
Citation: Yailymov, B.; Shelestov, A.;

Yailymova, H.; Shumilo, L. Google

Earth Engine Framework for Satellite

Data-Driven Wildfire Monitoring in

Ukraine. Fire 2023, 6, 411. https://

doi.org/10.3390/fire6110411

Academic Editors: Keith T. Weber

and Grant Williamson

Received: 12 September 2023

Revised: 18 October 2023

Accepted: 19 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Google Earth Engine Framework for Satellite Data-Driven
Wildfire Monitoring in Ukraine
Bohdan Yailymov 1 , Andrii Shelestov 1,2, Hanna Yailymova 1,2,* and Leonid Shumilo 3

1 Department of Space Information Technologies and Systems, Space Research Institute NAS Ukraine & SSA
Ukraine, 03187 Kyiv, Ukraine; yailymov@ikd.kiev.ua (B.Y.); andrii.shelestov@lll.kpi.ua (A.S.)

2 Department of Mathematical Modelling and Data Analysis, National Technical University of Ukraine ‘Igor
Sikorsky Kyiv Polytechnic Institute’, 03056 Kyiv, Ukraine

3 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA;
lshumilo@umd.edu

* Correspondence: yailymova.hanna@lll.kpi.ua

Abstract: Wildfires cause extensive damage, but their rapid detection and cause assessment remains
challenging. Existing methods utilize satellite data to map burned areas and meteorological data
to model fire risk, but there are no information technologies to determine fire causes. It is crucially
important in Ukraine to assess the losses caused by the military actions. This study proposes an
integrated methodology and a novel framework integrating burned area mapping from Sentinel-
2 data and fire risk modeling using the Fire Potential Index (FPI) in Google Earth Engine. The
methodology enables efficient national-scale burned area detection and automated identification of
anthropogenic fires in regions with low fire risk. Implemented over Ukraine, 104.229 ha were mapped
as burned during July 2022, with fires inconsistently corresponding to high FPI risk, indicating
predominantly anthropogenic causes.

Keywords: wildfire monitoring; burned area mapping; normalized burn ratio; fire potential index;
Google Earth Engine; informational technology; cloud computing

1. Introduction

In recent years, the degradation of the environment due to widespread fires has been
observed [1–3]. This highlights the importance of detecting and monitoring forest fires,
as well as effectively managing their spread. Satellite data has proven to be an effective
solution for addressing this issue.

Because of the war in Ukraine, which began on 24 February 2022, we need to re-
ceive information with a higher spatial resolution than, for example, in Europe, to better
understand the risks of fire occurrence, especially in active military zones, and there is
also an important question regarding the analysis of the impact of military actions on the
occurrence of fires. More than 15% of the territory of Ukraine is covered by forest, but
an equally important ecosystem is agriculture (more than 40% of the entire territory of
Ukraine), which suffers greatly as a result of fires.

Unfortunately, for the territory of Ukraine, the monitoring system of meteorological
data measurements is very poorly developed, which does not provide an opportunity
to fully repeat the practice of the Canadian and US systems. But in Ukraine, research
has been started on wartime fire monitoring using available data sources. In particular,
report [4] focuses on assessing fire occurrence and its relationship to armed conflict in
Ukraine using VIIRS Active Fire data and analyzing the impact of armed conflict on gross
primary productivity (GPP). The authors showed that there is no significant correlation
between conflict and fires at the country level, but when examining specific regions, a clear
connection between conflict events and the occurrence of fires is revealed. In their work,
an important emphasis is placed on taking into account weather and climatic conditions.
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Fires can occur in unexpected locations, and can be caused by a variety of factors, including
human activity, lightning strikes, and other natural causes. Since military operations are
taking place in the southern and eastern territories of Ukraine, more attention is devoted to
them. The authors of paper [5] show the possible use cases based on remote sensing data
to track and monitor Ukraine’s environment during the war. However, the authors do not
provide any quantitative assessments at the country level, and present only the monitoring
of small areas (pilots).

The Ukrainian Hydrometeorological Institute has also developed a fire monitoring
system in 2020 [6]. It utilizes open data from NASA satellite infrared sensors to geocode
thermal points and identify the origin, severity, area, and other characteristics of wildfires.
The authors review the use of the fire monitoring system to track wildfires resulting from
hostilities. Major criteria for identifying combat-caused fires are defined, including sudden
outbreaks in unusual locations such as urban areas, irregular fire contours, diverse land use
areas, unusual timing, and high severity. The research represents the first real-time wildfire
monitoring using satellite data during warfare, enabling the identification of essential
features of these fires. The disadvantage of this approach is low spatial resolution and, as
stated in article [7], the use of such data underestimates the number of identified fires by
30–60%. In addition to establishing the locations of fires, the determination of the cause of
the fire—due to dry weather conditions [8,9] or due to human activities—is currently also
an urgent issue at the country level. It is especially important during the war in Ukraine
when some territories are not accessible.

Globally, it is believed that the main causes of fires are anthropological or natural
factors [10]. That is why our study addresses two research questions:

(1) Where have fires occurred?
(2) What is the reason of fires? Is it caused by meteorological or anthropological conditions?

To address the first question, we propose to use fusion of high (10 m) and lower
(1000 m) data for burned areas detection. Since most of the open systems discussed above
can only identify potential fires, more research is needed to confirm whether a detected
hot spot is actually related to an active fire. And for this, we offer a framework (infor-
mation technology) that consists in combining temperature hotspots with low-resolution
FIRMS data and monitoring active fires and burned areas within them with high-resolution
Sentinel-2 data. In this way, we save time and computing resources, which would have
been spent on searching for fires in those areas where there were none. In this case, we
selected MODIS and VIIRS data due to higher resolution compared to analogues (for
example, SEVIRI (Spinning Enhanced Visible and InfraRed Imager) with a resolution of
about 4 by 6 km [11]).

To address the second research question, we analyze fire risks and meteorological
conditions and determine the areas where fires are unlikely to occur due to weather. To
solve this issue, we use the Fire Potential Index (FPI) [12], which makes it possible to
predict the territories where fires have a reasonable probability of occurrence. The authors
of work [13] used the FPI index to predict fires in the mountains in the Free State Province
in South Africa and showed an overall accuracy of 89% of matches with real fires, and in
work [14], the authors used three modifications of the FPI index and showed that at least
two of them demonstrate an accuracy of 60% in relation to the occurrence of real fires.

