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Abstract: Low-pressure water mist fire extinguishing systems are a cost-effective and highly reliable
option for fire protection. However, they have not yet seen widespread use in urban underground
utility tunnels. To validate the fire extinguishing effectiveness of the system in cable fires within urban
utility tunnels and to identify the key factors influencing its efficiency, a scaled-down test platform
for low-pressure water mist fire extinguishing in utility tunnels was constructed, and a series of fire
extinguishing tests was conducted. The test results demonstrate that low-pressure water mist can
rapidly and effectively extinguish cable fires in utility tunnels, with the quickest fire extinguishing
time of 7 s. Within 50 s of activating the system, the internal temperature of the tunnel can be reduced
from 650 ◦C to 40 ◦C. Among the influencing factors, the pressure and nozzle flow coefficient have a
significant impact on the fire extinguishing efficiency, while nozzle spacing has a relatively smaller
effect. Thus, when the nozzle spacing meets the requirement of “no dead zones”, priority should be
given to increasing the pressure and nozzle flow coefficient.

Keywords: low-pressure water mist; utility tunnel; cable fire; fire extinguishing efficiency

1. Introduction

Urban underground utility tunnels are one of the key construction projects in China,
playing a crucial role in supporting the normal operation of cities [1]. The utility tun-
nel not only saves urban space but also facilitates the management and maintenance of
pipelines [2,3]. With strong policy support, the total mileage of urban underground utility
tunnels in China has rapidly increased, making it the world’s leader [4]. However, the fre-
quent occurrence of fire accidents in these tunnels has drawn widespread public attention.
The cabins of urban underground utility tunnels are filled with various pipelines such as
cables, optical fibers, water supply pipes, and water drainage pipes, posing a high fire load
and presenting significant challenges to fire extinguishing and rescue efforts [5]. Among
these, cables pose the highest fire risk and are the main cause of fires in utility tunnels [6].

Currently, water mist fire extinguishing systems are primarily used in cable cabins
of urban underground utility tunnels. The water mist fire extinguishing system is a new,
efficient, and environmentally friendly fire extinguishing system. Scholars have conducted
a series of research on water mist fire extinguishing systems in utility tunnels. Li et al. [7]
conducted numerical simulations of water mist fire extinguishing in utility tunnels by
changing parameters such as the position of the fire source, the number of nozzles, aver-
age droplet size, and nozzle pressure. They found that the high-pressure water mist fire
extinguishing system has a good cooling effect, and the droplet size has a major impact on
fire extinguishing efficiency. Huang et al. [8] carried numerical simulations by the Fire Dy-
namics Simulator (FDS) to analyze the variations in nozzle activation time, fire suppression
time, and ignited cable length under different conditions. They found that nozzle activation
time should decrease with increasing nozzle spacing. Xu et al. [9] conducted experimental
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studies on the full submersion and local application of water mist fire extinguishing sys-
tems under different conditions. They found that for electrical cabins in utility tunnels, a
full submersion water mist fire extinguishing system is preferable. M Pokorný et al. [10]
conducted large-scale fire tests in a room with dimensions of 4.0 × 4.0 × 2.0 m and found
that low-pressure water mist effectively protects steel structures from fire. Wu et al. [11]
studied the fire extinguishing behavior of cable tunnel fires using scaled-down experi-
ments and found that the fire extinguishing effectiveness of water mist is influenced by
ventilation conditions and the arrangement and quantity of combustibles. Chen et al. [12]
discussed the fire extinguishing effectiveness for cable cabin fires using water mist with
different particle sizes through physical experiments combined with FDS simulations. They
found that water mist with a particle size of 50–100 µm is effective for extinguishing cable
cabin fires. Chai et al. [13] studied different fire extinguishing systems in full-scale tests in
utility tunnels and found that high-pressure water mist has better cooling and reignition
prevention effects. Roberto et al. [14] used FDS to simulate the low-pressure water mist fire
extinguishing behavior for ship engine compartment fires, showing good consistency with
real experiments in terms of compartment temperature change trends and fire extinguish-
ing time. Zhao et al. [15] successfully suppressed thermal runaway in a lithium-ion battery
box using low-pressure water mist in experiments.

