input of the 
second-layer classifiers. New weak classifiers can be trained based on the negative gradi-
ent information of loss function. Then, the trained weak classifiers are combined into the 
existing model. Therefore, the generalization error of the learning process can be greatly 
reduced to show better nonlinear expression ability. Essentially, the goal of stacking is to 
weigh variance and reduce bias. In recent years, the stacking ensemble learning method 
has been applied to prediction problems in many fields with strong predictive ability. For 

Figure 2. Development flow chart of evacuation time prediction model.

2.2. Stacking Integrating Method

Stacking integrating strategy is an integrated learning technology, which was proposed
by Wolpert in 1992 [48]. The output of the first-layer classifiers is the input of the second-layer
classifiers. New weak classifiers can be trained based on the negative gradient information
of loss function. Then, the trained weak classifiers are combined into the existing model.
Therefore, the generalization error of the learning process can be greatly reduced to show
better nonlinear expression ability. Essentially, the goal of stacking is to weigh variance and
reduce bias. In recent years, the stacking ensemble learning method has been applied to
prediction problems in many fields with strong predictive ability. For example, the gradient
lifting spatial model and neural network mechanism as the basic classifiers are proposed to
effectively improve the prediction effect of pollutant concentration [49]. A stacking algorithm
with multiple metamodels is applied to predict house price [50]. In the field of healthcare,
stacking algorithms are also used for medical data integration in disease prediction [51,52].
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In this paper, the stacking strategy is introduced to improve the accuracy of the prediction
model through integrating three classifiers of XGB (extreme gradient boosting), LGB (light
gradient boosting) and GBoost (gradient boosting). XGB is a supervised classification and
regression algorithm. XGB is faster than other traditional gradient boosting algorithms. LGB
has advantages of fast training efficiency, low memory usage, high precision, parallel learning
support and strong ability to handle big data. To solve the problem of general loss function
optimization, Freidman proposed a gradient boosting algorithm. The integration of these three
classifiers can make all their advantages manifest and reduce their respective disadvantages.

2.3. People Distribution Density

People move in the evacuation route, and the pedestrian distribution is unbalanced
and dynamic during the evacuation process. The optimum evacuation route cannot only be
determined by the occupant distribution and location at the current time because occupants
can change their movement behavior and direction at any time, resulting in a change of
distribution density. The situation may happen that the route is not crowded when a person
is going to move there, but the congestion may be caused by groups of occupants from
other routes when they evacuate to there. A situation such as this can have a big influence
on evacuation efficiency.

2.3.1. Scenario Analysis

The behaviors of pedestrians in the evacuation have some characteristics to influence
path selection and evacuation efficiency in walking facilities. First, they will prefer to choose
a path to the exit with a straight line for the shortest distance and minimum evacuation time.
Second, they tend to flexibly change their evacuation path according to the surrounding
environment. However, it is difficult to realize, especially when the situation is very
crowded. Third, once there are obstacles in the evacuation space, most of the pedestrians
choose to pass through them at a lower speed rather than bypassing them through other
paths, which will influence evacuation efficiency. Therefore, the real evacuation scenario
is very complex. All these dynamic human and environmental factors have big effects
on evacuation time and efficiency. To be specific, environmental factors affect the people
distribution density by influencing people’s thoughts and behaviors. People’s thoughts and
behaviors are the direct and main causes, while environmental factors are the indirect and
secondary causes. People distribution density is introduced to illustrate the coupling effect
of these dynamic behavior. Two typical scenarios are used to enhance the understanding
and to introduce the estimation of this concept.

In the evacuation situation, evacuation routes are not always straight and are often
intricate. One of main reasons that evacuees do not choose effective routes is that they
cannot see the flow of people on other intertwined routes. Figure 3 gives a simple example
of two evacuation paths that are perpendicular to each other. The evacuees are marked
by pink, and safety exits are marked by green rectangles. The evacuee (p) is closer to the
left exit (A) from the straight-line distance, and the number of evacuees on the left side is
much less than that on the right side. The evacuee (p) should select the left exit when the
evacuee considers only the distance from the exit to the evacuees’ distribution. However,
there may be many evacuees moving from the vertical routes, causing congestion of the
left side, which will greatly reduce the evacuation efficiency of the evacuee (p). Therefore,
the selection of evacuation routes or exits cannot just consider the distance from the exits
and the evacuee distribution in the current time. The dynamic pedestrian flow should also
be considered in the evacuation.
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Figure 3. The influence of the dynamic flow of evacuees during evacuation.

The second typical scenario is a straight evacuation route, as shown in Figure 4.
Suppose the degree of crowder in area A is the same as that in area B. Compared to the
right side, the distance from the evacuee (p) to the left exit is longer, but the distance from
the crowded zone to the left exit is much shorter. The right side may be the better choice
when just considering the distance with the exit, the people density distribution in the
route, and the distance with the crowded zone. However, the slow speed of the evacuees in
the crowded zone with high density moving to the exit is a serious constraint during the
actual evacuation.
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2.3.2. Definition of People Distribution Density

Considering the previous two scenarios together, the concept of people distribution density
is introduced to assess the comprehensive effect of the dynamic human and environmental
factors on the evacuation process. Based on the above analysis, people distribution density is
affected by the crowder degree, moving velocity of evacuees, and the distance to exits, except
for the width of the evacuation route. For an independent area, the people distribution density
(P_dis_den) in this area is defined by Equation (1).

P_dis_den = ∑
i

∑
j

Ni
V

·
Lij

α·dij
(1)

where V is the average velocity of occupants, and Ni is the total number of occupants in the
ith evacuation route. For an evacuation route, it can be divided into j segments according
to different widths because different widths mean that occupants need to turn when they
move through the joints of different widths. Lij is the length of the jth segment for the ith
evacuation route, and dij is the width of the jth segment for the ith evacuation route.