Considering that the territory of Ukraine is one of the largest in Europe (see Section 3)
and it is necessary to process a large amount of satellite data, there is a need to use a cloud
platform. The Google Earth Engine (GEE) cloud platform is free and can be useful for
solving this problem [15]. GEE provides access to a vast collection of satellite imagery
from various sources, including Landsat, Sentinel, MODIS, and more, as well as allows for
efficient processing of large-scale geospatial data in cloud servers [16].

The methodology presented in studies [17,18] provides access to regularly updated
Sentinel-2 satellite imagery from 2015 to the present, as well as MODIS FIRMS data and
Landsat-8,9, enabling the creation of high-precision products. The section “Data” describes
the data sources that are used in the GEE platform for the framework implementation.
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From the reviewed sources, it can be concluded that there are ready-made methodolo-
gies for monitoring active fires and burned areas, as well as systems for monitoring fire
danger. Nevertheless, universally accepted technologies for determining the cause of a
fire at country level are still lacking, and we aim to address this issue in this article. The
following sections describe the existing fire danger monitoring systems in the world, as
well as the data that were used to create the methodology for Ukraine including satellite
data, provide a general scheme of the proposed information technology and the framework
for its implementation on the GEE platform, and provide the obtained results of searching
for burned areas and assessing fire danger levels for the entire territory of Ukraine. A
comprehensive analysis of the received fires for 2021–2022 and the fire hazard map is
conducted, and appropriate conclusions are drawn regarding the causes of fires.

2. Existing Fire Danger Monitoring Systems in the World

Numerous successful techniques for fire monitoring have been developed globally,
and one of the most famous is the national system for rating the risk of forest fires—
the Canadian Forest Fire Danger Rating System (CFFDRS) [19]. The CFFDRS has been
under development since 1968, and currently, two subsystems—the Canadian Forest Fire
Weather Index (FWI) System [20] and the Canadian Forest Fire Behavior Prediction (FBP)
System [21]—are being used extensively in Canada and internationally. The calculation of
the FWI system components is based on:

1. time series of daily meteorological observations (temperature, relative humidity, wind
speed, and 24 h precipitation)—weather data from approximately 2500 stations in
Canada and the United States;

2. elevation data—the elevation grid is derived from the US Geological Survey (USGS)
with spatial resolution of 1 km;

3. the fuel types—the map of fuel types is derived primarily from forest attribute
data [22] based on satellite imagery acquired by NASA’s Moderate Resolution Imag-
ing Spectroradiometer (MODIS—TERRA and AQUA). This map contains information
about the forest type or grassland with the moderate resolution.

This system is tested and works well for Canada. Its disadvantage is low spatial
resolution due to the use of meteorological data with a resolution of 1 km. In article [8], the
authors modified the FWI forest fire danger index for the territory of Ukraine by increasing
its accuracy based on the use of satellite data with a higher spatial resolution, as well as by
using soil moisture deficit, in addition to the six sub-indices of the FWI system.

In 2007, after a five-year test phase that involved the implementation of various na-
tional fire danger indices in European Forest Fire Information System (EFFIS) [23], the EFFIS
network adopted the Canadian Forest FWI System to harmonize the assessment of fire
danger levels across Europe. The EFFIS publishes two indicators that provide information
on the spatial/temporal variability of FWI compared to a historical series of about 30 years.
The FWI is calculated from the European Centre for Medium range Weather Forecasts
(ECMWF) model (with spatial resolution of 8 km and 1–9-day forecasts) [24], and the
MeteoFrance model (10 km and 3-day forecasts for Europe). Also, since 2003, the following
sources of forest fire risk assessment were considered by EFFIS [25]: meteorological fire
risk [26], vegetation stress fire risk [27] and Fire Potential Index (FPI) [28]. The FPI model
was introduced in [12] and was later revised as part of the Wildfire Assessment System
(WFAS) to adapt to the greener conditions in the eastern U.S. during the summer. The
original algorithm and its revised version were validated in California and Nevada, where
correlations between FPI and fire locations were found to be significantly high [12].

Another well-known fire monitoring system is the United States Forest Service—
Wildland Fire Assessment System, WFAS [29]. Currently, WFAS is based on data from
weather observations conducted at 1500 fire weather stations throughout the United States
and entered into the Weather Information Management System (WIMS) [30]. In addition
to current and previous weather data, fuel types, as well as live and dead fuel moisture
are used to calculate the fire danger level. However, fire hazard levels are measured only
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at discrete points where the station is located. The estimation of values between stations
is accomplished using an inverse distance-squared technique on a 10 km grid. While this
method proves effective in regions with relatively dense station distribution, it does reveal
certain limitations in areas with fewer stations. In particular, this approach does not work
for the territory of Ukraine due to the lack of a sufficient number of ground stations.

The NASA Fire Information for Resource Management System (FIRMS) [31–33] de-
tects active fires and thermal anomalies based on MODIS data with a 1 km spatial res-
olution, and Visible Infrared Imaging Radiometer Suite (VIIRS aboard Suomi NPP and
NOAA-20) [34–36] delivers this information in near-real-time to decision makers. The
VIIRS M bands and the day/night band have 16 detectors per scan (750 m spatial resolu-
tion per pixel), while the I bands have 32 detectors per scan (375 m resolution per pixel).
However, the system does not guarantee that a detected hotspot is indicative of an ongoing
fire. The advantage of MODIS and VIIRS data is their capability to provide near-real-time
monitoring of fire propagation, with data updates occurring every 3 h. This information
can also be accessed through other NASA resources such as WorldView [37]. Another
frequently utilized data source is the SPOT-VGT data from the SPOT satellite [38], although
its low spatial resolution poses a disadvantage.

In summary, the considered global systems make it possible to predict the most fire-
danger areas using meteorological indicators, fuel moisture indicators and the land cover
type. This makes it possible to assess the situation at the country or continent level. With
the use of satellite data with a higher resolution, we are able to determine the exact burned
areas on a regular basis and quantify the damage caused.

For the operational use of all this information, we need a framework where all the data
would be collected and a forecast of fire danger would be proposed, as well as computing
resources for calculations and data processing.