The research of these scholars has validated the effectiveness of water mist fire extin-
guishing systems, but the studies are mostly based on high-pressure systems, while there
is almost no research on low-pressure water mist fire extinguishing in cable fires in utility
tunnels. According to the National Fire Protection Association [16], a low-pressure water
mist system is defined as a water mist system where the distribution piping is exposed to
pressures of 175 psi (12.1 bars) or less. Although the main difference between high-pressure
and low-pressure water mist is pressure, the difference in pressure leads to variations in
system design, nozzle types, and water droplet sizes, all of which can impact the system’s
performance. Furthermore, due to the high pressure requirements of high-pressure water
mist fire extinguishing systems, which demand high standards for pumps and pipelines,
the required civil construction costs and subsequent maintenance expenses are high. In con-
trast, low-pressure water mist fire extinguishing systems have lower pressure requirements
for power supply, pipes, fittings, and valves, making them more reliable and cost-effective.
If widely applied in utility tunnels, they could significantly reduce the costs of safety input
during the construction and operation of utility tunnels, promoting the rapid development
of utility tunnels in the world.

In summary, scaled-down tests were conducted, verifying the effectiveness of low-
pressure water mist fire extinguishing systems in urban underground utility tunnel cable
fires. Furthermore, the impact of different nozzle flow coefficients, nozzle spacings, and
pressures on the fire extinguishing effectiveness of low-pressure water mist was analyzed,
identifying key parameters affecting its efficiency. The results of this research can provide a
theoretical foundation and data support for the engineering application of low-pressure
water mist fire extinguishing systems in urban underground utility tunnels.

2. Test Design
2.1. Test System and Devices

To accurately replicate the real conditions of cable fires in urban underground utility
tunnels and investigate the extinguishing characteristics of low-pressure water mist, a
scaled-down test platform was constructed, as shown in Figure 1. The utility tunnel model
(10.0 m long, 0.9 m wide in cross-section, and 1.25 m high) is scaled down from a real tunnel
of 2.7 m width and 3.75 m height; the dimensionless scale ratio is thus S = 1/3. The similarity
theory is based on geometric and dynamic similarity to ensure that the results obtained
from these tests can reveal the relevant characteristics of the real conditions of cable fires
in urban underground utility tunnels. The model is made mainly of high-temperature-
resistant stainless steel, and the materials for the front and both sides of the model are
made of high-temperature-resistant quartz glass, allowing real-time observation of the
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combustion phenomena, fire development, and low-pressure water mist fire extinguishing
during the testing process.

The low-pressure water mist fire extinguishing system consists of water mist pipelines,
zone valves, a lightweight centrifugal pump, and a water storage tank. The rated pressure
of the pump is 1.6 MPa. A return-flow pipeline is located on the left side of the pump, and
the pressure within the pipeline is controlled by adjusting the valve on the return-flow
pipeline. The water storage tank is made of PVC material with a volume of 1.5 m3. The
flow rate of water mist and the water storage capacity of the tank can be calculated using
the following formulae [17].

q = K
√

10 p (1)

Qs = ∑n
i=1 qi (2)

V = Qs · t (3)

Among them, q is the design flow rate of the nozzle, L/min; K is the flow coefficient of
the nozzle, nondimensional; p is the design working pressure of the nozzle, MPa; Qs is the
design flow rate of the system, L/min; n is the number of nozzles; V is the required effective
volume of the water storage tank, L; and t is the design spray time of the system, min.

Upon powering on the pump, water is drawn from the storage tank and flows into
the utility tunnel model through pipelines. The zone valve switch is used to control
the activation of the low-pressure water mist fire extinguishing system. There are three
nozzles at the top of the utility tunnel model, as shown in Figure 1a,b. Among these, the
central nozzle remains fixed, and adjustments in the nozzle spacing only affect the distance
between the other two nozzles and the central one.
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Figure 1. Low-pressure water mist fire extinguishing test platform for the scaled-down utility tunnel:
(a) front view of the system setup; (b) side view of the system setup; (c) photo of the test site; (d) photo
of the cables and the cable rack.

