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Abstract: Accurate estimation of fuels is essential for wildland fire simulations as well as decision-
making related to land management. Numerous research efforts have leveraged remote sensing and
machine learning for classifying land cover and mapping forest vegetation species. In most cases that
focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square
kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at
the national scale. The present work aims to develop a large-scale surface fuel identification model
using a custom deep learning framework that can ingest multimodal data. Specifically, we use
deep learning to extract information from multispectral signatures, high-resolution imagery, and
biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled
data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional
neural network backbone is used to extract the visual features from high-resolution imagery. A
Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can
capture classification uncertainties while boosting the prediction performance. To train the system
as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing
fuel maps across California. Application results on independent test sets showed promising fuel
identification performance with an overall accuracy ranging from 55% to 75%, depending on the
level of granularity of the included fuel types. As expected, including the rare—and possibly less
consequential—fuel types reduced the accuracy. On the other hand, the addition of high-resolution
imagery improved classification performance at all levels.

Keywords: wildland fire; fuel mapping; remote sensing; artificial intelligence; machine learning;
deep learning

1. Introduction

Statistics show an unprecedented increase in the size, intensity, and effects of wildfire
events relative to historical records [1,2]. In 2018, the deadliest fire in California history,
the Camp Fire, resulted in 85 casualties and destroyed nearly 14,000 homes and more than
500 commercial structures [2]. Exacerbated by climate change, extreme wildfires are
projected by the United Nations Environment Program to further increase globally on
the order of 30% by 2050 and 50% by the end of the century [3]. Wildfires are continuing
to grow into a substantial threat to the well-being of communities and infrastructure
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despite technological and theoretical advancements in fire science. The unprecedented size
and complexity of this problem call for multi-disciplinary and data-informed research on
wildfire risk management (assessment, mitigation, and response).

Efficient wildfire risk management relies on accurate wildfire spread simulations. Such
simulations can substantially improve the effectiveness of pre-event mitigation, as well as
evacuation, rescue, and fire suppression efforts [4,5]. A key input to wildfire simulations is
robust estimates of fuels that carry wildfires. Fuels are mainly categorized into the three
layers of ground (litter, duff, and coarse woody debris), surface (grass, forb, shrubs, large
logs), and canopy fuels (trees and snags) [6]. Although surface fuels are the primary drivers
of the initiation and spread of forest fires, research in this area has matured slowly with
the Anderson 13-category standard fire models [7], which served as the primary input for
point-based and spread simulations until the inclusion of the 40 Scott and Burgan standard
fire behavior models introduced in 2005 [8]. Surface fuel characterization methods were
developed as generalizations, which did not capture the full range of temporal variability
and spatial non-conformity that are inherent in surface fuel beds [6]. Therefore, input data
into modern fire behavior models bear uncertainties in describing the dynamic processes
that are missed in traditional fuel inventories [9]. A review of the state of the art in surface
fuel mapping research indicates that most of the past research efforts were focused on
site-specific semi-manual expert systems or traditional machine learning methods (e.g.,
decision trees and random forests) at regional scales. These systems have limited capability
in leveraging big data analytics, which can be exploited to learn from spatial and spectral
continuities and provide consistency of vegetation and fuels across a given landscape. As a
result, such systems are difficult to generalize to large problem domains.

At the national scale, the LANDFIRE program has created comprehensive and con-
sistent geospatial fuel products that incorporate remote sensing with machine learning,
expert-driven rulesets, and quality control [10]. Although these products have created
a valuable foundation for fire spread simulation efforts based on years of collective ex-
perience and domain expertise, large-scale modeling techniques are needed that deliver
near-real-time on-demand fuel mapping based on georeferenced fuel data and do not rely
on experience-driven expert rulesets and localized vegetation models [11]. Such models
could improve the frequency and reduce the latency of fuel data, which are currently at
a multi-year level. Furthermore, new techniques could allow for a comprehensive and
systematic accuracy assessment using independent validation datasets, which are currently
unavailable for LANDFIRE fuel maps.

To build on the success of the LANDFIRE products as a baseline and improve
their capabilities, this paper describes a deep-learning-based framework that ingests
multimodal—i.e., hyperspectral satellite, high-resolution aerial image, and biophysical
climate and terrain—data. This framework relies on a deep network of layers of learnable
weights that are trained using large amounts of georeferenced labeled data that guide the
formation of the data extraction pipeline.

Background. Most past efforts to map surface fuels for wildfire spread simulations
utilize fire behavior fuel models, which are abstract categorizations of fuels that are used as
input in fire spread simulations. The most widely adopted model in the United States was
developed by Scott and Burgan, which has 40 fuel categories [8]. Most of the past work
on fuel identification and mapping focused on classifying the pixels of a georeferenced
map into one of the fire behavior fuel model categories. A review of the fuel identification
and mapping literature shows a variety of approaches leveraging remote sensing and
biophysical data. Table 1 summarizes the major studies on surface fuel identification and
mapping. We note here that our paper focuses only on surface fuels. Therefore, the term
fuel will be used hereafter to refer to surface fuels only.
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Table 1. Summary of surface fuel mapping literature: comparison of training scale and applicability.