Satellite data at higher spatial resolution are used for a more accurate location and
mapping of active fires. In particular, papers [39,40] present an algorithm that utilizes
Landsat data to identify burned areas, applicable wherever Landsat data are available [41].
The algorithm generates burn probability surfaces using band values and spectral indices,
and burn classifications are produced through pixel-level thresholding combined with a
region growing process. Landsat Burned Area Essential Climate Variable products were
generated for the conterminous United States from 1984 to 2015, which mapped a greater
burned area compared to existing datasets such as the Global Fire Emissions Database
(GFED) and Monitoring Trends in Burn Severity (MTBS).

Fires at the early stage require the use of satellite data at very high temporal resolution
(e.g., SEVIRI [11,14]) to be promptly identified. On the other hand, Sentinel-2 MSI data
may enable an efficient mapping of small fires every 5 days when adequate detection
methods are used [42–44]. However, due to the high spatial resolution, collecting and
storing data for an entire country’s territory over an extended period can be challenging
and resource-intensive in terms of processing requirements. Article [45] presents the initial
findings of a study that investigated the use of spectral indices to assess the severity of a
forest fire that occurred on Madeira Island in August 2016. At these stages, approaches to
monitoring burnt areas were based on vegetation indices and screening of necessary areas
based on the threshold value of these indices.

In recent years, there has been a growing interest in utilizing satellite imagery and
machine learning-based approaches for wildfire detection and monitoring. In article [46],
the authors present a method for mapping forest fire susceptibility using ensemble models
based on the locally weighted learning algorithm. Ghosh et al. [47] propose a novel hybrid
deep learning model that combines a convolutional neural network (CNN) and recurrent
neural network (RNN) for forest fire detection, achieving high classification accuracy and
outperforming existing state-of-the-art results.

There is currently a substantial body of literature on the use of satellite data and deep
learning techniques for fire monitoring, as evidenced by numerous studies [48–50]. While
deep learning approaches offer high accuracy with large amounts of data, index-based
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methods have certain advantages over deep learning methods for fire detection using
satellite data, including simplicity and ease of implementation, the ability to be applied
to various types of vegetation cover and land use without the need for specific training
datasets, and greater interpretability due to their physical meaning, which can aid in
understanding the cause of fire occurrence.

3. Study Area

The study area for this research is Ukraine, the second largest country in Europe.
Located in Eastern Europe, Ukraine encompasses an area of approximately 603,628 square
kilometers with geographic coordinates between latitudes 44◦ and 53◦ N and longitudes
22◦ and 41◦ E [51]. Ukraine’s diverse landscape comprises forests, grasslands, wetlands,
and mountains. The Carpathian Mountains lie in the west, while the Crimean Peninsula is
located in the south. The country has a temperate continental climate characterized by hot
summers and cold winters.

In this study, fire identification was conducted during the summer months of 2022. The
MODIS data were used to identify all fire hot-spots for the entire territory of Ukraine. For
the areas where military operations are taking place (Figure 1, yellow regions—Kharkivska,
Luhanska, Donetska, Dnipropetrovska, Zaporizka, Khersonska, and Mykolaivska oblasts),
the fire boundaries were specified for 15–17 July 2022 based on Sentinel-2 data, and the
areas of damage were determined by different land cover types. Special attention was
paid to the natural ecosystem area near the National Nature Park of nationwide signifi-
cance “Oleshkivski pisky”, Kherson region (Figure 1, green box), where approximately
1.5 thousand hectares were burned in August 2022.
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August 2022.

In this work, special attention is given to forested areas, as their restoration requires a
long time. Ukraine’s forest covers an area of 10.4 million hectares, with 9.6 million hectares
covered by forest vegetation [52]. The restoration of forests is crucial, as they play a vital
role in the ecosystem, provide habitats for wildlife, help regulate the climate, and protect
against soil erosion. Forest fires, particularly in the summer months, pose a significant
threat to the environment, human health, and property damage, making it important to
identify and monitor fires in forested areas.

Overall, Ukraine’s diverse landscape and the ongoing military operations in the
eastern and southern regions present a challenging environment for fire monitoring and
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detection. The focus on the forested areas and the consideration of various types of land
cover helps provide a better understanding of the extent and impact of fires in Ukraine,
which can assist in developing effective strategies for fire management and prevention.

4. Data Used

The data used in this work with collection’s links in Google Earth Engine (GEE) cloud
platform and spatial resolution specification are presented in Table 1.

Table 1. Satellite data used in this article.

Data Spatial Resolution (m) Collection in Google Earth Engine

MODIS (FIRMS) 1000 FIRMS

MODIS (NDVI) 250 MODIS/061/MOD13Q1

Sentinel-2 10 COPERNICUS/S2_SR_HARMONIZED

Landsat-8
Landsat-9 30 LANDSAT/LC08/C02/T1_TOA

LANDSAT/LC09/C02/T1_TOA

NOAA (Humidity) 27,830 NOAA/GFS0P25

Precipitation 11,132 ECMWF/ERA5_LAND/HOURLY

Details about each of the datasets are described in the following sections.

4.1. MODIS Data
4.1.1. FIRMS

This study utilizes the MODIS FIRMS [31] as the primary data source for identifying
hot spots of fire activity. FIRMS was established in 2007 by the University of Maryland
with financial support from NASA’s Applied Sciences Program and the United Nations
Food and Agriculture Organization (UN FAO) to offer timely and accurate active fire
location information to natural resource managers who faced difficulties in obtaining
satellite-derived fire data. The probability of fire ranges from 0 to 100 percent and the
spatial resolution of the product is 1000 m.

Contextual algorithms used by FIRMS [53] compare the temperature of an area sus-
pected of having a fire with the temperature of the surrounding land cover. When the
temperature difference exceeds a predetermined threshold, the suspected area is confirmed
as an active fire or a “hot spot”. Figure 2 shows the distribution of fires determined accord-
ing to FIRMS data for summer 2021 (1 June 2021–30 August 2021) and for July 2022 (1 July
2022–31 July 2022).

