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Abstract: Grasslands are one of the vegetation types most widely affected by wildfires in southern
Brazil. It is a fire-dependent ecosystem and it is necessary to know the hourly fuel moisture variation
for its management. The objective of this work is to fit Grass Fuel Moisture Code (GFMC) models to
estimate the moisture content for the grassland of the State Park of Vila Velha, Paraná, Brazil. Data
sampling to determine the hourly moisture content was performed during the winter of 2018 and
divided into two campaigns of five days with stable weather conditions. Destructive samples were
taken out for the sorption tests on climatic chambers to obtain the equilibrium moisture content and
the time lag values. The fitted equilibrium moisture and time lag models were evaluated by residual
distribution analysis, mean absolute error (MAE), root mean square error (RSME) and coefficient of
determination (R2). The fitted model performed better than the original GFMC model due to the
obtained MAE, RSME and R2 values. The results showed that the fitted GFMC model is better to
predict the fine fuel moisture for the region.

Keywords: wildfires; moisture content; time lag; equilibrium moisture content

1. Introduction

Grass fuel belongs to a class of important dangerous fuels due to its continuity and
complete exposure to the sun [1,2]. In addition to these characteristics, standing dead grass
dries more quickly than other fuels and its moisture content responds instantaneously to
changes in weather [1,2].

The Brazilian south grassland occurs naturally from the State of Rio Grande do Sul
to Santa Catarina, and to a smaller extent in the State of Paraná [3]. It can be divided into
two categories: the Pampa grassland which occurs in southern Rio Grande do Sul, and
the highland grassland, located on the South Brazilian highland plateau in northern Rio
Grande do Sul, Santa Catarina and Paraná [4].

The highland grasslands are a fire-dependent ecosystem used for the conservation of its
species and landscape; they have been traditionally managed with fire for its renovation [4].
Therefore, due to the presence of fire in this ecosystem, it is necessary to use accurate
information about the fine fuel moisture content.

Fuel moisture content is the amount of water in vegetable biomass and it is a critical
variable to estimate the fire ignition and propagation danger [5]. The process associated
with the changes of dead fine fuel moisture is related to two variables: precipitation and
the atmosphere’s vapor pressure. In the absence of rainfall or dew condensation, the fuel
moisture exchange in vapor states occurs via the isothermal processes of adsorption and
desorption [6].

When dead fine fuel is introduced to an environment at a constant temperature
and a relative humidity, the fuel moisture either increases or decreases until it reaches a
constant value called the equilibrium moisture content (EMC). Byram [7] describes that
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the adsorption and desorption processes occur at a log drying rate designated by time lag
(τ). The time lag is the time required for a 63.2% increase or decrease in the remaining
evaporable water in the forest fuel.

The Fine Fuel Moisture Code (FFMC) was originally developed by Van Wagner in
1974 as part of the Fire Weather Index to model the litter moisture in Pinus bankisiana
and Pinus ponderosa stands in Canada using the weather meteorological data collected at
noon [8]. The estimates provided by the FFMC are based on the concepts of equilibrium
moisture content and time lag. However, dead fine fuel dries or wets quickly enough to
use hourly weather measurements [8]. The Hourly Fine Fuel Moisture Code (HFFMC) is
a method developed for computing fine fuel moisture content throughout the day using
hourly weather information with a similar structure to the FFMC [9].

The HFFMC models estimate the moisture content in a closed canopy conifer forest
stand, compensating for the effects caused by rain and solar radiation, as well as for the
reduction in the surface wind caused by the forest stand [1]. Therefore, Wotton [1] intro-
duced the effect of grass exposure to solar radiation using the concept of fuel temperature,
obtaining good results in the grass fuel moisture estimates in Canada.

The moisture content modelling process can be separated into field sampling, labo-
ratory testing and data processing [6]. It is an important factor in the structure of danger
indices and constitutes a great database for studies in remote sensing [10].

White [5] pointed out that there are a lack of studies regarding fuel moisture content
modelling in Brazil. Alves [11] carried out a modeling study into the moisture content
in Pinus elliotti stands in the Paraná state; however, they disregarded the concepts of
equilibrium moisture content and time lag. In this sense, the hypothesis tested was the
adjustment of the Grass Fuel Moisture Code models, which could bring about better results
to estimate the grass moisture content in order to subsidize fire danger research and fire
management in Southern Brazil.

