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Abstract: Managing protected areas requires knowing what factors control fire ignitions and how
likely they are compared to non-protected ones. Here, we modelled fire ignition likelihood in west-
central Spain as a function of biophysical and anthropogenic variables in 172 protected areas (PA) of
the Natura 2000 network, their buffer zones (BZ, 1500 m area surrounding PA), and non-protected
areas (NP). Ignition coordinates from fire statistics (2001–2015 period) were overlaid over maps of
relevant biophysical and socioeconomic variables. Models were built for four different fire sizes,
small (1–5 ha), medium (5–50 ha), large (50–500 ha), and very large (≥500 ha), using Maxent software.
Additionally, PA were classified based on their land use and land cover types by cluster analysis.
Mean ignition probabilities were compared between PA, BZ and NP, as well as among different types
of PA, by generalized linear models. Maxent models’ accuracy increased as fires were of larger size.
Ignitions of small fires were associated with anthropogenic variables, while those of larger fires were
more associated with biophysical ones. Ignition likelihood for the small and medium fire sizes was
highest in BZ, while being the lowest in PA. Conversely, the likelihood of large and, particularly,
very large fires was highest in PA. Mean ignition likelihood varied among types of PA, being highest
for very large fires in PA, dominated by pine and mixed forests. Our results support the hypothesis
that PAs are at the highest risk of large fire ignition, but BZ were also at high risk for the rest of the
fire sizes. This largely reflects the more hazardous nature of PA landscapes. This work provides the
needed tools to identify critical fire ignition areas within and nearby protected areas, which should
be considered in their conservation and management plans.

Keywords: biodiversity; fire drivers; Natura 2000 network; predictive models; risk

1. Introduction

A major challenge in conservation is to preserve the integrity of the most representative
natural landscapes with their biodiversity and natural disturbance regimes [1]. Fire is a
major disturbance of ecosystems across the world [2–4]. Fire-driven ecosystems often have
species that may have been selected by fire and are resilient to it; their vegetation often
requires fire to self-maintain over time [5]. Thus, altering fire regimes (e.g., fire frequency,
fire severity, seasonality) can significantly modify the ecosystem and its biodiversity [6–8].
While the need to maintain fires to preserve ecosystems has been known for a long time, in
human-dominated landscapes, such as in the Mediterranean region, wildfires are mostly
seen as a social and economic problem due to the impacts they cause on human assets.
In most countries, current policies aim at stopping fires at all costs, without any further
consideration for the role of fire. Yet, paleo-historical records indicate that wildfires have
been prevalent during the last millennia [9]. Moreover, many plants exhibit regeneration
traits that are thought to have evolved under the pressure of fire [10,11]. This means
that fire has been a major factor in shaping these ecosystems. Consequently, it has been
proposed that a paradigm shift is needed in how fires are managed to allow the ecological
role of fire [12]. This affects how wildfires should be considered in the design, conservation
and management of protected areas to favor biodiversity preservation [13]. There are
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many studies that have analyzed fire impacts and vulnerability at particular protected
areas (e.g., [14–17]); however, studies covering wider areas of protected land are still
scarce [18–21], particularly in the Mediterranean region [22–25].

Extant landscapes in the Mediterranean region are the result of ancestral human
pressures, including the use of fire [26–28], upon which recent socioeconomic and other
global changes, such as climate change, are impacting. Land abandonment in the second
half of the last century led to an increase in forest areas, also aided by active efforts to
plant tree species, particularly pines [29]. The net result has been an increase in vegetated
cover and subsequent landscape hazardousness. This, in the context of abundant human
ignitions, resulted in high fire frequencies in many areas, which was followed by an
increased capacity to deter them [30]. Yet, wildfires dominate now across the region.
Additionally, future climate projections anticipate increased severe fire weather [31,32],
which could further increase wildfire frequency and/or severity [33]. Thus, while wildfires
might be a necessary component for maintaining ecosystem structure and function in these
fire-driven ecosystems, wildfire’s regime now and in the future could be different from
what might be required for maintaining protected areas in their desired states. Hence, there
is an urgent need to assess how likely wildfires are to occur in these zones and what factors
control them [20].