In the actual evacuation, many occupants need to turn when they want to reach
the emergency exit, i.e., the evacuees in the vertical routes in Figure 3. In the process of
their turn, they tend to walk on one side, which results in a width loss of the evacuation
channel. For example, as shown in Figure 3, the evacuees in the vertical routes will walk
on the left side, rather than on the right side if they select the left exit to evacuate. α is
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the effective coefficient of width. Very little research has been conducted to analyze the
effective coefficient. Therefore, in order to obtain the more accurate coefficient, many
simulation experiments have been conducted to determine the value of α. These simulation
experiments are compared by setting different values of α with an interval of 0.05 in the
range of [0.50, 1.00]. The actual evacuation time is set as the assessment criterion. According
to the comparison of simulation experiment results, only when the coefficient is set at 3/4
(0.75) are the simulation results consistent with the actual situation. Therefore, the effective
width after a rectangular turn is set as 3/4 of the channel width in this study.

α =

{ 3
4 , the evacuation channel is not straight; occupants need to turn;

1, the evacuation channel is straight; occupants do not need to turn.

People density distribution does not always affect every evacuee during the evacuation
process. It will play a role when some conditions are satisfied. Evacuation priority is defined
to describe whether the reciprocal effect of evacuees in different areas exists when they
select the same exit to evacuate. The concept of evacuation priority is a group of evacuees
that target a common area. Occupants will think about which exit to choose during
their evacuation. For example, they will think about the distance to the exit, the possible
congestion situation to reach the target exit, etc. Evacuation priority is a factor to consider
when they analyze the possible congestion situation because they need to consider who
will select the exit for evacuation, thus causing the congestion. Then, they will select an
appropriate route to evacuate. As shown in the scenario in Figure 3, if the occupants on the
right side select the left exit to evacuate, they need to consider the effects of the occupants
in the upper and lower regions. The evacuation priority of the occupants in the upper and
lower regions is higher than that of the occupants on the right side. For the evacuees in
an area, when the priority of this area is higher than the area of the reference evacuee, the
people distribution density of this area is considered as the factor for the evacuation of
these evacuees. The evacuation priority is defined as the inverse of the people distribution
density, which is described by Equation (2).

Peva = 1/P_dis_den (2)

The total people distribution density (P_dis_den_sum) is the sum of people distribution
density of all areas in the whole evacuation scene, which is defined by Equation (3).

P_dis_den_sum =
K

∑
k

∑
i

Nk
i

V ∑
j

Lk
ij

α·dk
ij

(3)

where K is the number of areas whose evacuation priority is higher than the position of the
reference evacuee.

2.3.3. Calculation Example of People Distribution Density

To describe the estimation of people distribution density, an evacuation scenario is
constructed using Pathfinder. Pathfinder is an agent-based evacuation simulation developed
by the Thunderhead Engineering Company of the United States, which is combined with
advanced movement simulation and high-quality 3D animated results [18,53]. Pathfinder
enables the analysis for stadiums, hospitals, skyscrapers, aircraft, and other buildings. A
scenario is set to give a calculated example of the people distribution density, as shown in
Figure 5. There are two exits (exit1 and exit2) and 212 evacuees in this scenario. The average
evacuation velocity is set as 1.19 m/s [7]. For the reference evacuee, when exit1 is selected
as the evacuation exit, the pedestrians in the three areas including dist1, dist2, and dist4 will
have effects on its evacuation.
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Formula (4) illustrates the calculation process of the people distribution density for
the reference evacuee.

P_dis_den_sum =
K
∑
k

∑
i

Nk
i

V ∑
j

Lk
ij

α·dk
ij

= 10
1.19 ×

(
4.5

2.1×1 + 3
4× 3

4

)
+ 7

1.19 ×
(

11.7
2.1×1 + 3
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4

)
+ 3

1.19 ×
(

2
1.5×1 + 14.2

2.1× 3
4
+ 3

4× 3
4

)
= 93.68

(4)

2.4. Evacuation Time Estimation Model (ETEM)
2.4.1. Dataset Collection

The factors related to the occupant information are divided into the occupant’s shoulder
width (Shoulder_width), position information (L, the distance of the occupant with each
emergency exit), the occupant’s normal moving speed (V), the occupant’s age (age), the
occupant’s gender (sex), etc. The factors related to congestion degree of the passage are
divided into the area width (di), number of people (N), length (L) and bending degree
(Channel_diff ) of the evacuation passage. When an evacuation route is not straight, the
curvature of the evacuation route is applied to describe its bending degree, which has been
divided into four classifications (1, 2, 3) based on the different curved angles.

The underground commercial street of Wanda Plaza in ×× City is taken as the research
object, as shown in Figure 6. The street is about 221 m from north to south and 460 m
from east to west. The total construction area is 27,285.38 square meters. The density
can reach 3.6 persons per square meter during rush hour. Pathfinder is used to construct
the evacuation scenario with 443 occupants and 19 emergency exits. The information of
occupants can be obtained through a literature review. The summary of basic statistics
information is shown in Table 2.
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Table 2. The summary of occupants’ basic statistics information.

Age (Years) v (m/s) Sex Shoulder_Width (cm)

Under 15 0.9 0 36
Under 15 0.8 1 32

16~50 1.19 0 45.58
16~50 1 1 40

Over 51 0.8 0 45.58
Over 51 0.7 1 40

Note: 0 marks male, and 1 marks female.

The data corresponding to factors are recorded automatically in the simulation of
the evacuation process through Pathfinder. There are 3443 pieces of simulation data
corresponding to the occupants. Partial data are shown in Table 3.

Table 3. Partial data recorded by Pathfinder.