As can be seen from the geographical location of the identified hot spots, in 2021,
a higher number of fires occurred especially in the southern region of Ukraine, but the
fires were evenly distributed throughout the region. In 2022, they were located and
most concentrated along the lines of hostilities. That is why additional research into the
possibility of determining the cause of the fire was included in this work, in particular
whether the weather conditions contributed to their occurrence.
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4.1.2. Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) [54] which refers to National
Oceanic and Atmospheric Administration—Advanced Very-High-Resolution Radiometer
(NOAA-AVHRR) is used to analyze the dynamics of surface greenness. The NDVI method
is a metric methodology that measures the balance of energy received and released by the
observable objects on Earth. This index sets a value for how green area is when applied to
plant communities, that is, the quantity of vegetation present in a particular area and its
condition of development. NDVI methods have been used to offer a comprehensive view
of land cover change. It is calculated based on near-infrared (NIR) and red (RED) light
reflectance assessments as in (1),

NDVI =
NIR− RED
NIR + RED

, (1)

where NIR and RED are the amounts of light reflected by growing vegetation and captured
by the satellite sensor [55].

4.2. Satellite Data
4.2.1. Sentinel-2

The Multispectral Instrument (MSI) aboard Sentinel-2 satellites samples 13 spectral
bands: four bands at a 10 m, six bands at a 20 m and three bands at a 60 m spatial resolution
(Table 2).

Table 2. Sentinel-2 spectral band characteristics.

Band Resolution Central Wavelength Band Name

B1 60 m 443 nm Coastal aerosol

B2 10 m 490 nm Blue

B3 10 m 560 nm Green

B4 10 m 665 nm Red

B5 20 m 705 nm Red edge 1

B6 20 m 740 nm Red edge 2

B7 20 m 783 nm Red edge 3

B8 10 m 842 nm NIR

B8a 20 m 865 nm Near-infrared narrow

B9 60 m 940 nm Water vapor

B10 60 m 1375 nm SWIR cirrus

B11 20 m 1610 nm SWIR 1

B12 20 m 2190 nm SWIR 2

Optically corrected Sentinel-2 Level 2A satellite data, featuring a revisit period of
5 days, is employed to identify fire locations and burned areas [55]. Analyzing the change
in the Normalized Burn Ratio (NBR) index, which is based on the B8 Visible and Near-
Infrared (VNIR 842 nm) band and the B12 Short-Wave Infrared (SWIR 2190 nm) band,
we determine the burnt areas (described in Section 5.2). Along with a Level-2A surface
reflectance product, Sen2Cor offers an 11-class Scene Classification (SCL) map [56]. Sen2Cor
is a Level-2A processor the main purpose of which is to correct single-date Sentinel-2 Level-
1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to
deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs
are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene
Classification (SCL) map with Quality Indicators for cloud and snow probabilities. The
data presented in this map hold significant value for automated processing methodologies.
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It served as a cloud and shadow mask, enabling the extraction of clear land pixels from
Sentinel-2 imagery.

4.2.2. Landsat

The Landsat 8 satellite payload consists of two science instruments—the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These two sensors provide
seasonal coverage of the global landmass at a spatial resolution of 30 m (visible, NIR,
SWIR); 100 m (thermal); and 15 m (panchromatic). While OLI provides data at a 30 m
spatial resolution, the TIRS band 10 (10.6–11.19 mm) was resampled at 30 m and was used
to validate the created burn area mask [57]. Since the combined revisit time of the Landsat-8
and -9 together is 8 days, which is almost two times less often than Sentinel-2, the validation
was carried out selectively for cloud-free images and for the test part of the territory.

4.2.3. Humidity Data

The National Oceanic and Atmospheric Administration (NOAA) provides humidity
data with a spatial resolution that varies based on the source and method of collection [58].
The 384 h forecasts, with 1 h (up to 120 h) and 3 h (after 120 h) forecast intervals, are made
at a 6 h temporal resolution and a 27,830 m spatial resolution.

4.2.4. Precipitation

In order to exclude possible lightning strikes, which are a meteorological factor for
the occurrence of fires in ecosystems, we consider the accumulated precipitation from
ERA5-Land data [59] with spatial resolution of 11 km.

4.3. Land Cover and Fuel Type Maps

To identify the type of land cover affected by fires, a land cover and crop type map
(Figure 3) is used, which was created by using cloud technologies and neural network
models [60–62]. For classification processing, 2 bands (VV, VH) of SAR Sentinel-1 descend-
ing data with 10 m spatial resolution are used with preliminary preprocessing steps using
SNAP 9.0.0 software: Correction of coordinates in the orbit, Specl-filtration, Radiometric
calibration, the Range-Doppler Terrain Correction, Data transfer in decibel, and Creating a
Data Stack. Also, for classification processing 4 bands (Red B4, Green B3, Blue B2, InfraRed
B8) of Sentinel-2 satellites with preprocessing Level-2A and 10 m spatial resolution are used.
The revisit time of Sentinel-2 is 5 days, but due to high cloud cover, monthly composites
were obtained as the median value of all possible values for every 5 days in the respective
bands. A Scene Classification Map (SCL) band with a spatial resolution of 20 m was used
to mask clouds from optical data. Optical composites were obtained in the Google Earth
Engine cloud platform along the extent of each path of Sentinel-1 data.

Multilayer perceptron (MLP) was used for training the neural network. Compared
to deep neural network algorithms, convolutional neural networks in particular, the MLP
algorithm loses in accuracy by 1%, but requires much less powerful computing resources
and time to obtain the final product. That is why we decided to use the MLP neural
network algorithm.

Ground truth data collected along roads were used as training data for the neural
network. The overall accuracy of the classification map was calculated based on the
confusion matrix [63]. In turn, the confusion matrix was created by comparing the obtained
classification map with the collected independent test ground truth data. The overall
accuracy of land cover classification maps was 95%.

The given classification maps are adapted to the map of fuel types established by the
NFDRS (National Fire Danger Rating System).
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4.4. Fire Potential Index (FPI)

In this work, the FPI index is used to assess the fire danger risk level, which was
calculated for the first time for the full territory of Ukraine according to the methodology
used in the American NFDRS information system [64]. Thus, initially, the inputs to the
FPI model are a 1 km resolution fuel model map, a Relative Greenness (RG) map [65] that
indicates current vegetation greenness compared to historical maximum and minimum
values, and a 10 h time lag dead fuel moisture map [66]. The output is a national-scale,
l km resolution map that presents FPI values ranging from 1 to 100 [28]. In work [67], the
authors used MODIS data with a spatial resolution of 500 m for the territory of Spain.