The cable rack is constructed of stainless steel and placed close to the model’s sidewall,
as shown in Figure 1d. The cables used are TVR general-purpose flexible cables, each 1.5 m
long. A total of 30 cables is securely arranged and placed on the cable rack, positioned at a
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height of 0.2 m above the model ground. The ignition source consists of a rectangular oil
pool measuring 0.6 m × 0.15 m × 0.02 m, located directly beneath the cable rack. N-heptane
is used as the fuel, which burns steadily and produces minimal black smoke, facilitating
observation during the experiments.

The primary mechanisms of low-pressure water mist fire extinguishing are cooling
and asphyxiation [18]. In the case of a utility tunnel cable fire, low-pressure water mist
directly affects the flames, resulting in a pronounced cooling effect. Therefore, temperature
data are taken and analyzed in detail. Six K-type thermocouples are arranged longitudi-
nally and laterally within the utility tunnel to measure temperature data during the tests.
Longitudinal thermocouples are placed directly above the cables, neatly spaced along the
centerline of the cable rack, with a 0.4 m gap between each thermocouple. The lower row
of thermocouples is positioned 0.4 m above the ground, while the upper row of thermo-
couples is placed 1.2 m above the ground. At a height of 1.2 m above the ground, lateral
thermocouples are placed at 0.4 m intervals, with the outermost thermocouple located
1.2 m from the centerline of the cable rack. The serial number of thermocouples is marked
as TC-1 to TC-6, as shown in Figure 1a,b.

2.2. Test Conditions Setup

The flow coefficient of the nozzle K, pressure p, and nozzle spacing d are the three
main parameters that affect the fire extinguishing effectiveness of low-pressure water mist.
To validate the fire extinguishing effectiveness of low-pressure water mist for cable fires in
the utility tunnel, the test condition with K of 1.6, P of 1 MPa, and d of 750 mm was selected
for the test, marked as Test 1.

Furthermore, to investigate the impact of K, p, and d on the fire extinguishing effective-
ness of low-pressure water mist for cable fires in the utility tunnel, tests were conducted
with these three parameters as variables. Test 1 was selected as the control group, and the
whole test conditions are outlined in Table 1.

Table 1. Test conditions.

Test Number K p (MPa) d (mm) Remarks

1 1.6 1 750 Control group

2 0.5 1 750
Change flow coefficient of the nozzle3 0.8 1 750

4 2.3 1 750

5 1.6 1 500
Change nozzle spacing6 1.6 1 900

7 1.6 1 1250

8 1.6 0.6 750
Change pressure9 1.6 0.8 750

10 1.6 1.2 750

2.3. Test Method

The test officially commenced by igniting the oil pool with an extended igniter. The
oil pool continued to burn and ignited the cables. At 150 s, the cable fire entered a stable
burning phase, at which point the low-pressure water mist fire extinguishing system was
activated. The low-pressure water mist fire extinguishing system remained active for 360 s,
continuing to cool the utility tunnel model even after the flames were extinguished. After
360 s of operation, the interior temperature of the utility tunnel model returned to ambient
temperature, marking the end of the test.
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3. Analysis of Utility Tunnel Low-Pressure Water Mist Fire Extinguishing Test Results
3.1. Validation of Fire Extinguishing Effectiveness

Figure 2 illustrates the test phenomenon of Test 1. At 0 s, the test officially commenced
by igniting the oil pool. As the combustion progressed, the flames from the oil pool
gradually expanded and ignited the cables at 30 s. By 90 s, the cable fire continued to
intensify. At 150 s, the low-pressure water mist fire extinguishing system was opened,
initiating the fire extinguishing process.

Upon opening the zone valve switch, water within the pipelines rapidly transformed
into water mist and was sprayed into the utility tunnel model, creating strong turbulence
around the fire source. At 151 s, the flames were suppressed immediately by the impact of
the water mist, resulting in a rapid reduction in flame height. By 158 s, under the continuous
suppression of the water mist, the flames exhibited noticeable unstable fluctuations. At
164 s, the flames were completely extinguished. The middle section of the cables presented
a charred appearance after the fire was extinguished, as shown in Figure 3.
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Figure 3. Photo of the charred cables.