Name Exit
Time (s)

Active
Time (s)

Jam Time
Total (s)

Jam Time
Max

Continuous
(s)

Start
Time (s)

Finish
Time (s)

Distance
(m)

Last_Goal_Started
Time (s)

1 33 33 0.35 0.33 0 33 24.03 0
2 33.93 33.93 0.65 0.33 0 33.93 24.22 0
3 38.63 38.63 0.45 0.33 0 38.63 26.61 0
4 40.18 40.18 0.93 0.25 0 40.18 26.19 0
5 30.95 30.95 1.58 0.95 0 30.95 23.13 0
6 33.48 33.48 1.05 0.25 0 33.48 26.2 0
7 20.05 20.05 0.25 0.25 0 20.05 20.79 0
8 12.93 12.93 0.25 0.25 0 12.93 12.79 0
9 13.95 13.95 0.25 0.25 0 13.95 14.82 0

10 30.53 30.53 0.48 0.25 0 30.53 24.58 0
11 15 15 0.25 0.25 0 15 15.63 0
12 44.05 44.05 0.5 0.33 0 44.05 28.70 0
13 42.55 42.55 2.03 1.23 0 42.55 26.95 0
14 44.98 44.98 0.45 0.35 0 44.98 28.29 0
15 39.43 39.43 1.43 0.55 0 39.43 22.91 0
16 35.83 35.83 0.53 0.35 0 35.83 22.95 0
17 37.9 37.9 1.63 0.75 0 37.9 22.87 0
18 39.9 39.9 0.33 0.33 0 39.9 25.87 0
19 43.18 43.18 1.63 0.38 0 43.18 27.66 0
20 26.68 26.68 0.28 0.28 0 26.68 22.42 0
21 31.68 31.68 2.25 1.28 0 31.68 20.72 0
22 41 41 0.4 0.3 0 41 28.47 0
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Table 3. Cont.

Name Exit
Time (s)

Active
Time (s)

Jam Time
Total (s)

Jam Time
Max Con-
tinuous

(s)

Start
Time (s)

Finish
Time (s)

Distance
(m)

Last_Goal_Started
Time (s)

23 28.95 28.95 0.4 0.4 0 28.95 19.32 0
24 25.7 25.7 0.48 0.4 0 25.7 16.45 0
25 25.85 25.85 0.45 0.28 0 25.85 19.27 0
26 18.03 18.03 0.3 0.3 0 18.03 17.07 0
27 17.35 17.35 0.53 0.3 0 17.35 15.25 0
28 11.5 11.5 0.35 0.35 0 11.5 7.82 0
29 16.93 16.93 0.35 0.35 0 16.93 12.17 0
30 9.33 9.33 0.35 0.35 0 9.33 6.81 0
31 12.1 12.1 0.25 0.25 0 12.1 9.17 0
32 12.53 12.53 0.25 0.25 0 12.53 10.80 0
33 8.68 8.68 0.25 0.25 0 8.68 8.74 0
34 13.55 13.55 0.65 0.25 0 13.55 11.82 0
35 5.68 5.68 0.25 0.25 0 5.68 5.91 0
36 6.9 6.9 0.25 0.25 0 6.9 7.53 0
37 9.8 9.8 0.25 0.25 0 9.8 9.73 0
38 61.45 61.45 19.18 6.68 0 61.45 34.60 0

name: the number of evacuation occupants in the simulation; exit time: the evacuation time; active time: the
activation time of an evacuation occupant; jam time total: total congestion time; jam time max continuous: the
maximum duration of congestion; start time: the start time of evacuation; finish time: the finish time of evacuation;
distance: the total distance of evacuation; last_goal_started_time: the time of the last occupant starting the
evacuation.

2.4.2. Correlation Analysis of Factors

Correlation analysis is the basis of the evacuation time estimation based on these
factors. The simulation dataset is applied to build the correlation relationships. The cor-
relation coefficients of different factors are shown in Table 4. The order of each positive correla-
tion factor based on its influence degree is P_dis_den_sum > distance(m) > channel_di f f >
jam time total(s) > jam time max continuous > exit_width > sex. The total people distribution
density (P_dis_den_sum) is the most significant positive correlation factor, whose coefficient is
0.86. The result also proves that the introduction of this factor is effective for the estimation
of evacuation time. The order based on influence degree of each negative correlation factor is
v > shoulder_width. The most significant negative correlation factor is velocity (v).

Table 4. Correlation coefficients.

Exit
Time

Jam
Time
Total

Jam Time
Max

Continuous
Distance Sex v Exit_Width Channel_Diff P_Dis_Den_Sum Shoulder_Width

exit time 1.00 0.69 0.63 0.85 0.21 −0.36 0.32 0.71 0.86 −0.30
jam time

total 0.69 1.00 0.97 0.28 0.043 0.15 0.27 0.40 0.43 −0.042

jam time
max

continuous
0.63 0.97 1.00 0.22 0.041 −0.17 0.24 0.33 0.36 −0.036

distance 0.85 0.28 0.22 1.00 0.16 −0.17 0.8 0.71 0.87 −0.25
sex 0.21 0.043 0.04 0.16 1.00 −0.47 0.16 0.063 0.21 −0.56
v −0.36 −0.15 −0.17 −0.17 −0.47 1.00 −0.17 −0.082 −0.24 0.65

exit_width 0.32 0.27 0.24 0.18 0.16 −0.17 1.00 0.092 0.065 −0.069
channel_diff 0.71 0.40 0.33 0.71 0.063 −0.082 0.092 1.00 0.73 −0.11
P_dis_den_sum 0.86 0.43 0.36 0.87 0.21 −0.24 0.065 0.73 1.00 −0.32
shoulder_width −0.30 −0.043 −0.036 −0.25 −0.56 0.65 −0.069 −0.10 −0.31 1.00

The influence of population distribution density on evacuation time has always been
an axiom that is widely believed but has not been verified. It has not been taken into account
in the previous study of evacuation time prediction. In this paper, we propose the impact of
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population distribution density on evacuation time and turn its impact degree into visual
data. The scatter diagram is drawn to describe the correlation between evacuation time and
the total people distribution density further, as shown in Figure 7. The figure proves that
the correlation is positive. The evacuation time is longer when the density of occupants is
higher, which is consistent with common sense.
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The influence of population distribution density on evacuation time has always been 
an axiom that is widely believed but has not been verified. It has not been taken into ac-
count in the previous study of evacuation time prediction. In this paper, we propose the 
impact of population distribution density on evacuation time and turn its impact degree 
into visual data. The scatter diagram is drawn to describe the correlation between evacu-
ation time and the total people distribution density further, as shown in Figure 7. The 
figure proves that the correlation is positive. The evacuation time is longer when the den-
sity of occupants is higher, which is consistent with common sense. 