In our work, we suggest using data with a higher spatial resolution (MODIS NDVI
data, 250 m), as well as using an adapted fuel map based on our own land cover classifi-
cation map with a spatial resolution of 10 m [60–62]. The following data are used for its
calculation for the territory of Ukraine:

• Relative humidity 2 m above ground, which has a cross-section of 27,830 m from
the NOAA;

• Normalized Difference Vegetation Index (NDVI) based on MODIS data with a spatial
resolution of 250 m:

� Minimum value for last 5 years;
� Maximum value for last 5 years;
� Maximum value for current time (last 7 days);

• Land cover classification map for identification of fuel moisture parameters.

The main advantage of the FPI index is its ease of implementation. In particular, the
GEE cloud platform [68], which is very user-friendly, contains all the necessary components
for calculating the FPI index. Also, since this index was used in the state system of America,
we can assume that it is reliable and can be used for fire danger prediction.
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4.5. Datasets for Additional Validation
4.5.1. ACLED Database

The Armed Conflict Locations and Events Data (ACLED) military operations [69]
database was chosen as an additional source of information on human activity that can
cause fire. The database provides the geolocation of the settlements in which or not far from
which the military actions took place. This database collects a variety of events, including
Armed clash, Looting/property destruction, Remote explosive/landmine, but we only
selected Shelling/artillery/missile attack, which primarily affects the occurrence of fires.
The Figure 4 shows Shelling/artillery/missile attacks for July 2022. As we can see, the
concentration of the given points is the greatest precisely in the military zone, and also
corresponds to fires during these same periods (Figure 2).
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4.5.2. Vector Data with Boundaries of Fires from Shelling

In order to perform additional validation of the burned areas map, within this work,
the provided vector data with fires created manually on the basis of high-resolution satellite
data (Planet/WorldView-3) and Sentinel-2 data was used. This dataset represents fires from
shelling in the south (Khersonska oblast) and east (Kharkivska and Donetska oblasts) of
Ukraine in 2022 (Figure 5). In particular, for the south of Ukraine, we used fire boundaries
for 19 May 2022 (1029 polygons), and for the east we employed the data for the period from
5 July 2022 to 30 July 2022 (984 polygons). These data were collected by our partners within
the “Satellites for Wilderness Inspection and Forest Threat Tracking” (SWIFTT) project.
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5. Implementation of the Framework in GEE

The main goal of this work was to create a framework in the Google Earth Engine
cloud platform for the territory of Ukraine, which would combine the detection of real fires
with the FPI index and would answer the following question: “Was the fire a consequence
of meteorological conditions?”.

The general block diagram of the proposed framework is shown in Figure 6 and
consists of a total of three major blocks—forecasting of the fire danger level (green block),
identifying the fire locations (blue block), and decision making of the nature of the fire occur-
rence (orange block). We consider each of these blocks in more detail in the corresponding
sections below.

5.1. Fire Potential Index

This section describes the steps (Figure 6, green block) in the GEE cloud platform for
calculating the FPI for the territory of Ukraine based on satellite data.

The FPI model requires the knowledge of three vegetation variables: the live ratio,
the moisture content of small dead vegetation, and the fuel type [70]. The live ratio is
computed by comparing the current and maximum values of the Normalized Difference
Vegetation Index of an area in a given period. The moisture content of small dead fuels
is estimated from meteorological parameters. The fuel type is based on Land cover/Crop
type classification. The resulting FPI values range from 1 to 100 [28], which, according to
work [70], can be considered a probability of fire.

The Fire Potential Index (FPI) model is utilized to identify regions with the highest
likelihood of fires. The formula for calculating the FPI index takes as input NDVI MODIS
data (5-year maximum NDmax, 5-year minimum NDmin, 7-day maximum ND0 NDVI
values for each pixel) and mean currently fuel moisture information FM10 based on the last
10 h according to NOAA humidity data and fuel map information MXd (table data [66]
based on fuel map). The general formula employed for FPI calculation is as follows [12,71]:

FPI = (1− TN f ) · (1− LR) · 100, (2)
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where TN f is calculated according to formula

TN f =
FM10 − 2
MXd − 2

, (3)

and live ratio (LR) determines the ratio of living vegetation to dead vegetation using the
following formula:

LR = RG f · LRmax/100, (4)

where LRmax is (according to [14])

LRmax = 35 + 40
NDmax − 100

80
. (5)
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The following formula of live ratio is utilized to determine Relative Greenness (RG f ),
which is then converted into a fractional value, RG f = RG/100, in order to obtain an
estimate of the proportion of green vegetation in a given area. RG is calculated using NDVI
indices derived from MODIS data:

RG = (ND0 − NDmin)/(NDmax − NDmin) · 100. (6)

As a result, the values of the FPI index ranging from 0 to 100 are obtained. Therefore,
we divide the Fire Potential Index maps within each region into three gradations to make
inferences about causes of fire easier and faster than dealing with a continuous measure
and for easier decision making. For division into gradations, a uniform division of the
range of the value, which is divided into gradations, is used [72,73]. The first includes
values from 0 to 33 (Low), the second from 34 to 66 (Moderate) and the third from 67 and
above (High):

FPIgradations =

 Low, 0 < FPI ≤ 33
Moderate, 34 < FPI < 66
High, FPI ≥ 67

. (7)

5.2. Burned Area Detection

The use of FIRMS data makes it possible to determine the potential areas for which
fires are possible. In our case, we used all pixels (that is, with probability between 0 and 100),
which made it possible to create a fire hotspot mask FireFIRMS for the territory of Ukraine.
Given the need to operationally and quickly obtain accurate data on the location of the fire,
deep neural network approaches are not used in this work, as they require training data
(which are not available for the entire country), powerful computing resources and access
to professional cloud platforms such as Amazon Web Services or CREODIAS. Calculation
of fires based on high spatial resolution data is a resource-intensive process; therefore, in
order to reduce the volume of satellite data processing, we suggest searching for fires and
burned areas within hotspots obtained from FIRMS data.