2. Materials and Methods
2.1. Study Site

This study was performed in a highland grassland area located in the Vila Velha State
Park, Paraná, Brazil (25.24◦ S–50.00◦ W). The region’s climate is classified as temperate
(Cfb), according to the Köppen classification, with the average temperature, of the coldest
month, below 18 ◦C, without a defined dry season. August is the driest month of the year
with an average rainfall of 78 mm [12,13]. The sampling was carried out with a transition
between the highland grassland and the Cerrado (Brazilian savanna) with the presence
of grass species, such as Paspalum notatum Flüggé, Axonopus fissifolius (Raddi) Kuhlm,
Andropogon lateralis Ness and Stipa spp. [3].

2.2. Field Sampling

Both the field sampling and the weather measurements were carried out using method-
ological procedures developed by Wotton [1]. An open site was chosen away from any
standing trees, which could influence the weather conditions. Two five-day sampling
campaigns were performed in the winter of 2018 to assemble the validation dataset of grass
moisture. A standard weather station owned by the Sistema Meteorológico do Paraná [13]
provided the weather measurements. A simple fuel inventory was performed to determine
the fuel density before the hourly moisture sampling.

Destructive sampling was conducted throughout the day from 8 a.m. to 5 p.m. at 1h
intervals. This period was chosen due to the limitations of the park’s opening hours and
the duration of daylight. Thus, three hermetic packages with approximately 50 g of wet
mass were sampled at each interval. The samples were weighed with a digital scale at the
field site and transported to the Forest Fires Laboratory of the Paraná Federal University.
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2.3. Laboratory Tests

The samples obtained were dried in an oven at 75 ◦C until a constant mass was
achieved. Three subsamples weighing 100 g were prepared for the sorption tests. The
equilibrium moisture content (EMC) was determined in a climatic chamber controlled by
a PIC TM4C1294 from Texas Instruments Incorporation with a potential air temperature
of 10–40 ◦C and relative humidity of 25–95%. Next, two digital scales were built with a
precision of 0.5 g on the Arduino free platform in C/C++ language, with a serial output
and a port power on a Universal Serial Bus (USB) to register the sample mass variation.
The chamber temperature was fixed at 26.7 ◦C and the relative humidity ranged from 30%
to 90% with intervals of 10%, according to the methodological procedures developed by
Van Wagner [14]. All moisture contents were determined by the gravimetrical method
(moisture content by dry mass).

The sorption tests were performed at approximately 72 h at each RH interval or until
no mass variation. The registration was carried with a periodicity of 5 min until the fuel
mass reached the equilibrium. The mean of the last 4 h was considered as the equilibrium
moisture content for each sample.

2.4. Modelling of Equilibrium Moisture Content

This stage was developed using the methodologies proposed by Lopes [6] and Bakšić [9].
The sorption process can be described through a pure exponential equation. Byram’s [7]
pure exponential model (1) and the one-term model (2) of Henderson and Pabis [6] were
used to model the drying and wetting cycle:

E(t) = e−τt =
mt − EMC
m0 − EMC

(1)

E(t) = ae−τt = a(
mt − EMC
m0 − EMC

) (2)

In which E is the fraction of evaporable water remaining in the fuel sample, t is
time (h), e is Euler’s number, m is the moisture content (at the beginning of the drying
process and at time t), EMC is the equilibrium moisture content, τ is the time lag and a
is a coefficient. The time lag is the time that the fuel needs to lose or gain 63.2% of the
evaporable moisture until reaching equilibrium. This value is assumed to be a constant
in order to obtain simpler calculations for the desorption and adsorption process. A
combination of several exponential curves occurs during the sorption process [15]. Then,
the sorption curves obtained in this study were divided in four time lags, in which E is
equal to 0.368, 0.135, 0.050 and 0.018 for the adsorption and 0.632, 0.865, 0.950 and 0.982 for
desorption, respectively.

Next, an EMC model was proposed by Van Wagner, to estimate the equilibrium
moisture content for several fuels, as follows:

EMC = αHβ + γe
H−100

δ (3)

In which EMC is the equilibrium moisture content, H is RH, T is temperature (◦C), e
is Euler’s number, and α, β, γ, δ are constants. Next, the mean absolute error (MAE), the
root mean squared error (RMSE) and the coefficient of determination (R2) were calculated
to evaluate the fitting quality of an analysis of residual distributions plots.