 
Figure 7. The scatter diagram of evacuation time with the total people distribution density.

3. Results

A machine learning model is established to conduct the experiments on the simulation
dataset. The prediction accuracy of the model is verified by the testing set. In this paper,
the stacking strategy with five-fold cross-validation is used through integrating classifiers
of LGB, XGB and GBoost. Cross-entropy is an important concept in Shannon’s information
theory, which is mainly used to measure the difference information between two probability
distributions [54]. The final cross-entropy on the training set is 3.46, and the variance is
0.83. On the testing set, the mean error between the predicted evacuation time with the
model and the actual simulated time is 3.63 s.

3.1. Data Normalization

The data related to some factors cannot be recorded by Pathfinder, such as total people
distribution density (P_dis_den_sum), bending degree (channel_di f ), the width of the route
(exit_width), velocity (v), and age. These data are added into the dataset manually recorded
by the simulation in the evacuation process. The partial complete dataset is shown in
Appendix A Table A1.

Data normalization is the basis for machine learning to avoid overfitting and bias and
to improve accuracy. Data normalization is calculated by Equation (5). Some samples of
data normalization are represented in Table 5.

xi =
xi − µ

σ
(5)

where xi is the value of a certain factor for an occupant (i), µ is the average value of
this factor, and σ is its mean square deviation. The evacuation time (exit time(s)) is not
normalized to compare the predicted value with the simulation result more directly.
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Table 5. Partial normalized data.

Exit Time Distance Sex v Exit_Width Channel_Diff P_Dis_Den_Sum Shoulder_Width

0 33.00 0.83 −0.92 −0.53 −1.53 0.89 0.68 −1.13
1 33.93 0.86 −0.92 −0.53 −1.53 0.89 0.97 −1.13
2 38.63 1.24 −0.92 −0.53 −1.53 0.89 1.58 −1.13
3 40.18 1.17 −0.92 1.13 −1.53 2.05 1.44 0.90
4 30.95 0.69 −0.92 1.13 −1.53 0.89 0.40 0.90
5 33.48 1.17 −0.92 1.13 −1.53 0.89 1.74 0.90
6 20.05 0.32 −0.92 1.13 −1.53 0.89 −0.15 0.90
7 12.93 −0.94 −0.92 1.13 −1.53 −0.27 −0.89 0.90
8 13.95 −0.62 −0.92 1.13 −1.53 −0.27 −0.81 0.90
9 30.53 0.92 −0.92 1.13 −1.53 0.89 0.38 0.90

3.2. Evacuation Time Prediction

The model is implemented by the Anaconda machine learning platform. The correla-
tion analysis among the factors in Section 2.4.2 is the basis for constructing an evacuation
time prediction model. The function is described as Equation (6).

y_pred_i =
T

∑
t=0

αtht(xi; wt) (6)

where y_pred_i is the predicted evacuation time for an occupant (i), ht is the tth classifier
(T is the total number of classifiers), and αt and wt represent the weight and parameters of
the classifier, respectively.

There are 300 occupants in the training set. y_sim_i is the simulation time by Pathfinder,
which is considered as the reference value to calculate the loss value. The loss function is
the mean square error (mse), as shown in Equation (7).

Loss =
1
N

i=N

∑
i=1

√
(y_pred_i − y_sim_i)2 (7)

Three classifiers are selected, which are XGB, LGB, and GBoost. The training process
is updated based on Equation (6). Loss values for the three classifiers are 3.709, 3.718, and
3.963 s, respectively.

3.3. Validation of the Prediction Model

There are 60 samples in the simulated dataset for model validation. The error value is
the mean square error between the predicted evacuation time and the simulated evacuation
time. The error on the testing set is 3.63 s, which is slightly larger than the training error of
3.41 s. The result shows slight overfitting, which can be ignored when the number of samples
is small. The loss is 3.42 s in the integration model, which is shorter than any single classifier.

The main causes of casualties usually are wrong route selection and difficulty in
evacuation. In the process of fire evacuation, the evacuees are racing against time. Once
the selected evacuation route takes a long time, they are very likely to be choked by smoke.
Therefore, the route that fails to evacuate successfully and causes casualties is the wrong
route. Difficulty in evacuation refers to the passengers feeling as if it is more difficult than
the normal channel in the evacuation process due to some factors such as complex design of
the evacuation passage and obstacles in the channel. The model can predict the evacuation
time consumed by occupants in advance based on the combination of individual factor
and dynamic environmental information. At the same time, experts such as the designers
and builders of the building can receive help from the evacuation time estimation to make
the building more scientific and safer. When the model is embedded into the intelligent
guidance system, the evacuation time can be predicted accurately. Then, occupants can plan
the evacuation route with the shortest time by being told from the warning materials such as
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maps or signs, and the faster route can be presented and sent to evacuees in real time through
the guidance system. Finally, the overall evacuation efficiency can be improved greatly.