Addressing needed changes in the management of the protected areas affected by
wildfires requires assessing fire likelihood and how vegetation or other biophysical and
social characteristics affect it [15,24]. Fire occurrence is determined by biophysical factors
like climate and weather, topography, and vegetation, among other. Moreover, since
wildfires are mostly caused by people, ignitions are highly related to human activities and
pressures [34,35]. Indeed, social and economic factors (e.g., population density, distance to
towns, distance to roads, land use type, or socioeconomic factors such as unemployment,
farm density, etc.) largely determine how likely an area is to ignite [36,37]. Over the years,
the tendency of ignitions or burned areas to accumulate near towns and diminish in the
more distant hinterland has been documented [38,39]. Therefore, both biophysical and
human factors need to be jointly considered to evaluate fire ignition hazards in general and
in protected areas.

During the last decades, many of the best-preserved areas in Europe have been
declared as protected, forming part of the Natura 2000 network. Most of the damage
caused by forest fires in Natura 2000 has occurred in Euro-Mediterranean countries. It
has been estimated [40] that approximately 80,000 ha of Natura 2000 sites burned every
year between 2000 and 2012, with Portugal and Spain being the most affected countries.
Peaks of over 100,000 ha have occurred in some years mainly due to large fires, such as
in 2021, in which Italy and Spain accounted for 45% of the total burnt area in protected
areas [41]. In Spain, the Natura 2000 network protects a variety of areas, such as forests,
other woody vegetation with various values, riparian areas, and wetlands. This study aims
at assessing wildfire ignition likelihood in protected areas of the Natura 2000 network,
in buffer areas surrounding them, and in non-protected areas in a large area of west-
central Spain. We asked whether areas that vary in their protection status also differ in
their ignition likelihood in general or for fires of different sizes. We hypothesized that
ignitions, in general, would more likely occur in areas where ignition sources would be
more abundant (e.g., closer to roads and towns). Furthermore, because ignitions are mostly
caused by people, and protected areas are usually at distant locations, away from towns,
we expected that ignitions of the smallest fire size would be higher in non-protected areas
than in protected ones. However, vegetation would be anticipated to be more abundant
and continuous in protected areas, resulting in a higher probability of spreading a fire once
it ignites. Consequently, we envisaged that as fire size increased, the probability of ignition
would be highest in protected areas. Buffer areas were anticipated to be in the middle due
to not having as extensive and hazardous vegetation and fewer human pressures than
non-protected ones, where ignitions might be at their highest.



Fire 2023, 6, 28 3 of 17

2. Materials and Methods
2.1. Study Area

The study area covers west-central Spain (136,629 km2; 27% of peninsular Spain)
(Figure 1A). It includes parts of five mountain chains: the Central System (from west to
east), the Iberian System (north to east), the Toledo Mountains, Sierra Morena (west to
east) and part of the Betic Mountains (southwest to northeast), with elevations as high
as 2591 m.a.s.l. Administratively, it covers the five provinces of the Castilla—La Mancha
Autonomous region, Madrid, Cáceres, and the three southern provinces of the Castilla
y León Autonomous region (Salamanca, Segovia, and Ávila). The climate is Mediter-
ranean, with cool winters and hot summers. Temperature and precipitation present a
strong gradient from the lowest to the highest parts. Observed mean annual temperatures
vary from about 16.3 ◦C (Cáceres observatory, 394 m a.s.l) to 6.9 ◦C (Navacerrada obser-
vatory, 1894 a.s.l), and mean annual rainfall varies between 342 mm (Toledo observatory,
515 m a.s.l) and 1223 mm (Navacerrada observatory) [42]. The study area has a long history
of fires, including from before human occupation (e.g., [43,44]).
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Figure 1. (A) Location of the study area (inset) within peninsular Spain and distribution of protected
areas (grey shading) and elevation (larger map). Maps of points of ignition for wildfires that occurred
in west-central Spain during 2001–2015. (B) 1–5 ha (n = 5895); (C) 5–50 ha (n = 2658); (D) 50–500 ha
(n = 462); (E) ≥ 500 ha (n = 74).
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2.2. Fire Data

We used the wildfires that occurred in the study area between 2001 and 2015 based
on the fire reports available at the Spanish fire statistics database (EGIF, Spanish General
Statistic of Forest Fires, https://www.miteco.gob.es/es/biodiversidad/temas/incendios-
forestales/estadisticas-datos.aspx, accessed on 3 October 2022). The fire reports proide, for
most fires, the coordinate of the ignition, as determined by the fire services, the area burned,
and other ancillary information. Due to inconsistencies in reporting for smaller fires, we
selected wildfires ≥1 ha, which resulted in a total of 9089 wildfires, of which geographical
coordinates were available for 70% of them (Figure 1B–E). These fires represented 73% of
the total area burned during the study period. Based on the area they burned, we divided
wildfires into four fire size classes: ≥ 1–5 ha (n = 5895), ≥5–50 ha (n = 2658), ≥50–500 ha
(n = 462) and ≥ 500 ha (n = 74).