2.5. Development of the Grass Fuel Moisture Code

The GFMC model had some peculiarities in its calculation. The temperature and
relative humidity are corrected before the moisture estimation due to the exposure of grass
fuel to solar radiation [1]. The grass code calculation is based on two stages: the increase in
moisture by rainfall and the exponential drying and wetting process (Equations (1) and (2)).
Only the second stage was considered in this work. The determination of the solar radiation
influence on the temperature and the RH is better described in Wotton [1]. The moisture
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content (mt) in drying conditions is calculated from the value of the previous hours moisture
content (m0)). The same procedure is performed for wetting conditions. Next, the EMC is
divided into two equations for the drying and wetting conditions to estimate the moisture
content. Therefore, it is necessary to calculate log drying (kd)) and wetting ((kw) rates based
on the temperature, RH and wind speed (Equations (4) and (5)):

kd = αe−0.0365T [0.424

(
1 −

(
H

100

)1.7
)
+ 0.0694W0.5

(
1 −

(
H

100

)8
)
] (4)

kw = βe−0.0365T [0.424

(
1 −

(
100 − H

100

)1.7
)
+ 0.0694W0.5

(
1 −

(
100 − H

100

)8
)
] (5)

In which W is wind speed (km·h−1), e is Euler’s number and α and β are the coefficients
for the drying and wetting rates, respectively. The full procedure for the GFMC model
calculation is shown in Table 1.

Table 1. Time lag and standard deviation at a temperature of 26.7 ◦C.

Process Tests (n)
τ1 (h) τ2 (h) τ3 (h) τ4 (h)

Mean S2 Mean S2 Mean S2 Mean S2

Desorption 21 2.21 1.21 2.81 1.52 4.89 2.92 5.02 3.22
Adsorption 21 3.39 2.12 3.47 2.54 6.33 2.1 2.8 4.33

The modifications carried out on the GFMC models were the change in coefficients
from the EMC models and the drying/wetting rate equations when considering only the
first time lag of each process. The estimates from the new GFMC model were evaluated
using the residual plot analysis, mean absolute error (MAE), the root mean squared error
(RMSE), the mean bias error (MBE) and the Pearson’s correlation tests [1,9].

3. Results
3.1. Sorption Tests

An exponential behavior was found for all the sorption tests with quick decreases
and increases in the moisture content at the beginning and slowly reaching the EMC at the
end of the sorption process. Table 1 contains the four time lag periods for each curve at a
temperature of 26.7 ◦C with their respective means and standard deviations (s2).

The curves of fitted models, as well their moisture content values for the desorption
and adsorption process are plotted in Figure 1.

The fitted models for determining time lag and their coefficients are presented in
Table 2.

Table 2. Exponential sorption models adjusted to a temperature of 26.7 ◦C and statistical parameters.

Model
Desorption Adsorption

τ a1 R2 MAE RSME τ a1 R2 MAE RSME

Byram (1963) 0.31 - 0.828 0.092 0.126 0.217 - 0.862 0.082 0.117
Henderson and Pabis (1961) 0.33 1.065 0.83 0.09 0.125 0.241 1.103 0.869 0.082 0.114

Both models show a good fit with the data obtained in the sorption tests. The Byram’s
model show R2 values of 0.8332 and 0.8676, while the one-term model show a R2 value of
0.8318 and 0.8689 for desorption and adsorption, respectively. The MAE values obtained
by Byram’s model were 0.0919 for desorption and 0.0822 for adsorption. The RMSE for
each process was 0.1254 for desorption, as well as 0.1169 for adsorption. MAE values of
0.0904 and 0.0816 for desorption and adsorption were found for the one-term model. The
RMSE values obtained were 0.1245 for desorption and 0.1138 for adsorption. The residuals
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for both models show a random distribution. Thus, the one-term model was chosen for
this study due to presenting a lower RMSE value.
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Figure 1. (a) Desorption and (b) adsorption curves obtained by fitted models.

Table 3 shows the coefficients estimated for the EMC models for sorption processes
and its respective parameters of fit quality.