4. Discussion and Conclusions

Based on the correlation between a variety of factors and evacuation time, a prediction
model is proposed using stacking integration strategy. The main value of our study to
Pathfinder is the introduction of people distribution density. Then, the influence of unstable
pedestrian flow and unbalanced distribution can be considered into the estimation of
evacuation time. The main conclusions are as follows:

1. The influencing factors of evacuation time are analyzed from two categories: user
information and channel congestion situation. To consider the influence of unstable
pedestrian flow and unbalanced distribution, the concept of people distribution
density is introduced to the evacuation time prediction model. Based on the typical
scenario analysis, the definition and estimation method are proposed. The Pathfinder
model is applied for evacuation simulation to create the dataset. Then, the simulation
data are recorded and standardized to create machine learning datasets.

2. The correlation analysis is conducted to assess the effect of each factor on evacuation
time. The correlation coefficient of people distribution density on evacuation time is
0.86. The results show that the total people distribution density is the most significant
positive correlation factor. Its introduction can effectively improve the prediction
accuracy of our model.

3. The evacuation time prediction model is put forward and implemented by the
Anaconda machine learning platform. After learning the relationship between each
factor and evacuation time in the training dataset, the model can predict evacuation
time in advance when the occupants are preparing to evacuate. Compared with the
actual evacuation time, the average error of the predicted time is 3.63 s, which proves
that our model can support more accurate route planning for emergency situations.

There are some limitations of our research. In the study of evacuation time prediction,
normally, it should be verified by evacuation experiments. However, some restrictions exist
in our study. For example, it is very difficult to conduct evacuation experiments on large
entertainment venues. Therefore, the simulation time of Pathfinder is simply set as the
reference value for model verification. Furthermore, the model has some shortcomings. It
is only applicable to the fire evacuation prediction of large buildings. Nevertheless, there
are many types of large buildings in reality, but only part of the fire evacuation of large
buildings may be consistent with the model we established. Moreover, there are many
factors influencing evacuation efficiency, but we mainly focused on the dynamic information
of individual factors and congestion degree in this paper. Some other factors may not be
considered in this study. Although it is not very comprehensive, this study brings new insight
into the fire evacuation research of large buildings when dynamic information is considered
in the evacuation process. The model can be used to predict the evacuation time of each
route for users more accurately. At the same time, the most appropriate evacuation path
can be provided for the evacuation selection of each floor according to the proposed people
distribution density. It is conducive to providing effective guidance for evacuation plans
of large buildings and minimizing casualties. In future research, we will incorporate more
factors from a real evacuation scene, so that our model can be more capable of solving the
problem of large building evacuation. A more comprehensive model will be considered in
our intelligent evacuation guidance system in future research.
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Abbreviations
List of symbols and abbreviations.
TASE available evacuation time
TRSE required evacuation time
TEVA evacuation time
TMOV movement time
TWAIT waiting time
TAWA awareness time
TPRE pre-movement time
GA genetic algorithm
NNs neural networks
FL fuzzy logic
ANN artificial neural network
ETEM evacuation time estimation model
XGB extreme gradient boosting
LGB light gradient boosting
GBoost gradient boosting
mse mean square error
exit time (s) evacuation time
active time (s) activation time of an evacuation occupant
jam time total (s) total congestion time
jam time max continuous (s) the maximum duration of congestion
start time (s) start time of evacuation
finish time (s) finish time of evacuation
distance (m) total distance of evacuation
last_goal_started time (s) time of the last occupant starting evacuation
sex (years) occupant’s gender
v (m/s) occupant’s normal moving speed
exit_width (m) width of the exit
channel_diff bending degree
P_dis_den_sum total people distribution density
shoulder_width (cm) occupant’s shoulder width
age (years) occupant’s age
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Appendix A

Table A1. Partial complete dataset.

Name
Exit

Time
(s)

Active
Time

(s)

Jam
Time
Total

(s)

Jam Time
Max

Continuous
(s)

Start
Time

(s)

Finish
Time

(s)

Distance
(m)

Last_Goal_
Started
Time

(s)

Sex V Exit_Width
(m) Channel_Diff P_Dis_Den

_Sum
Shoulder

_Width (cm)

1 33 33 0.35 0.33 0 33 24.03 0 0 0.9 410 2 447.25 36
2 33.93 33.93 0.65 0.33 0 33.93 24.22 0 0 0.9 410 2 516.25 36
3 38.63 38.63 0.45 0.33 0 38.63 26.61 0 0 0.9 410 2 660.25 36
4 30.95 30.95 1.58 0.95 0 30.95 23.13 0 0 1.2 410 2 381.25 45.58
5 33.48 33.48 1.05 0.25 0 33.48 26.2 0 0 1.2 410 2 699 45.58
6 20.05 20.05 0.25 0.25 0 20.05 20.79 0 0 1.2 410 2 249.8 45.58
7 12.93 12.93 0.25 0.25 0 12.93 12.79 0 0 1.2 410 1 74.5 45.58
8 13.95 13.95 0.25 0.25 0 13.95 14.82 0 0 1.2 410 1 94.5 45.58
9 30.53 30.53 0.48 0.25 0 30.53 24.58 0 0 1.2 410 2 376 45.58

10 15 15 0.25 0.25 0 15 15.63 0 0 1.2 410 2 114.5 45.58
11 44.05 44.05 0.5 0.33 0 44.05 28.70 0 1 0.8 410 2 929.35 32
12 42.55 42.55 2.03 1.23 0 42.55 26.95 0 1 0.8 410 2 842.65 32
13 44.98 44.98 0.45 0.35 0 44.98 28.29 0 1 0.8 410 3 883.75 32
14 39.43 39.43 1.43 0.55 0 39.43 22.91 0 1 0.8 410 1 566.25 32
15 35.83 35.83 0.53 0.35 0 35.83 22.95 0 1 0.8 410 1 392.05 32
16 37.9 37.9 1.63 0.75 0 37.9 22.87 0 1 0.8 410 1 483.25 32
17 39.9 39.9 0.33 0.33 0 39.9 25.87 0 1 0.8 410 2 668.95 32
18 43.18 43.18 1.63 0.38 0 43.18 27.66 0 1 0.8 410 2 720.25 32
19 26.68 26.68 0.28 0.28 0 26.68 22.42 0 1 1 410 1 352.45 40
20 31.68 31.68 2.25 1.28 0 31.68 20.72 0 1 1 410 1 368.53 40
21 41 41 0.4 0.3 0 41 28.47 0 1 1 410 2 881.25 40
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Table A1. Cont.