2.3. Protected Areas

The study area includes 244 protected areas (PA) that are part of the European Union’s
(EU) Natura 2000 network, which constitutes the basis of the EU nature protection pol-
icy [45]. Some of the PA include within their boundaries national or regional conser-
vation entities (e.g., 4 national parks, 12 natural parks, and other conservation figures,
Table S1). Most management plans of Natura 2000 sites were recently approved (c.a.
2015). Other protected areas, particularly national parks, have been managed since their
declaration. We excluded 34 PAs from the analysis due to their non-combustible na-
ture (i.e., reservoirs, tunnels, caves, mines, etc.). From the remaining 210 PA, 38 had
more than one protection category and overlapped their boundaries with another PA;
after filtering for this, we retained a total of 172 PA (Figure 1A, Table S1). In total, PA
covered 36,657 km2 (27% of the whole study area). Cartographic limits of PA were
obtained from the Spanish Ministry for Ecological Transition and Demographic Chal-
lenge (https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/
informacion-disponible/red_natura_2000_inf_disp.aspx, accessed on 7 October 2022).

Fires can ignite within or outside PA; however, fires ignited outside a PA could later
spread into them. To account for this, we further divided the territory by defining a buffer
zone (BZ) around each PA. We calculated the distance of fires igniting outside PA that
eventually burned into them using fire scar polygons (when available) or the information
provided by the fire reports since some indicated if the fire had affected a PA. We established
the 95th percentile of such distances as BZ, which resulted in a 1500 m area surrounding
PA (27,814 km2; 20.4% of the area). The rest of the territory was classified as non-protected
(NP) (72,159 km2; 52.8% of the area).

2.4. Variables Controlling Ignitions

We used several types of variables tested in previous studies as explanatory of fire
occurrence in Spain (e.g., [30,38]). They were grouped into seven categories: climate,
topography, land use/land cover (LULC), interfaces, remoteness, linear infrastructures,
and socioeconomy (Table 1).

Climate. Maps of 200 m resolution of mean annual temperature (◦C), mean maxi-
mum annual temperature (◦C), and mean annual precipitation (mm) were derived for the
2001–2015 period from the Digital Climatic Atlas of Spain [46]. In addition, we used the
mean of the Standardized Precipitation-Evapotranspiration Index (SPEI), accumulated over
12 months (SPEI12) for the 2001–2015 period at 1.1 km resolution [47].

Topography. The topographic variables were derived from the National Digital Elevation
Model of Spain at 25 m resolution (https://centrodedescargas.cnig.es/CentroDescargas/
index.jsp, accessed on 15 October 2022) and included elevation (m), slope (◦), aspect (vec-
tors for northness and eastness), summer radiation (kW/m2·h), and summer sunlight (h).
Summer radiation and sunlight were calculated as the accumulated values for the summer
days (June to September) using r.sun in QGIS 3.0.0. with GRASS 7.4.0. [48].

https://www.miteco.gob.es/es/biodiversidad/temas/incendios-forestales/estadisticas-datos.aspx
https://www.miteco.gob.es/es/biodiversidad/temas/incendios-forestales/estadisticas-datos.aspx
https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/red_natura_2000_inf_disp.aspx
https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/red_natura_2000_inf_disp.aspx
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
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Table 1. Explanatory variables used in the fire ignition models.

Variable Mean (Range) Resolution/Scale Year

Climate
Mean annual temperature (◦C) 13.4 (4.5–17.8) 200 m 2001–2015

Mean annual maximum temperature (◦C) 19.7 (9–24.3)
Mean annual precipitation (mm) 575 (230–1700)

Mean SPEI 12 months −0.24 (−1–0.64) 1.1 km
Topography
Elevation (m) 801 (226–2591) 25 m 2008–2015

Slope (◦) 2.7 (0–37.8)
Aspect: Northness 0 (−1–1)
Aspect: Eastness 0 (−1–1)

Radiation (kW/m2·h) 745 (515–816)
Summer sunlight (h) 1253 (734–1293)

Land Use/Land Cover Area percentage
Pinus nigra, P. uncinata, P. sylvestris forests 3.1% 1:50,000 1997–2002