Table 3. Exponential sorption models adjusted to a temperature of 26.7 ◦C and statistical parameters.

Process
Estimated Coefficients Evaluation Paramenters

α β γ δ MAE RMSE R2

Desorption 1.0034 0.6374 13.1007 23.1046 0.1632 0.2039 0.9993
Adsorption 0.7973 0.7039 9.3548 12.6231 0.3008 0.3696 0.9969

The Van Wagner’s EMC model shows a good fitting ability for both the sorption data.
The fitted model obtained R2 values of 0.9993 and 0.9969 for desorption and adsorption
data, respectively. In addition, MAE values of 0.1632 were found for desorption and
0.3008 for adsorption EMC. The RMSE obtained for desorption EMC was 0.2040 and
0.3696 for adsorption. It is noteworthy that the experiments for the effect of temperature
were not carried out in this study. Thus, Van Wagner’s (1987) approach was adopted
by applying an additional function based on a temperature of 26.7 ◦C in the final model.
Thus, the desorption and adsorption EMC models then took the following form with the
obtained coefficients:

EMCd =
(

1.0034H0.6374 + 13.1007e
H−100
23.1046

)
+ 0.27(26.7 − T)

(
1 − e−0.115H

)
(6)

EMCw =
(

0.7973H0.7039 + 9.3548e
H−100
12.2548

)
+ 0.27(26.7 − T)

(
1 − e−0.115H

)
(7)

In which EMC is the equilibrium moisture content, H is RH, T is temperature (◦C) and
e is Euler’s number. The fitted EMC curves plotted with the relative humidity are shown in
Figure 2.
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It is possible to observe that the adsorption and desorption estimations show the
expected behavior from a sigmoid curve. Therefore, the EMC is zero when the RH ap-
proaches zero. The presence of the hysteresis average of 1.32% between the adsorption and
desorption curves is another factor observed.

The changes carried out in the response time equations led to the model taking the
following form:

kd = 0.3299e−0.0365T [0.424

(
1 −

(
H

100

)1.7
)
+ 0.0694W0.5

(
1 −

(
H

100

)8
)
] (8)

kw = 0.2415e−0.0365T [0.424

(
1 −

(
100 − H

100

)1.7
)
+ 0.0694W0.5

(
1 −

(
100 − H

100

)8
)
] (9)

In which T is temperature (◦C), H is RH, W is wind speed (km·h−1), kd is the drying
response rate (h−1), kw is the wetting response rate (h−1) and e is Euler’s number.

3.2. Sorption Tests

The moisture content obtained from field samples ranged from 5.6 to 146.7%. No rain
precipitation occurred during the sampling period. However, values above extinction were
observed (Figure 3).

The values estimated by the original and the fitted GFMC model are close to those
obtained in the field. Through a linear regression analysis, it was possible to verify that the
fitted model presented a greater coefficient of determination (R2) than that of the original
GFMC model. Nevertheless, both models showed a tendency to underestimate values in
the warmest hours of the day. A time series comparing the original GFMC model and the
fitted GFMC model for the two sampling periods is plotted in Figure 4.
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The two models are significantly correlated with field data and show a good fit to the
observations. However, the fitted GFMC model was better than the original GFMC model
in all the evaluation parameters, as seen in Table 4.

Table 4. Summary of linear regression analysis of the original GFMC and the fitted GFMC models.

Model
Evaluation Paramenters

MAE RMSE MBE R2

GFMC 4.3682 6.6881 0.0000 0.8570
Fitted 3.4272 4.5624 0.0000 0.9311

4. Discussion

The construction of a climatic chamber, based on recommendations in the study by
Lopes [7], enabled the experiments to be performed with a fine control of the environ-
mental conditions in order to obtain the equilibrium moisture content of Vila Velha State
Park’s grass fuel. The use of two digital scales made it possible to process more fuel
samples simultaneously.

The exponential behavior of the sorption curve was observed in this study. However,
the curves obtained for the grass fuel analyzed do not present pure exponential behaviors,
as observed by Miller [15] and Lopes [6].