In order to enhance the precision of fire location and burn area determination, we
utilized products obtained from Sentinel-2 satellite data. Specifically, we relied on the
Normalized Burn Ratio (NBR) index [74] as the foundation for our approach, because it
is simple and quick to implement and enables quick and efficient results. Initially, we
calculated NBR indices for the region affected by the fire (NBRpre—before fire, NBRposti —
during or after fire):

NBRpre =
B8− B12
B8− B12

, NBRposti =
B8i − B12i
B8i − B12i

, (8)

where B8—Visible and Near-Infrared (VNIR 842 nm) band and B12—Short-Wave Infrared
(SWIR 2190 nm) Sentinel-2 MultiSpectral Instrument (MSI) bands for each image, specifi-
cally the ith one; fire zones are to be detected.

Subsequently, the assessment of land surface changes was conducted individually for
each ith image:

∆NBRi = NBRpre − NBRposti . (9)

The output of this process is a raster mask with multiple grades, wherein high values
represent the active fire zones and low values indicate the area where the fire has occurred.
Fire detection was conducted based on the ratio for each individual ith image in GEE [75]
(adding 1.001 to the denominator ensures that the denominator will never be zero, thereby
preventing the equation from reaching infinity and failing [76]):

Firei =
∆NBRi

NBRpre + 1.001
≥ threshold. (10)
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The general map of fires is calculated according to the following formula (combination
of all fires for all used satellite data from 1 to n) [77]:

FireS2 =
n

∑
i=1

Firei. (11)

In order to validate the received fire mask, it is suggested to use TIRS in band 10
Landsat-8 and -9 data (resampled from 100 m to 30 m). To determine the fire, the maximum
temperature for the studied area is determined and the temperature with low values
is filtered.

This can be represented in the following formula:

FireLandsat = max(temp) ≥ threshold, (12)

where max(temp) is the maximum temperature value determined according to Landsat
8/9 TIRS data, and threshold is the value chosen by the user depending on the season (in
summer, this value increases, and vice versa in spring and autumn) [71]. We can set fixed
values for all maps, but we are interested in obtaining the highest-quality product possible.
Therefore, different threshold values were chosen to prevent overestimation or high un-
derestimation of burnt areas. The threshold value is selected by analyzing extremely high
values, for example, by the three-sigma algorithm [78], or Otsu’s method [79]. After that, the
validation of the fires obtained from the Sentinel-2 data is carried out, taking into account
the limited available data due to cloud cover and the low regularity of Landsat satellite [78].
Therefore, we proposed the following formula for partial verification of the fires detected
by Sentinel-2 (the intersection of features from the Sentinel-2 and Landsat data):

Fireveri f ied = FireS2 ∩ FireLandsat 6= ∅. (13)

The ideal case is when all satellites provide data for the same time period. However,
taking into account the specifics of satellite monitoring, it is worth taking the studied
interval of at least 5 days, which corresponds to the revisit time of Sentinel-2. By additionally
using the land cover classification map (LC), we obtained the opportunity to understand
exactly what type of land cover was affected by the fire according formula (intersection of
burned area with land cover map):

FireLC = FireS2 ∩ LC. (14)

5.3. Decision Making about the Fires Nature

As a result of the first two blocks, gradations of the FPI index were calculated and
active fires or burned areas were determined on the territory of Ukraine. Intersection of the
burned area with FPIgradation for each fire separately is calculated in this block. When the
specified fire fell into a zone with a high gradation of the FPI index, we believe that the fire
could really have occurred as a result of weather conditions. Otherwise, we assumed that
the weather did not contribute to the occurrence and spread of the fire. In such a case, in
particular, in the case of active military actions on the territory of Ukraine, the next step was
the analysis of open sources of information regarding the events that could have occurred
in such territories and caused the fire. An example of such data is the ACLED database.

6. Results

The summer months of 2021 and 2022 were chosen for the study of fires, since it is
during these periods that meteorological conditions (drought conditions and lightning
strikes) favor the spontaneous occurrence of fires in Ukraine. In particular, for the eastern
and southern regions of Ukraine, the areas of burned areas and determined land cover
types were calculated for the period of 15–17 July 2022. It was during this period that the
most active fires occurred. The developed methodology was also tested on the territory
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near the National nature park of nationwide significance “Oleshkivski pisky”, and the
Biosphere reserve of nationwide significance “Chornomorskyi”, Kherson region, which
burned down in the first half of August 2022.

6.1. Burned Area Based on Sentinel-2 Data
6.1.1. Burned Area Identification

To identify burned area, we used the Normalized Burn Ratio (NBR) index [74] in the
GEE Cloud platform [75]. After calculating the corresponding areas in 15–17 July 2022
that were burned according to Sentinel-2 data, the following distribution by land cover
types was obtained (Table 3). Land cover classes and crop types were extracted from a
classification map with a spatial resolution of 10 m, obtained in 2022 (as of July). The overall
burned area was estimated to be 104.2 thousand hectares. This includes approximately
70 thousand hectares of cereal crops, 0.26 thousand hectares of rapeseed, 7.8 thousand
hectares of summer crops, 25 thousand hectares of grassland, and 1.1 thousand hectares
of forest.

Table 3. Burned area according to Sentinel-2 as of 15–17 July 2022.

Cereal Rapeseed Summer Crops Non Cultivated Grassland Forest Total

Donetska 25,823.7 4.3 144.8 864.07 9258.51 266.3 36,361.6

Khersonska 10,843.2 87.3 4129.4 3831.48 853.43 150.6 19,895.3

Mykolaivska 14,556.3 41.0 1398.2 2382.65 582.25 286.8 19,247.1

Zaporizka 9173.0 81.2 1774.7 810.91 637.55 61.4 12,538.8

Luhanska 3396.0 30.1 175.3 308.37 4550.68 287.7 8748.2

Kharkivska 5395.0 0.1 43.2 39.58 729.44 87.1 6294.4

Dnipropetrovska 745.6 7.7 152.4 53.32 109.64 2.5 1071.2

Poltavska 45.1 13.1 1.0 0.7 0.18 0.0 60.1

Odeska 3.0 0.0 7.7 0.12 1.67 0.0 12.6

Total 69,980.9 264.8 7826.6 8291.2 16,723.4 1142.4 104,229.2

However, the Sentinel-2 estimates represent a lower estimate only, as cloud cover
during satellite surveys may have affected the accuracy of the results (Figure 7). Given
that the average wheat harvest in 2021 was 45.3 tons per hectare (according to the State
Statistical Service of Ukraine), and that the fires occurred during the wheat and barley
harvest period, the potential losses due to fires along the front line were estimated to be
3.17 million quintals or 317 thousand tons of grain. Examples of determining burned areas
for agricultural fields are shown in Figure 8.