P. pinea, P. pinaster, P. halepensis forests 6.4%
Mixed forests 3.7%

Evergreen oak forests 8.6%
Deciduous oak forests 2.7%

Broadleaved forests 2.2%
Juniperus sp. woodlands 1.1%

Transitional woodlands and shrublands 0.3%
Shrublands 8.4%

Dehesas (savanna-type oak woodlands) 5.1%
Grasslands 3.0%

Agricultural lands (crops and pastures) 25.4%
Artificial surfaces 1.2%

Water bodies and wetlands 0.8%
Interfaces

Wildland–Agrarian Interface (WAI) 18.9% 1:50,000 1997–2002
Wildland–Grassland Interface (WGI) 8.3%

Wildland–Urban Interface (WUI) 1.2%
Remoteness

Distance to protected areas (m) 4082 (0–36,345) 1:50,000 2020
Distance to built-up areas (m) 3140 (0–16,620) 1:25,000 2019

Linear infrastructures
Road density (km/km2) 0.5 (0–4.4) 1:50,000 2019

Dirt road density (km/km2) 2.2 (0–14) 1:25,000 2019
Powerline density (km/km2) 0.1 (0–0.8) 1:10,000 2015–2016

Socioeconomy
Population density (No./km2) 60.9 (0.4–6550) Municipality data 2001

Population change (%) −1.1 (−66–1531) 2001–2015
Agricultural machine density (No./km2) 1.2 (0–31.1) 1999

Farm density (No./km2) 2.4 (0–73.1) 1999
Farm change (%) −35.4 (−100–3900) 1999–2009

Agrarian surface (%) 57.4 (0–100) 1999
Agrarian surface change (%) −4.7 (−84.6–76.4) 1999–2009

Cattle density (No./km2) 21.7 (0–611.9) 1999
Cattle change (%) 23.5 (−100–30,700) 1999–2009

Land Use Land Cover (LULC). We used the Spanish National Forest Map (SFM) at a
1:50,000 scale to derive 14 LULC types based on a reclassification of the SFM original legend
considering forest structure and the dominant species (https://www.miteco.gob.es/es/
biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx, ac-
cessed on 15 October 2022). SFM included tree-dominated stands wooded forests (>20%
tree cover) and some stands with sparse tree cover (10–20% tree cover). Tree-dominated
stands were further divided into several groups, depending on the dominant tree species
(e.g., pines, oaks, junipers, etc.) (Table 1). Transitional woodlands and shrublands included

https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx
https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx
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areas with shrubs/herbs and sparse tree cover (5–10% tree cover). Shrublands included
areas with shrubs/herbs with no tree cover. Additionally, SFM included dehesas (savanna-
type oak woodlands), grasslands, agricultural lands (crops and pastures), artificial surfaces,
water bodies and wetlands.

Interfaces. Interfaces between various LULC types were derived: wildland–agrarian
(WAI), wildland–grassland (WGI), and wildland–urban (WUI) [49]. WAI was based on the
intersection between a buffer area (400 m) around wooded vegetation (tree-covered and/or
shrublands) and agricultural lands defined by the SFM. WGI was based on a 400 m buffer of
all wooded vegetation and its intersection with grasslands. For WUI, the 400 m buffer of all
wooded vegetation was intersected with a layer of built-up areas (i.e., towns, settlements)
of the Spanish National Geographic Institute (IGN) (https://centrodedescargas.cnig.es/
CentroDescargas/index.jsp, accessed on 15 October 2022).

Remoteness. Variables of distance (m) to protected areas (PA) and distance to built-up
areas were derived.

Linear infrastructures. Based on the Spanish National Geographic Institute, maps of
roads (including highways and national and secondary roads), dirt roads, railways, and
power lines (https://centrodedescargas.cnig.es/CentroDescargas/index.jsp, accessed on
15 October 2022), we derived layers of the densities (km/km2) of each linear infrastructure.
In the case of railways, the density was so low that they were discarded from the analysis.

Socioeconomy. We derived socioeconomic variables at the municipality level from the
Spanish Statistics Institute (https://www.ine.es, accessed on 20 Octoberr 2022), including
the population density (No./km2) in 2001 and the population change (%) experienced
from 2001 to 2015. From the agrarian censuses, we derived the initial (1999 census) and
percentual change (for the 1999–2009 period) of agricultural machine density (No./km2),
farm density (No./km2), cattle density (No./km2), and agrarian surface (expressed in % of
total municipality surface).