Name
Exit

Time
(s)

Active
Time

(s)

Jam
Time
Total

(s)

Jam Time
Max

Continuous
(s)

Start
Time

(s)

Finish
Time

(s)

Distance
(m)

Last_Goal_
Started
Time

(s)

Sex V Exit_Width
(m) Channel_Diff P_Dis_Den

_Sum
Shoulder

_Width (cm)

22 28.95 28.95 0.4 0.4 0 28.95 19.32 0 1 0.7 410 1 224.45 40
23 25.7 25.7 0.48 0.4 0 25.7 16.45 0 1 0.7 410 1 167 40
24 25.85 25.85 0.45 0.28 0 25.85 19.27 0 1 1 410 1 198.5 40
25 18.03 18.03 0.3 0.3 0 18.03 17.07 0 1 1 410 1 139.5 40
26 17.35 17.35 0.53 0.3 0 17.35 15.25 0 1 1 410 1 118.5 40
27 11.5 11.5 0.35 0.35 0 11.5 7.82 0 0 0.8 410 1 17.6 45.58
28 16.93 16.93 0.35 0.35 0 16.93 12.17 0 0 0.8 410 1 52 45.58
29 9.33 9.33 0.35 0.35 0 9.33 6.81 0 0 0.8 410 1 8.4 45.58
30 12.1 12.1 0.25 0.25 0 12.1 9.17 0 0 1.2 410 1 30.8 45.58
31 12.53 12.53 0.25 0.25 0 12.53 10.80 0 0 1.2 410 1 37 45.58
32 8.68 8.68 0.25 0.25 0 8.68 8.74 0 0 1.2 410 1 13.7 45.58
33 13.55 13.55 0.65 0.25 0 13.55 11.82 0 0 1.2 410 1 44 45.58
34 5.68 5.68 0.25 0.25 0 5.68 5.91 0 0 1.2 410 1 4 45.58
35 6.9 6.9 0.25 0.25 0 6.9 7.53 0 0 1.2 410 1 5 45.58
36 9.8 9.8 0.25 0.25 0 9.8 9.73 0 0 1.2 410 1 25.6 45.58



Fire 2022, 5, 204 18 of 19

References
1. Von Schantz, A.; Ehtamo, H. Minimizing the evacuation time of a crowd from a complex building using rescue guides.

Phys. a-Stat. Mech. Its Appl. 2022, 594, 127011. [CrossRef]
2. Hou, L.; Jian-Guo, L.; Xue, P.; Qiang, G.; Bing-Hong, W. Simulation of pedestrian evacuation based on Jilin fire. Acta Phys. Sin.

2014, 63, 178902.
3. Proulx, G.; Reid, I.M.A. Occupant behavior and evacuation during the Chicago Cook County Administration Building Fire. J. Fire

Prot. Eng. 2006, 16, 283–309. [CrossRef]
4. Lin, C.S.; Wu, M.E. A study of evaluating an evacuation time. Adv. Mech. Eng. 2018, 10, 1687814018772424. [CrossRef]
5. Baek, D.-S.; Lee, S.-C. A Study on Introduction of Student Volunteer Fire Department in Dormitory far from Fire Station.

Fire Sci. Eng. 2015, 29, 65–69. [CrossRef]
6. Wan, K.T.; Lee, S.K.; Shin, D.M.; Lee, S.P. Service Scenario Development for Customized Evacuation Route Guidance Service in

Regular Building. J. Serv. Res. Stud. 2018, 8, 13–29.
7. Chu, G.Q.; Sun, J.; Wang, Q.; Chen, S. Simulation study on the effect of pre-evacuation time and exit width on evacuation.

Chin. Sci. Bull. 2006, 51, 1381–1388. [CrossRef]
8. Liu, Y.X.; Zhang, Z.T.; Mao, Z.L. Analysis of influencing factors in pre-evacuation time using Interpretive Structural Modeling.

Saf. Sci. 2020, 128, 104785. [CrossRef]
9. Chow, W.K. ‘Waiting time’ for evacuation in crowded areas. Build. Environ. 2007, 42, 3757–3761. [CrossRef]
10. Zhang, G.W.; Huang, D.; Zhu, G.; Yuan, G. Probabilistic model for safe evacuation under the effect of uncertain factors in fire.

Saf. Sci. 2017, 93, 222–229. [CrossRef]
11. Tsai, M.-K. Improving Efficiency in Emergency Response for Construction Site Fires: An Exploratory Case Study. J. Civ.

Eng. Manag. 2015, 22, 322–332. [CrossRef]
12. Grajdura, S.; Qian, X.D.; Niemeier, D. Awareness, departure, and preparation time in no-notice wildfire evacuations. Saf. Sci.

2021, 139, 105258. [CrossRef]
13. Kodur, V.K.R.; Venkatachari, S.; Naser, M.Z. Egress Parameters Influencing Emergency Evacuation in High-Rise Buildings.

Fire Technol. 2020, 56, 2035–2057. [CrossRef]
14. Kuligowski, E.D. Predicting Human Behavior During Fires. Fire Technol. 2013, 49, 101–120. [CrossRef]
15. Chu, G.Q.; Sun, J.H. The effect of pre-movement time and occupant density on evacuation time. J. Fire Sci. 2006, 24, 237–259.
16. Rogsch, C.; Galster, R.; Luthardt, T.; Mohr, D. The effect of pedestrian placement and pre-movement times on evacuation

simulation. In Proceedings of the Conference on Pedestrian and Evacuation Dynamics (PED), Delft, The Netherlands, 22–24
October 2014.