Figure 4 illustrates the temperature changes in the thermocouples under Test 1. At a
height of 0.4 m (TC-1), the measured temperature corresponds to the flame temperature.
After the ignition, the temperature of TC-1 exhibits a rapid increase and reaches approxi-
mately 770 ◦C at around 40 s. At around 150 s, after reaching the fully developed phase,
the temperature stabilizes and fluctuates around 600 ◦C, with a deviation of approximately
50 ◦C. At the ceiling directly above the fire source (TC-3), the temperature continues to
rise due to the continuous impact of flames and the heat exchange with high-temperature
smoke. At around 150 s, it reaches the highest temperature of approximately 400 ◦C. On the
left side of the ceiling (TC-4, TC-5, and TC-6), the temperature keeps steadily and gradually
increases after ignition, without fluctuations. This trend differs from the temperature
changes in TC-1, TC-2, and TC-3 because the left side of the ceiling is not directly heated by
flames, resulting in less influence from flame fluctuations.

At 150 s, the injection of low-pressure water mist has a pronounced cooling effect on
both the flames and the ceiling. Specifically, in the flame area (TC-1, TC-2), the temperature
exhibits a significant decreasing trend in the initial stages following the activation of the
fire extinguishing system. After 18 s of system activation, the temperature has already
decreased by 50%, with visible flames extinguished at this point. After 50 s of system
activation, the internal tunnel temperature drops from the highest temperature, 650 ◦C, to
40 ◦C.
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At the ceiling directly above the flame (TC-3), the temperature decreases rapidly in
the initial stages of system activation, while exhibiting a slower decline between 35 s and
70 s of system activation. This is because the droplet size of the fine water mist is small,
the specific surface area is large, and the surface heat transfer coefficient is large. When



Fire 2023, 6, 433 7 of 12

the fire extinguishing system is initially activated, the ambient temperature inside the
model is high. Upon system activation, water mist droplets vaporize rapidly, absorbing a
significant amount of ambient heat. The dense water mist droplets effectively block the
intensity of heat radiation from flames and the convection heat from smoke, leading to a
rapid reduction in the fire temperature. Furthermore, some high-velocity mist droplets
impact the surfaces of cables, thereby facilitating the wetting of the combustible materials,
ultimately achieving the objective of fire suppression and preventing the fire from spreading.
As the fire extinguishing system continues to operate, the temperature difference between
the hot smoke layer and the water mist gradually decreases, resulting in a reduced rate of
heat absorption through water mist evaporation.

On the left side of the ceiling (TC-4, TC-5, and TC-6), the temperature continues to
increase in the first 10 s of system activation. Moreover, the rate of temperature decrease
is significantly slower than the other three thermocouples. This indicates that water mist
mainly cools the flame area within its coverage range, while its cooling effect on the
surrounding environment is limited, resulting in a lag in temperature changes in areas far
from the flames compared to those in the flame area.

In conclusion, the low-pressure water mist fire extinguishing system can effectively
extinguish utility tunnel cable fires. The cooling effect of the low-pressure water mist fire
extinguishing system is highly noticeable, and the fire extinguishing time is short.

3.2. Analysis of the Impact of the Flow Coefficient of the Nozzle on Low-Pressure Water Mist Fire
Extinguishing Efficiency

As shown in Figures 3 and 4, due to the direct impact of flames, the temperature
fluctuation range of TC-1, TC-2, and TC-3 is measurable, which affects the investigation of
the cooling effect of the low-pressure water mist fire extinguishing system. The left-side
area of the ceiling (TC-4, TC-5, and TC-6) is not directly impacted by the flames, resulting
in less influence from flame fluctuations. Therefore, the temperature data from TC-6 is
selected for analysis.

Table 2 presents the results of four sets of test conditions under different nozzle flow
coefficients (k). The table shows that as K increases, the fire extinguishing time significantly
shortens. The fire extinguishing time for Test 4 is 10 s, which is a 66.7% reduction compared
to the fire extinguishing time (30 s) for Test 2. The fire extinguishing time for Test 1 and
Test 4 is close. This indicates that if K continues to increase, the fire extinguishing time will
not see a substantial further reduction.