2.5. Statistics and Modelling

The aim was to model fire ignition as a function of the 41 original explanatory variables
chosen, for which we used Maxent 3.4.0. (https://biodiversityinformatics.amnh.org/open_
source/maxent/, accessed on 15 November 2022). Maxent was originally developed for
species distribution modeling [50,51] but has recently been used for a range of other eco-
logical processes, including mapping ignition or burn probability (e.g., [20,52,53]). Maxent
is a presence-only machine-learning algorithm that iteratively compares the differences in
explanatory variables between the locations of the response variable and the locations of a
randomly generated sample. The model estimates the best approximation of the response
variable distribution as the one with maximum entropy. Models were built for each of the
four fire-size categories (≥1–5 ha, ≥5–50 ha, ≥50–500 ha, ≥500 ha). All variables were
referred to on a 500 × 500 m scale. To avoid redundancies, highly correlated variables
(r > 0.7, p < 0.05) were discarded, whereby the variable within a pair with the lower rele-
vance in the initial exploratory models was excluded. Maximum and mean temperatures
were highly correlated among them (r = 0.99) and with elevation (r = −0.92). Slope and
summer sunlight hours also showed a significant correlation (r = −0.75).

We proceeded as follows for each fire size: first, a full model was constructed with all
the variables (excluding those highly correlated); next, models were built stepwise, starting
with the two variables that most contributed to the full model, and then fitting models,
adding one by one the rest of variables that showed some contribution to the full model.
We used Maxent default settings following [54]: (1) we selected a random seed; (2) we set a
random test percentage at 10% to evaluate the model and used 90% of the data for training
it; (3) we set replicates to 100 with subsampling; (4) we set the maximum iterations to 5000;
(5) individual variables were evaluated using response curves; (6) variable importance was
determined using the jackknife method.

The criteria for model selection were based on the most parsimonious model, i.e., the
model with the minimum Akaike’s information criterion (AIC) [55]. Maxent outputs of each

https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://www.ine.es
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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model were evaluated in ENMTools v.1.3 [56] to calculate sample size-corrected AIC (AICc),
since the ratio between observations and model parameters was low (<40) [57,58]. When
models had similar AICc (i.e., delta AICc lower than 8), we selected the model with the best
area under the curve (AUC) for test data. The AUC is commonly used as an indicator of
model performance. An AUC value of 0.5 shows that model predictions are not better than
random; <0.5 are worse than random; 0.5–0.7 indicates poor performance; 0.7–0.9 indicates
reasonable/moderate performance; and >0.9 indicates high performance [59].

Maps of fire ignition probability for each fire size were calculated with Maxent for
the best model for each fire size. Each map was overlayed with PA, BZ and NP areas.
In each category, we randomly sampled 30,000 pixels and compared the distributions of
ignition probabilities using histograms and box and whisker plots. We tested for differences
in ignition probabilities between PA, BZ and NP using generalized linear models with
maximum likelihood in SPSS v.21, assuming a gamma distribution and using an identity
link function based on AIC. Post hoc pairwise comparisons were made with Bonferroni
correction for multiple comparisons. Additionally, we explored ignition probability within
the different types of protected areas (PA). We first classified all PA in groups according to
their similarity based on LULC types (percentage cover), altitude, and slope. We applied
a principal component analysis (PCA) and a cluster analysis. Hierarchical clustering was
chosen because of its “bottom-up” approach, where each observation (i.e., each PA) is
initially considered as a cluster of its own (leaf), and then the most similar clusters are
successively merged until there is just one single big cluster (root). Moreover, unlike
partitioning clustering, hierarchical clustering does not require to pre-specify the number of
clusters to be produced. Hierarchical clustering was run under Ward’s minimum variance
method (Ward.D2) [60,61]. At each step, the pair of clusters with minimum between-
cluster distance are merged [62]. Based on the gap statistics (k) method [63], the optimal
set of PA clusters was set to six and was represented over the PCA space. We used the
“FactoMineR”, “factoextra”, “dplyr”, “cluster”, and “ggplot2” packages implemented
in R 4.0.5 [64]. Finally, we explored differences in ignition likelihood distribution (for
each fire size) in PA clusters by applying generalized linear models, assuming a gamma
distribution and using an identity link function, and post hoc pairwise comparisons with
Bonferroni correction.

3. Results

There were 9089 wildfires, most of which were of small size, with larger fires being
less frequent; very large fires (≥500 ha) were only 1% of the total yet were sufficient to run
the modelling. Wildfires igniting at PA were 27% of all fires (with an average of 161 fires
per year), there were 12% at BZ (with 75 fires/year) and 61% (with 370 fires/year) at NP.
The percentage of wildfires igniting at PA increased with fire size, and nearly half of the
very large fires occurred in them (46%) or in their surrounding BZ (16%) (Table 2).