17. Forssberg, M.; Kjellström, J.; Frantzich, H.; Mossberg, A.; Nilsson, D. The Variation of Pre-movement Time in Building Evacuation.
Fire Technol. 2019, 55, 2491–2513. [CrossRef]

18. Fang, Z.X.; Li, Q.; Li, Q.; Han, L.D.; Wang, D. A proposed pedestrian waiting-time model for improving space time use efficiency
in stadium evacuation scenarios. Build. Environ. 2011, 46, 1774–1784. [CrossRef]

19. Yan, W.D.E.A. Study on Fire Evacuation of University Library Based on Pathfinder. J. Shenyang Jianzhu Univ. 2021, 37, 627–633.
20. Kirik, E.; Vitova, T. Cellular Automata Pedestrian Movement Model SIgMA.CA: Model Parameters as an Instrument to Regulate

Movement Regimes. In Proceedings of the 11th International Conference on Cellular Automata for Research and Industry (ACRI),
Krakow, Poland, 5 September 2014.

21. Koo, J.; Kim, Y.S.; Kim, B.I. Estimating the impact of residents with disabilities on the evacuation in a high-rise building: A
simulation study. Simul. Model. Pract. Theory 2012, 24, 71–83. [CrossRef]

22. Aleksandrov, M.; Rajabifard, A.; Kalantari, M.; Tashakkori, H. Evacuation Time in Tall High-Rise Buildings. In Proceedings of the
2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Rennes,
France, 30 November–2 December 2015.

23. Gao, H.; Medjdoub, B.; Luo, H.; Zhong, H.; Zhong, B.; Sheng, D. Building evacuation time optimization using constraint-based
design approach. Sustain. Cities Soc. 2020, 52, 101839. [CrossRef]

24. Jiang, Y.L.; Gai, W.M.; Li, Q. Research on rapid prediction model of indoor personnel evacuation time. J. Saf. Sci. Technol. 2021, 17,
30–34.

25. Xiao, M.F.; Zhou, X.; Pan, X.; Wang, Y.; Wang, J.; Li, X.; Sun, Y.; Wang, Y. Simulation of emergency evacuation from construction
site of prefabricated buildings. Sci. Rep. 2022, 12, 1–18. [CrossRef] [PubMed]

26. Gwynne, S.; Kuligowski, E.; Nilsson, D. Representing evacuation behavior in engineering terms. J. Fire Prot. Eng. 2012, 22,
133–150. [CrossRef]

27. Chang-Jun, C.; Kong, H.-S. Evacuation Safety Evaluation According to Slope of the School Ramps. Int. J. Adv. Smart Converg.
2021, 10, 184–196.

28. Tian, F.; Wang, H.Q.; Zhu, Z.L.; Chen, S.Q.; Huang, J.S. Study and application of algorithm of available safety evacuation time in
long subsea metro tunnel. Tunn. Constr. 2019, 39, 55–59.

29. Tosolini, E.; Grimaza, S.; Pecilea, L.C.; Salzanoc, E. People Evacuation: Simplified Evaluation of Available Safe Egress Time (ASET)
in Enclosures. In Proceedings of the 5th International Conference on Safety and Environment in the Process and Power Industry
(CISAP), Milano, Italy, 3–6 June 2012.

http://doi.org/10.1016/j.physa.2022.127011
http://doi.org/10.1177/1042391506065951
http://doi.org/10.1177/1687814018772424
http://doi.org/10.7731/KIFSE.2015.29.3.065
http://doi.org/10.1007/s11434-006-1381-0
http://doi.org/10.1016/j.ssci.2020.104785
http://doi.org/10.1016/j.buildenv.2006.08.001
http://doi.org/10.1016/j.ssci.2016.12.008
http://doi.org/10.3846/13923730.2014.897980
http://doi.org/10.1016/j.ssci.2021.105258
http://doi.org/10.1007/s10694-020-00965-3
http://doi.org/10.1007/s10694-011-0245-6
http://doi.org/10.1007/s10694-019-00881-1
http://doi.org/10.1016/j.buildenv.2011.02.005
http://doi.org/10.1016/j.simpat.2012.02.003
http://doi.org/10.1016/j.scs.2019.101839
http://doi.org/10.1038/s41598-022-06211-w
http://www.ncbi.nlm.nih.gov/pubmed/35177656
http://doi.org/10.1177/1042391512436788


Fire 2022, 5, 204 19 of 19

30. Lei, W.; Li, A.; Gao, R.; Hao, X.; Deng, B. Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station.
Phys. A Stat. Mech. Its Appl. 2012, 391, 5355–5365. [CrossRef]

31. Wang, D.; Yang, Y.; Zhou, T.; Yang, F. An investigation of fire evacuation performance in irregular underground commercial
building affected by multiple parameters. J. Build. Eng. 2021, 37, 102146. [CrossRef]

32. Georgiadis, L.; Paschos, G.S.; Libman, L.; Tassiulas, L. Minimal Evacuation Times and Stability. IEEE-Acm Trans. Netw. 2015, 23,
931–945. [CrossRef]

33. Sun, K.E.A. The emergency evacuation performance of subway station exit based on Pathfinder. China Transp. Rev. 2021, 43,
90–96.