Also, the proposed approach was tested for the territory of the ecosystem near the
National nature park of nationwide significance “Oleshkivski pisky”, Kherson region
(Figure 1) for the first half of August 2022. The total burned area of forest is 614 ha,
Grassland: 784 ha, and wetland: 33 ha. Also, the part of found burned areas was confirmed
by the increased temperature of the earth’s surface according to Landsat-9 (Figure 9). Taking
into account the difference in the time of providing Landsat 8/9 and Sentinel-2 data, we
cannot expect a complete correspondence of the increased temperature to the burned areas,
but only the part that is closer in time to the time of the Landsat survey.
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The methodology has also been tested on other types of land cover, in particular
on grassland. Figure 10 shows a completely burned Biosphere reserve of nationwide
significance “Chornomorskyi”, Kherson region, where the burned area of grassland is
2153 ha, and the burned area of forest is 157 ha.

6.1.2. Validation of Fires Using High-Resolution Data

To validate our approach to creating a fire mask from Sentinel-2 satellite data, we used
vector boundaries with forest fires caused by shelling, prepared of our partners within
SWIFTT project. In particular, for the south of Ukraine (mainly the Kherson region), the
forest was most affected in the month of May. Analyzing satellite data, we recorded the fire
itself, as early as 5 September 2022 (Figure 11). However, on this day, it was very difficult
to make an assessment because of the smoke in the picture.
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Figure 9. Burned area detection according to Sentinel-2, FIRMS and Landsat-9 data near the National
nature park of nationwide significance “Oleshkivski pisky”, Kherson region.

To create a mask of burned areas, we used Sentinel-2 images (from 24 April 2022 to 19
May 2022). The resulting mask and vector boundaries used for validation are presented in
Figure 12.

A similar mask was created for the north of Ukraine. Sentinel-2 data from 2 July 2022
to 30 July 2022 were used only for this purpose.

Using the created masks and vector data with fires, a confusion matrix with two
classes Fire and Not Fire was constructed (Table 4), where PA—producer accuracy, UA—
user accuracy, F1—F1-score accuracy, OA—overall accuracy [80].
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Table 4. Confusion matrix for fire mask estimation.

CLASS
South East

PA UA F1 PA UA F1

Fire 53.9 71.6 61.5 75.3 34.4 47.3

Not Fire 98.5 96.8 97.6 99 99.8 99.4

OA 95.5 98.9

The resulting inaccuracies are explained by the fact that data with a higher spatial
resolution, in comparison with Sentinel-2, were used to create polygons with fires. We can
also see that for the south, the accuracy for the class of fires is higher (F-score = 61.5%),
which may be due to the fact that Planet data were used for the south, which have a worse
spatial resolution compared to WorldView-3 data, which were used for the east of Ukraine.
Although the overall accuracy (OA) in this case was high, it is due to the Not Fire class,
which is well demonstrated by PA and UA.

6.2. Fire Potential Index for Summer for Ukraine
6.2.1. FPI for Ukraine

Using satellite data and a land cover classification map, a Fire Potential Index was
created for the territory of Ukraine for 2021 and 2022. For this, the GEE cloud platform was
used. The resulting index is a raster map with a spatial resolution of 250 m, containing
values from 0 to 100 that indicate the indicator of fire occurrence. Figure 13 shows these
maps, where blue values have low values and red values have high values.

Observations from the provided image reveal that during the summer of 2021, Ukraine
predominantly experienced fires dispersed across its southern and eastern regions, aligning
with the Fire Potential Index.
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6.2.2. Validation of FPI

To confirm the effectiveness of the FPI for the territory of Ukraine, a comparison of the
number of real fires according to satellite data (FIRMS) and the majority value of the FPI in
the regions of Ukraine was carried out. For this, correlation was calculated according the
following formula:
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where Fi—majority value of the FPI for the ith oblast, F = ∑n
i=1 Fi/n—mean value of

FPI majority values, and Ni—number of fires according to FIRMS data for the ith oblast,
N = ∑n

i=1 Ni/n—mean value of the number of fires for n = 25 oblasts.
The results for 2021 show a correlation of 0.66, and factors contributing to these

fires include meteorological conditions, as anticipated by the Fire Potential Index, and
anthropogenic influences such as stubble burning in agricultural fields. For 2022, the
correlation is 0.25 for all oblasts. This is a rather low value and at first glance one may
get the impression that there is no connection. But if we exclude oblasts in which active
hostilities are taking place (Luhanska, Mykolaivska, Zaporizka, Kharkivska, Donetska,
Khersonska), the correlation coefficient for 2022 will be 0.68. Therefore, in 2022, the
correlation is low due to the eastern and southern oblasts, and in all other territories the
trend remains the same as for 2021.

On the other hand, in 2022, noticeable deviations are observed, the Fire Potential
Index indicates possible fires related to weather conditions only in the southern districts of
Mykolaiv, Kherson and Odesa regions. Actual fires appear to trace a front line, suggesting
their origin as a consequence of human activities like rocket and bomb usage (Figure 2) and
also supporting this with information from the ACLED database (Figure 4).

6.2.3. FPI Gradation

With maps using a value from 0 to 100, it is difficult to understand the ways in
which potential fire is possible for each region and to make some additional calculations.
Therefore, the FPI was divided into three gradations, low, moderate, and high fire danger.
The obtained results are presented in Figure 14.

Separately selected fires according to FIRMS at the intersection with the FPI index
are presented in Figure 15. The figure shows that the high level of fire danger at the
intersection with real fires is located in Odesa, Mykolaiv and Kherson oblasts, while all
fires that occurred in the east have a mostly average level or even a very low one.
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Within each oblast of Ukraine, the percentage of the appropriate gradation of FPI was
calculated and compared with the obtained burned areas determined by Sentinel-2. The
obtained results are presented in Table 5. It can be seen from the table that in seven oblasts,
fires fell into the moderate level of the FPI, one into the high and one into the low. Those
fires that fell into a low level of fire danger were considered to be caused by anthropogenic
influence, since they have a low influence of weather indicators. Regarding the area with a
high level of fire danger, we can assume that the fires could have been caused by weather
conditions. For medium fire danger, we cannot definitively state that the fires were due to
weather conditions, and additional data need to used such as ACLED to draw conclusions.