Table 2. Number of ignitions in the different areas (protected, buffer, non-protected) and total study
area for all fire sizes and each fire size class (2001–2015).

All Fire Sizes 1–5 ha 5–50 ha 50–500 ha ≥500 ha

Protected areas (PA) 2416 (27%) 1506 (25%) 719 (27%) 157 (34%) 34 (46%)
Buffer zones (BZ) 1128 (12%) 809 (14%) 257 (10%) 50 (11%) 12 (16%)

Non-protected areas (NP) 5545 (61%) 3580 (61%) 1682 (63%) 255 (55%) 28 (38%)

Total study area 9089 5895 2658 462 74

The spatial distribution of ignitions was unequal. A large portion of them occurred
towards the center-west, in the Central System and adjacent uplands, with fewer fires
igniting at the lower and flat areas (i.e., at the La Mancha plateau) on the southeast, where
agriculture prevails. The spatial distribution of ignitions changed with size; while small
fires were distributed nearly throughout the whole territory, as fires increased in size, their
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distribution became more restricted to the mountains, particularly towards the Central
System, with very large fires being practically restricted to such areas (Figure 1B–E).

The best models (i.e., minimum AICc) were less complex (i.e., with fewer explanatory
variables) for larger fire sizes than for smaller ones. The accuracy of Maxent models to
explain wildfire ignitions increased with fire size (AUC = 0.69, 0.70, 0.73, 0.74, for small,
medium, large, and very large fires, respectively). Models for small fires (1–5 ha) used up to
23 variables to minimize AICc, but the contribution of the last variables was very low (<1%).
Small fires (1–5 ha) were more likely to be near settlements (40% contribution to the best
model), in areas with high annual mean precipitation (19%), high population (9.7%) and
road density (7.3%), and in lower elevation areas (6.4%) (Figure 2A). The best medium-size
(5–50 ha) fire model included 16 variables, but only some variables showed important
contributions (>10%) to the model, including biophysical variables, such as annual mean
precipitation (23.7%, positive relationship), altitude (11.3%, negative), and socioeconomic
variables, such as distance to built-up areas (19.3%, negative relationship), and road density
(18.7%, positive) (Figure 2B). The best large fire (50–500 ha) model included 9 variables;
ignition probability increased with annual mean precipitation (34.6% contribution) but
decreased with altitude (26%); the rest of the variables in the model contributed less than
10% and were related to the type of fuel (shrublands, grasslands, and deciduous oak forests),
and socioeconomic variables (farm density, power line and road density), with all of them
showing a positive relationship with ignition probability (Figure 2C). The best model for
very large fires (≥500 ha) included only four variables; ignition probability increased with
mean annual precipitation (36.6% contribution to the model) and summer sunlight (32.8%);
conversely, ignition probability decreased with distance to protected areas (15.8%) and
agrarian surfaces (14.9%) (Figure 2D).
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The resulting probability of ignition maps in the study area (Figure 3A–D) reflected
well the earlier description of ignitions. The probability of small and medium fire sizes was
more widespread over the study area. These ignitions showed higher probability around
villages and settlement areas (particularly Madrid) and in lowlands and valleys. Large-size
fires were not associated with settlements; instead, they were more likely in areas with high
mean precipitation, particularly in the center and west, including Cáceres province, west
of Toledo, the medium-altitude areas of the Central System, and to a lesser extent around
Madrid. Finally, very large fire ignition likelihood was associated with mountain areas,
including the Central System, Iberian System, Toledo Mountains, Sierra Morena, and part
of the Baetic System.
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Figure 3. Maps of probability of fire ignition for fires 1–5 ha, 5–50 ha, 50–500 ha, and ≥500 ha (left
panels, A–D) in west-central Spain based on Maxent models. Black areas correspond to reservoirs
and urban areas. Histograms (middle, E–H) and box plots (right, I–L) of ignition probability in
protected (PA), buffer (BZ) and non-protected areas (NP). Differences among areas are shown by
the different letters based on generalized linear models and post hoc pairwise comparisons with
Bonferroni correction from 30,000 random points (p < 0.001).
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The distribution of ignition probabilities in protected areas (PA), buffer areas (BZ), and
non-protected areas (NP) varied with fire size (Figure 3E–H). Ignitions for the small and
medium fire sizes were highest in BZ, followed by NP, and were lowest in PA. Conversely,
ignition probabilities for large fires and, particularly, very large fires were highest in PA,
followed by BZ, and lowest in NP (Figure 3I–L).