The adsorption process, until the fuel reaches the equilibrium moisture, is generally
greater than that of the desorption process [6,16,17]. The results obtained in this work
reinforce this premise, because the grass fuel took 14.93 h to lose moisture until 1.8% of
the water fraction remained in the desorption process, and 15.99 h to adsorb 98.2% of its
mass to the amount of water vapor available in the chamber. Anderson [16] found values
of 9.24 h for desorption and 7.07 h for adsorption for Bromus tectorum L. and 18.32 h for
desorption and 14.53 h for adsorption for Pseudoroegneria spicata (Pursh) Á. Love. In recent
studies, Lopes [6] found values of 17.73 h for adsorption in P. pinaster and Bakšić [9] found
27.14 h for P. halepensis needles to lose 98.2% of their moisture, while Zhang and Tian [18],
found values ranging from 10.42–27.45 h, studying the time lag for forests mostly composed
of Pinus yunnanensis. These variations in response time can be explained by the presence
of waxes or resins, as well the anatomical characteristics and meteorological conditions to
which fine forest fuels are under [16,17].

It is observed that the first three time lags have an increasing pattern (τ1 < τ2 < τ3),
constituting similar behaviors to that found by Anderson [19], Lopes [6] and Bakšić [9].
The fourth response time had the highest standard deviation for both processes. This
occurs due to a high fluctuation when the fuel reaches moisture content values near to the
equilibrium moisture, as the atmospheric conditions are not static [6]. In addition to the
moisture exchange processes being a combination of the exponential curves, Simard [20]
added that there is a sinusoidal variation within the sorption processes.

As verified, the two sorption models presented a reasonable fit to the data obtained in
the laboratory for the adsorption curves. It can be assumed that both models can be used
in weather conditions where the moisture content changes in a temporal base less than τ1.
Nevertheless, the model developed by Henderson and Pabis was chosen for presenting the
lowest RSME value.

As expected, the equilibrium moisture content data showed sigmoidal behavior. The
desorption curve showed higher values than the adsorption curve, characterizing the
typical hysteresis present in fine fuels. Studies about the equilibrium moisture content of
fine fuels, such as Van Wagner [8], Lopes [6], Bakšić [9] and Miller [15] showed similar
results to those obtained in this work. The analysis showed that the statistical evaluation of
the EMC models corroborates the values found by Bakšić [9] for the same models.

The model adjusted in estimates, starting from 40% relative humidity, provides higher
equilibrium moisture values than the original Van Wagner model. This result shows that
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an adjustment for each fuel is necessary when the model is applied in places with different
conditions and different types of fuel, or it can produce erroneous results [6].

The tendency to underestimate values in the warmest hours of the day is possibly
linked to errors in the equilibrium moisture content estimates or due to errors in the
models for determining the fuel temperature [1]. As mentioned, determining the fuel
temperature in modelling the radiation influence over temperature to the reality of the
southern Brazil grassland perhaps solves the problem of underestimation. The statistical
parameters showed that the MAE and RMSE values obtained for the fitted GFMC model
were greater than those found by Bakšić [9]. Nevertheless, it is important to point out that
dew precipitation occurred during the sampling period, and this variable is not considered
by the GFMC model structure and the weather system. The fitted GFMC model is unbiased
due to showing values of zero for a mean bias error. The fitted GFMC model obtained
higher correlations with the data collected than those found by Wotton [1] for the Echo Bay
region in Canada. The fitted GFMC model also showed similar values when compared with
better values of R2 if compared with other studies, such as by Cruz [2] and Cawson [21]. The
use of the improved model for the moisture content estimation for specific regions allows
for the improvement in the abilities of combat agencies to prevent and to more accurately
predict and plan the fire season; providing a safe conduction of controlled burns, an
accurate prediction of fire behavior, with a provision of information to the community [22].

5. Conclusions

This work reinforces the robustness of the predictions obtained by models based on
the Hourly Fine Moisture Code models, mainly if they are specie-specific adjusted. The
estimates of the chosen equilibrium moisture and response time models demonstrated
good fitting to the data obtained in the field samples and the experiments carried out in
the laboratory. Despite the presence of an underestimation trend in the moisture content
estimates, the model exhibited a good performance according to the statistical parameters
evaluated. The fitted GFMC model is suitable to predict the fuel moisture content in
highland grasslands in southern Brazil. It is correct to affirm that the hypothesis tested in
this work is true and the results obtained will serve to develop a forest fire danger rating
system in Brazil in the future.
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