Figure 5 illustrates the temperature variations at TC-6 under different nozzle flow
coefficients. In Figure 5b, each vertical line indicates the moment when the temperature
in each condition drops to half of the maximum temperature. The trend of temperature
reduction is smoother for Test 2 and Test 3 after initiating the low-pressure water mist fire
extinguishing system. Test 1 and Test 4 show a rapid decrease in temperature, and their
temperature reduction trends are consistent. At the same time, the moments when their
temperatures reach half of the maximum temperature are close. This indicates that as K
increases from 1.6 to 2.3, the cooling effect does not increase significantly. This is because
an increase in K results in higher water usage, leading to an increased number of mist
droplets reaching the fire area. Within a certain effective area, the ejected water mist absorbs
more heat from the surrounding fire scene, leading to a faster temperature reduction and,
consequently, improved fire suppression efficiency. However, when K reaches a certain
point, the ejected mist droplets tend to saturate, preventing further effective enhancement
of the cooling effect.
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Table 2. Results of 4 sets of tests with different nozzle coefficients (temperature data for TC-6).

Test K
Highest

Temperature
(◦C)

Temperature at
Time of Fire
Extinction

(◦C)

Fire Extinguishing
Time

(s)

Average
Pre-Extinguishing

Cooling Rate
(◦C/s)

Time When
Temperature Drops to
Half of the Maximum

(s)

2 0.5 226 139 30 2.9 45
3 0.8 240 140 26 3.85 33
1 1.6 273 195 14 5.57 29
4 2.3 252 170 10 8.2 28
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In summary, it is evident that when K is low, increasing it within a certain range
significantly enhances the cooling effect and fire extinguishing efficiency of the low-pressure
water mist fire extinguishing system, reducing the fire extinguishing time. However, when
K continues to increase from 1.6 to 2.3, the cooling effect of low-pressure water mist does
not show a significant improvement.

3.3. Analysis of the Impact of Nozzle Spacing on Low-Pressure Water Mist Fire
Extinguishing Efficiency

Table 3 provides the results of four sets of tests under different nozzle spacings (d).
From Table 3, it can be observed that with an increasing d, the variation in fire extinguishing
time is relatively small. Both Test 1 and Test 6 have a fire extinguishing time of 14 s. Test 5
has a fire extinguishing time of 10 s, which is 47.3% lower than Test 7 (19 s).

Figure 6 presents the temperature changes at TC-6 under different nozzle spacings.
The four test results exhibit similar patterns in terms of peak temperature, temperature at
the time of fire extinction, and the average pre-extinguishing cooling rate. Test 5 shows
only a slight advantage in cooling effectiveness. It is worth noting that Test 7 has a higher
pre-extinguishing average cooling rate compared to Test 1 and Test 6, and the time when
the temperature drops to half of the maximum is shorter. This is because decreasing d for
water mist means a greater number of nozzles, resulting in more water mist filling the entire
utility tunnel. As a result, the cooling effect is enhanced, and the fire suppression time is
reduced. However, when d increases, the coverage area (or protection radius) of water
mist expands. Consequently, the fire extinguishing effectiveness in the overlapping regions
of different nozzles decreases. Test 5 has the smallest d, resulting in a more concentrated
effect of nozzles on the fire source, The flames extinguish earlier, resulting in a decrease in
ambient temperature. In contrast, the larger d in Test 7 significantly increases the nozzle’s
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coverage area, providing better cooling effects in the surroundings of the fire source before
extinguishing it.

Table 3. Results of 4 sets of tests with different nozzle spacings (Temperature data for TC-6).

Test d
(mm)

Highest
Temperature

(◦C)

Temperature at
Time of Fire
Extinction

(◦C)

Fire Extinguishing
Time

(s)

Average
Pre-Extinguishing

Cooling Rate
(◦C/s)

Time When
Temperature Drops to
Half of the Maximum

(s)

5 500 257 196 10 6.1 22
1 750 273 195 14 5.57 29
6 900 269 198 14 5.07 32
7 1250 265 157 19 5.68 25
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In conclusion, changes in d have a certain degree of impact on the cooling efficiency
of the low-pressure water mist fire extinguishing system. A smaller d achieves better fire
extinguishing results, while a larger d results in a larger coverage area for low-pressure
water mist. Taking into account both fire extinguishing efficiency and the impact on the
protection radius, the condition with a d of 750 mm yields the optimal results.