The 172 PA were ordered as a function of their LULC classes, altitude, and slope, with
the first two dimensions of the PCA analysis explaining 45% of the variance (Figure 4).
The first component was negatively correlated with wetlands and positively correlated
with high altitude and slope, areas covered by pine forests, mixed forests, and shrublands;
the second component was negatively associated with agricultural lands and positively
associated with hardwoods, dehesas (savanna-type oak woodlands), and grasslands. Over
the multidimensional space, we obtained 6 clusters of PA grouped and named according to
their dominant LULC classes (Figure 4): wetlands (cluster 1), agriculture lands (2), dehesas
and grasslands (3), broadleaved forests (4), pine and mixed forests (5), and shrublands (6).
These PA clusters significantly differed in their fire ignition likelihood (Figure 5). Fire igni-
tion probability for small, medium, and large fire sizes was highest for dehesas, followed
by broadleaved forests. However, ignition probability for the largest fires was associated
with PA dominated by pine and mixed forests.
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Figure 5. Box plots showing ignition likelihood distribution for fires 1–5 ha (A), 5–50 ha (B),
50–500 ha (C), and ≥500 ha (D) in each PA cluster (2 to 6 in Figure 4; wetlands not shown). Letters
indicate significant differences (p < 0.001) between PA clusters based on generalized linear models
and post hoc pairwise comparisons with Bonferroni correction.

4. Discussion

Our results confirm the hypothesis that the highest likelihood of ignitions of very large
fires (≥500 ha) occurred in protected areas rather than in non-protected ones, including
buffer areas. This suggests that ignitions for very large fires are controlled by the landscape
since protected areas or even buffer areas tend to be more densely covered by vegetation
(e.g., [65]). On the other hand, PA tend to have a lower density of linear structures,
particularly roads, and are more distant from urban settlements, thus causing them to have
an overall smaller risk of ignitions, as shown here and in other studies [66]. Therefore, the
limited capacity of the landscape to sustain fire propagation over long distances supports
arguing that landscape structure, that is, fuel, is the controlling factor of the ultimate fire
size [67], as fires tend to stop at breaks and fuel discontinuities [68]. While ignitions are
fewer in PA, once they occur, fires can propagate more readily to reach dimensions that
exceed those of the other areas (e.g., [22]). This conclusion is also supported by the fact
that the very large fires were more likely in protected areas dominated by pine and mixed
forest, that is, the most hazardous ones.
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Contrary to expectations, the highest overall ignition probability, which is given by
that of the smallest fires, was not obtained in non-protected areas but in the buffer zones.
We found that for all fire sizes except for the very large fires, buffer zones always had
a higher mean probability of ignitions than within or outside protected areas, as found
in other studies [19]. It must be noted that buffer areas were selected considering that
most fires that occurred in them would end up spreading into a protected area. Indeed,
according to Spanish national statistics in the period 2006–2015, 14.24% of fires affected
a protected area, either because they originated within it or because, even though they
originated outside, they affected its surface [69]. Therefore, our findings support arguing
that in Mediterranean ecosystems, pressure over protected areas from their surroundings is
higher than had been anticipated. This result is important for managing protected areas
since the fire pressure from their surrounding areas might increase due to human activities
that are tolerated in the buffer areas but not within protected areas [66]. Furthermore, with
time, human pressures may further increase in them, compared to what might be expected
in protected areas, thus providing additional ignitions [39,65]. Moreover, given the need
to extend protected areas to allow species migration due to the combined effect of global
change drivers, particularly climate change [70], the first choice might include expanding
protected areas into their buffer zones and beyond. Our study indicates that the analysis of
options to mitigate global change impacts on species conservation by expanding protected
areas needs to be done with care, weighing in the risk of fires of such options.