34. Xiong, Q.; Zhu, Q.; Du, Z.; Zhu, X.; Zhang, Y.; Niu, L.; Li, Y.; Zhou, Y. A Dynamic Indoor Field Model for Emergency Evacuation
Simulation. ISPRS Int. J. Geo-Inf. 2017, 6, 104. [CrossRef]

35. Pan, Z.; Wei, Q.; Torp, O.; Lau, A. Influence of Evacuation Walkway Design Parameters on Passenger Evacuation Time along
Elevated Rail Transit Lines Using a Multi-Agent Simulation. Sustainability 2019, 11, 6049. [CrossRef]

36. Liu, W.D. Research on Passengers Capacity of Emergency Evacuation in Subway; Tongji University: Shanghai, China, 2008.
37. Chen, H.X.; Huang, X.; Li, H.; Zhang, H. Emergency evacuation with unbalanced utilization of exits at platform level: A

simulation study. J. Intell. Fuzzy Syst. 2021, 41, 5181–5189. [CrossRef]
38. An, W.G.; Li, Q.; Liang, K.; Yin, X.; Wang, Z. Study on Combustion Characteristics and Evacuation during Intake Airway Fire in

Coal Face under Different Ventilation Conditions. Combust. Sci. Technol. 2021, 193, 1378–1399. [CrossRef]
39. Zhao, X.L.; Lovreglio, R.; Nilsson, D. Modelling and interpreting pre-evacuation decision-making using machine learning.

Autom. Constr. 2020, 113, 103140. [CrossRef]
40. Li, S.; Yu, X.; Zhang, Y.; Zhai, C. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a

building during earthquakes. Phys. A Stat. Mech. Its Appl. 2018, 490, 1238–1250. [CrossRef]
41. Roy, K.C.; Hasan, S.; Culotta, A.; Eluru, N. Predicting traffic demand during hurricane evacuation using Real-time data from

transportation systems and social media. Transp. Res. Part C Emerg. Technol. 2021, 131, 103339. [CrossRef]
42. Sharma, S.; Ogunlana, K.; Scribner, D.; Grynovicki, J. Modeling human behavior during emergency evacuation using intelligent

agents: A multi-agent simulation approach. Inf. Syst. Front. 2018, 20, 741–757. [CrossRef]
43. Lu, L.; Ji, J.; Zhai, C.; Wang, S.; Zhang, Z.; Yang, T. Research on the Influence of Narrow and Long Obstacles with Regular

Configuration on Crowd Evacuation Efficiency Based on Tri-14 Model with an Example of Supermarket. Fire 2022, 5, 164.
[CrossRef]

44. Lo, S.M.; Liu, M.; Zhang, P.H.; Yuen, K.K.R. An Artificial Neural-network Based Predictive Model for Pre-evacuation Human
Response in Domestic Building Fire. Fire Technol. 2009, 45, 431–449. [CrossRef]

45. Darkhanbat, K.; Heo, I.; Han, S.-J.; Cho, H.-C.; Kim, K. Real-Time Egress Model for Multiplex Buildings under Fire Based on
Artificial Neural Network. Appl. Sci. 2021, 11, 6337. [CrossRef]

46. Seo, S.K.; Yoon, Y.-G.; Lee, J.-S.; Na, J.; Lee, C.-J. Deep Neural Network-based Optimization Framework for Safety Evacuation
Route during Toxic Gas Leak Incidents. Reliab. Eng. Syst. Saf. 2022, 218, 108102. [CrossRef]

47. Chen, Y.; Hu, S.; Mao, H.; Deng, W.; Gao, X. Application of the best evacuation model of deep learning in the design of public
structures. Image Vis. Comput. 2020, 102, 103975. [CrossRef]

48. Wolpert, D. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
49. Liu, X.L. Prediction of Urban Air Quality Based on Machine Learning Technology; Shanghai Polytechnic University: Shanghai,

China, 2019.
50. Wang, D. Research and Application of Stacking Algorithm Based on Multiple Meta Models; South China University of Technology:

Guangzhou, China, 2020.
51. Elkomy, G.; Sallam, E.; Elgokhy, S. A stacked generalization method for disease progression prediction. In Proceedings of the

2017 13th International Computer Engineering Conference (ICENCO), Giza, Egypt, 13–15 December 2017.
52. Mohammed, M.; Mwambi, H.; Omolo, B.; Elbashir, M.K. Using stacking ensemble for microarray-based cancer classification.

In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE),
Khartoum, Sudan, 12–14 August 2018.

53. Halúsková, B.; Ristvej, J.; Janosikova, M.; Lacinak, M.; Jandacka, J. Support of Decision-Making in Reparation of Crisis
Management Personnel for Crisis Situations Solving-Use of the Pathfinder Software. In Proceedings of the 35th annual European
Simulation and Modelling Conference, Roma, Italy, 27–29 October 2021.

54. Ding, W.M.; Wu, S.L. A cross-entropy based stacking method in ensemble learning. J. Intell. Fuzzy Syst. 2020, 39, 4677–4688.
[CrossRef]

http://doi.org/10.1016/j.physa.2012.06.033
http://doi.org/10.1016/j.jobe.2021.102146
http://doi.org/10.1109/TNET.2014.2312271
http://doi.org/10.3390/ijgi6040104
http://doi.org/10.3390/su11216049
http://doi.org/10.3233/JIFS-219003
http://doi.org/10.1080/00102202.2019.1695607
http://doi.org/10.1016/j.autcon.2020.103140
http://doi.org/10.1016/j.physa.2017.08.058
http://doi.org/10.1016/j.trc.2021.103339
http://doi.org/10.1007/s10796-017-9791-x
http://doi.org/10.3390/fire5050164
http://doi.org/10.1007/s10694-008-0064-6
http://doi.org/10.3390/app11146337
http://doi.org/10.1016/j.ress.2021.108102
http://doi.org/10.1016/j.imavis.2020.103975
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.3233/JIFS-200600

	Introduction 
	Materials and Methods 
	Framework 
	Stacking Integrating Method 
	People Distribution Density 
	Scenario Analysis 
	Definition of People Distribution Density 
	Calculation Example of People Distribution Density 

	Evacuation Time Estimation Model (ETEM) 
	Dataset Collection 
	Correlation Analysis of Factors 


	Results 
	Data Normalization 
	Evacuation Time Prediction 
	Validation of the Prediction Model 

	Discussion and Conclusions 
	Appendix A
	References