3.4. Analysis of the Impact of Pressure on Low-Pressure Water Mist Fire Extinguishing Efficiency

Table 4 presents the results of four different tests under different pressures (p). From
Table 4, it is evident that with an increase in p, the fire extinguishing time significantly
decreases. In Test 10, the fire extinguishing time is 7 s, which is a 75.0% reduction compared
to Test 8 (28 s) and a 50% reduction compared to Test 1 (14 s). This indicates that p has a
substantial impact on the fire extinguishing effectiveness of low-pressure water mist.

Figure 7 presents the temperature changes at TC-6 under different pressures. From
Figure 7, it can be observed that there are significant differences in the temperature reduc-
tion trends. In particular, under Test 8, which has the lowest p, the temperature reduction
trend is the most gradual. As p increases, the ejected mist droplets have smaller particle
sizes, resulting in a larger specific surface area of the water mist. This allows it to absorb
more heat within the surrounding space, leading to a significantly enhanced rate of temper-
ature reduction. The average pre-extinguishing cooling rate for Test 10 is 7.43 ◦C/s, which
is 2.6 times that of Test 8 (2.89 ◦C/s).



Fire 2023, 6, 433 10 of 12

Table 4. Results of 4 sets of tests with different pressures (temperature data for TC-6).

Test p
(MPa)

Highest
Temperature

(◦C)

Temperature at
Time of Fire
Extinction

(◦C)

Fire Extinguishing
Time

(s)

Average
Pre-Extinguishing

Cooling Rate
(◦C/s)

Time When
Temperature Drops to
Half of the Maximum

(s)

8 0.6 248 167 28 2.89 46
9 0.8 271 205 18 3.67 34
1 1.0 273 195 14 5.57 29

10 1.2 245 193 7 7.43 25
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In summary, changes in p have a significant impact on the fire extinguishing efficiency
of the low-pressure water mist fire extinguishing system. As p increases, the cooling effect
and fire extinguishing efficiency of the low-pressure water mist fire extinguishing system
significantly improve.

4. Conclusions

In order to investigate the fire extinguishing behavior and efficiency of the low-
pressure water mist fire extinguishing system in urban utility tunnel cable fires, a scaled-
down test platform was constructed. A series of fire extinguishing tests was conducted
with the nozzle flow coefficient, nozzle spacing, and pressure as variables. A quantitative
comparative analysis of these three factors influencing the fire extinguishing efficiency of
the low-pressure water mist fire extinguishing system was performed. The following main
conclusions were obtained:

(1) The low-pressure water mist fire extinguishing system is effective in extinguishing ca-
ble fires in utility tunnels. It can effectively extinguish flames in tests of all conditions,
with the shortest fire extinguishing time of 7 s. The cooling effect of the low-pressure
water mist fire extinguishing system is outstanding, and the system can reduce the
temperature inside the tunnel from 650 ◦C to 40 ◦C within 50 s of system activation.

(2) The pressure and nozzle flow coefficient significantly affect the fire suppression
efficiency of the low-pressure water mist fire extinguishing system, while nozzle
spacing has a smaller impact. Changes in pressure, nozzle flow coefficient, and nozzle
spacing can, respectively, reduce the fire extinguishing time by a maximum of 75%,
66.7%, and 47.3%.

(3) As inferred from the previous conclusion (2), reducing nozzle spacing enhances the
effectiveness of low-pressure water mist fire suppression in utility tunnels. However,
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the improvement in effectiveness is relatively modest compared to adjustments in
nozzle coefficients and increased pressure. Furthermore, in practical engineering
applications, reducing nozzle spacing leads to an increased number of nozzles, re-
sulting in higher deployment and maintenance costs. Therefore, for low-pressure
water mist systems, when the nozzle spacing of the low-pressure water mist fire
extinguishing system meets the requirement of “no dead zones”, priority should be
given to increasing the system’s pressure and the flow coefficient of the nozzles.
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