Protected areas are at the highest risk of very large fires as well as large fires. Thus,
overall fire probability in protected areas is very high in the study area. Since very large
fires are more devastating, and the tendency is to increase fire weather danger with climate
change and with it, the probability of very large fires [32,71], wildfires need to be fully con-
sidered in the management plans of protected areas to reach their conservation goals [72,73].
This is particularly important since many of these areas are rather heterogeneous due to
having originated from a variety of previous land use histories. Very large fires might,
however, tune up the burned areas and set the clock of secondary succession once they
burn, thus producing notable and long-lasting homogenizing changes in the landscape and
vegetation [74,75]. Currently, the management plans in these areas are mostly concentrated
on preventing fires but not on managing the ecosystem with fire [12,24]. Our results indi-
cate that given the propensity of these areas to harbor fires of the largest sizes, the focus for
management needs to change from halting fires only to managing them, including the need
to anticipate how the ecosystem will respond once burned and being prepared to manage
the ecosystem and the landscape with a focus on previously set targets [76,77]. If not, very
large fires, including those that burn thousands of hectares, will occur without a specified
plan for action, which could compromise conservation goals.

We found that explaining wildfire ignitions was possible by using Maxent and a limited
number of ancillary variables. This is an addition to the many statistical and modelling tools
used until now to model ignitions [78], including resource selection functions (e.g., [79]),
negative binomial models (e.g., [37]), logistic and Poisson regression (e.g., [80–82]), or
machine learning algorithms (e.g., [83]), including Maxent (e.g., [84,85]). The accuracy
with which ignitions can be modelled can vary as a function of seasonality [85] or fire size
(this study), among other factors. We found that the smallest fires were very difficult to
model, and model accuracy was low. Including more variables, even tens of them, did not
change the result. Ignitions were better predicted with a small number of variables and
adding more variables did not change the outcome. It appears that small fires can occur
virtually everywhere and that there is no specific variable that controls them other than
just having some vegetation/fuel to burn. In many cases, this only amounts to abandoned
areas covered by herbs and other sparse vegetation. Modelling accuracy increased as
fire size increased, as found previously (e.g., [86]), which indicates that other factors than
ignitions entered into play. Mean annual precipitation was a variable included with a high
score in all models, which reflects that primary productivity, hence, fuels, may be a major
controlling factor, an issue that is common in many of these types of studies (e.g., [84,87]).
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Moreover, with very few additional variables, this was sufficient to explain the overall
pattern of ignitions for larger-size fires, including the very large ones. Other variables
contributing to explaining ignitions were related to human pressure (i.e., distances to towns
or roads), particularly for small and medium fires, as has been commonly found in this
type of analysis (e.g., [37,80,88,89]).

Results document that the nature of the vegetation dominating in protected areas is
important for determining fire ignition probability and fire size. The finding that protected
areas were dominated by the most hazardous vegetation (pine and mixed forests) was
expected. More surprising is the result that dehesas, grasslands, broadleaved forests, and
shrublands, in this order, were the protected area types with the highest ignition probability
in all but the very large fires. We thus document that the fire pressure in areas dominated by
less hazardous fuels is larger than might have been anticipated and coincides with results
that showed that some of these land use/land cover types are on the rise of burning in some
areas of Spain [30]. The results for broadleaved forests were unexpected; this LULC type
is commonly less selected by fires, including in the area for deciduous species [67]. This
also applies to shrublands, which were found to be the second most selected vegetation
type in the area [67], as also shown in other studies where shrublands were the most
likely land cover selected for by fire [87,90], although strictly speaking, this goes beyond
ignitions. Given the different approaches that have been used in studies addressing burning
likelihood vs. ignition likelihood makes comparison difficult. Similarly, what might be
true at a larger scale might be different at lower ones. Further studies are needed to go
beyond ignition and consider burning rates to further characterize how protected areas are
subjected to the risks of wildfires.

5. Conclusions

Our results confirm that protected areas in west-central Spain are at the highest risk
of very large fires, particularly those dominated by the more flammable fuels of pine
and mixed forests. Moreover, the likelihood of fires of large, medium, or small sizes was
highest in the buffer zones, warning about the pressure from the surroundings of the
protected areas. Ignitions of small fires can occur almost anywhere in the territory, and their
modelling was difficult even using a large set of variables. Modelling accuracy increased
with fire size, up to the largest fire size used that could be modeled with just a few variables.

Because large fires can be most devastating, our results argue that the focus for
management needs to change from only halting fires to managing them. This includes
the need to anticipate how the ecosystem will respond once burned and being prepared
to manage the ecosystem and the landscape with a focus on previously set conservation
targets. Protected areas that are undergoing rapid shifts in their ecological state due to
the cessation of traditional practices, more so when they are declared protected, may
be becoming more hazardous. Such areas need special attention, particularly where the
maintenance of biodiversity values is incompatible with fire occurrence (e.g., due to the
presence of fire-sensitive species), in particular, large fires.
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