If we consider the area of fires in the eastern regions of Ukraine in 2022 obtained from
satellite data and the percentage of high probable fires according to the Fire Potential Index
maps, we will obtain a correlation between them of 0.1. This is an additional confirmation,
not only visually, that the fires in these regions did not arise from natural causes, but that
most of the main reasons for such fires are military events in those territories.
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Table 5. Burned area according to Sentinel-2 as of 15–17 July 2022 and Fire Potential Zone by Fire
Potential Index in percentage.

Region
Fire Potential Zone, %

Burned Area, ha
Low, % Moderate, % High, %

Donetska 20.54 74.10 5.35 36,361.6

Khersonska 7.20 37.01 55.78 19,895.3

Mykolaivska 5.90 55.82 38.28 19,247.1

Zaporizka 7.24 67.29 25.46 12,538.8

Luhanska 23.92 69.95 6.12 8748.2

Kharkivska 41.90 55.80 2.29 6294.4

Dnipropetrovska 21.96 64.40 13.65 1071.2

Poltavska 66.65 31.87 1.48 60.1

Odeska 10.32 45.94 43.75 12.6

Total 104,229.2

6.2.4. Additional Precipitation Data

To exclude the occurrence of fires due to lightning, cumulative precipitation was
calculated for the same periods as in the FPI index. As we can see from Figure 16, in 2022,
in contrast to 2021, the southern and eastern regions had the least precipitation, which
indicates the least possible amount of lightning.
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7. Discussion

This article proposes a framework for wildfire monitoring and determining the cause
of a fire in the Google Earth Engine cloud platform. The developed information technology
combines an optimized approach to monitoring fires and burned areas based on the NBR
index with the FPI index, which helps to understand the possible cause of the fire at
country level.

As discussed in the introduction, there are many different fire risk monitoring systems
already in place at the national level. For Ukraine, such a system has not existed until now,
and the authors of this work set the goal of developing a framework that could work in
an operational mode. The criteria for choosing the FPI index was, first of all, the ease of
its implementation in the GEE cloud platform, since the platform already contains all the
necessary data for observations. Of course, for example, the FWI index shows better results,
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but its implementation requires specialized cloud platforms (for example, Amazon Web
Services or CREODIAS) and resources that are not currently allocated by the government
for continuous use.

A similar story is observed with the use of the NBR index to determine burned areas.
Of course, with high-quality training data and appropriate computing resources, using
modern neural network approaches, it is possible to obtain highly accurate contours of
the fires and burned lands themselves. However, if we are talking about a technology
that would work systematically at the country level, it is difficult to ensure, and simple,
fast-acting, but less accurate approaches in this case have the right to exist.

In 2021, work began on an improved version of the FPI index—the Wildland Fire
Potential Index (WFPI) [81], and already in 2023 it began to be actively used. It already
accepts meteorological indicators, such as wind, precipitation and temperature. We see this
as a way to improve the developed framework.

One of the main problems we faced while performing the work is the insufficient
amount of cloud-free optical data. It is for this reason that only a part of the found burned
areas was validated in this paper to confirm the correctness of the algorithm for Sentinel-2.
Possible further research is to use the Sentinel-1 radar data to solve the cloud issue.

The results presented in this article demonstrate the effectiveness of using satellite data
and land cover classification maps to calculate a Fire Potential Index. The Fire Potential
Index was created for the years 2021 and 2022 for the summer time for Ukraine, and the
resulting maps showed a correlation between the areas with high values of FPI and the
actual fire events in Ukraine in 2021, and no correlation for 2022. However, if we separate
the territories with military actions, the correlation in 2022 is almost the same as in 2021
(68%). This indicates that the FPI index worked in 2022 at a similar level as in 2021, but of
course it does not take into account the anthropogenic impact. Additional evidence of this
is also concentrated along the line of fire occurrence and points from the ACLED database.

During the assessment of the accuracy of the mask of burned areas, we realized that
the threshold in our methodology remains selection, since its increase rejects pixels with
potentially burned areas, but if it is reduced, then noise penetrates into the mask, which
can negatively affect the assessment these areas or precisions. During our study, we experi-
mented with various threshold selection methods to identify the most suitable approach for
fire detection in our dataset. We evaluated methods such as simple thresholding, adaptive
thresholding, and the Otsu’s method. Among these methods, the Otsu’s method, coupled
with our modifications, proved to be the most effective for our fire detection task. However,
determining the correct threshold values for the NBR index is not the key task of this work.
There is no universal solution to this problem; everything depends on the territory and
time period for which it is selected. To refine the mask, it is worth using deep learning
methods in the future, at least for those areas most affected by fires, or for areas of increased
level of interest.

8. Conclusions

This study presented a novel integrated framework for national-scale burned area map-
ping and fire cause assessment using satellite remote sensing data and fire risk modeling.
The methodology combines multi-spectral burned area mapping using the Normalized
Burn Ratio index from Sentinel-2 imagery with fire danger analysis based on the Fire
Potential Index calculated from vegetation, fuel moisture, and land cover data.

The approach was implemented for all of Ukraine in the Google Earth Engine cloud
computing platform to enable efficient large-scale processing. Burned areas totaling
104,229 ha were mapped during 15–17 July 2022, with cereal crops being the most af-
fected land cover type. Comparison with the FPI fire risk map showed fires corresponded
well spatially with high-risk areas in 2021 but not in 2022, indicating the 2022 fires were
predominantly anthropogenic rather than climate-driven.

The proposed framework demonstrates an effective methodology for national-level
fire monitoring by integrating burned area detection with fire risk modeling. Automated
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mapping of burned areas with a 10 m resolution enables precise assessment of fire impacts
and damages across land cover types. The discrepancy-based technique for identifying
anthropogenic fires provides a simple yet powerful approach for determining fire causes
using satellite and meteorological data analytics.

Further work should focus on incorporating additional validation data, exploring
effects of different burned area and fire risk modeling algorithms, and implementing
the methodology for near real-time operational monitoring. The study demonstrates the
potential of applying integrated multi-source satellite data analytics in Google Earth Engine
to develop scalable and automated systems for assessing wildfire activity and risks globally.
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