Inputs Region of Interest Training Set Target Fuel Model Reference

Spectral indices,
topography, climate

40,000-km2 area in British
Columbia, Canada

Sample of
450,000 pixels from the
Canadian Fuel Layer

Canadian Forest Fire
Behavior System [12]

Lidar and AVIRIS data 395-km2 area of the 2014 King
Fire, California, USA

N/A Anderson 13 fuel
model [13]

ASTER satellite data 212-km2 area in the Canary
Islands, Spain

Sample of pixels from
existing fuel map

Scott and Burgan
40 fuel model [14]

Airborne laser scanning and
Indian Satellite data

Two areas of 165 km2 and
487-km2 in Sicily, Italy

5028 field plots NFFL fuel model [15]

Lidar data 410 km2 national park in Spain 128 field plots Prometheus fuel model [16]

ASTER imagery 64-km2 region in the south
of Italy

17 field plots
(500 pixels)

Modified Prometheus
fuel model [17]

Lidar data and bands of
NAIP imagery

99.5 km2 of northern Sierra
Nevada, California

N/A Scott and Burgan
40 fuel model [18]

Lidar and Airborne Thematic
Mapper data

2.3 km2 of a national park
in Spain

360 field plots Prometheus fuel model [19]

Lidar and Quickbird data 13-km2 area in eastern
Texas, USA

27 polygons
(2160 pixels)

Anderson 13 fuel
model [20]

ALS data, Landsat-8 data,
and Digital Terrain Model

3678-km2 area in the Canary
Islands, Spain

2548 points
NFFL and Canary
Islands Fuel
Classification model

[21]

Landsat imagery and Digital
Elevation Model 410-km2 national park in Spain

Sample from
102 field plots

Modified Prometheus
fuel model [22]

Lidar data and
WorldView-2 imagery

15-km2 island in the Canary
Islands, Spain

40 field plots Prometheus fuel model [23]

Airborne Laser Scanner and
Sentinel 2 data 2023-km2 forest in Spain 136 field plots Prometheus fuel model [24]

USFS Integrated Resource
Inventory data

715-km2 area in
Boulder, Colorado

196 field plots Scott and Burgan
40 fuel model [25]

ASTER imagery 250-km2 area in Idaho 107 field plots NFFL fuel model [26]

Quickbird, Landsat-TM, and
EO-1 Hyperion imagery 60-km2 area in Greece N/A Own-developed

six classes [27]

N/A: Not using supervised learning. USFS: United States Forest Service. NFFL: Northern Forest Fire Labora-
tory.Table 1 also includes several research studies that have used lidar data, with or without spectral signatures,
as inputs to fuel identification models. Stavros et al. [13] used height information from lidar together with AVIRIS
data to build a heuristic fuel map with inconclusive fuel identification performance. Huesca et al. [16] used
lidar data to compare Spectral Mixture Analysis, Spectral Angle Mapper, and Multiple Endmember Spectral
Mixture Analysis mapping methods for fuel mapping in a national forest in Spain. Mutlu et al. [20] showed
that fusing lidar data resulted in fuel identification improvement compared with using Quickbird multispectral
imagery alone. Jakubowski et al. [18] estimated the fuel map for a small region in the Sierra Nevada using lidar
data and National Agricultural Imagery Program (NAIP) imagery, and a variety of traditional machine learning
algorithms, and concluded that although the methods predicted general fuel categories accurately, specific fuel
type prediction accuracy was poor. Garcia et al. [19] reported high fuel identification accuracy using lidar and
spectral data with Support Vector Machines and decision rules and attributed the cases of confusion to low lidar
penetration to understory vegetation. These studies indicate that, while the inclusion of lidar data has shown
promise, their limited spatial availability has restricted their applicability to small scales. Therefore, until frequent
high-resolution lidar surveys become available at the national scale, this data modality might not be a useful
input for large-scale mapping efforts.

The studies listed in Table 1 mostly use spectral signatures from satellite or airborne
imagers, lidar data, biophysical data, or a combination thereof to identify and map fuels.
In most cases, the area of interest is less than a few hundred square kilometers, and the
labeled training data comprise only small numbers of points. This means that the resulting
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fuel identification models are localized and site-specific. The closest work to large-scale fuel
identification is that of Pickel et al. [12], wherein the utility of an Artificial Neural Network
model for fuel mapping was explored. They used a three-layer neural network to estimate
9 fuel types based on the Canadian Fire Behavior Prediction System for a 200 × 200 km2

area in British Columbia, using a vector of 24 spectral, terrain, and climate inputs. For the
target fuel labels, their work used a sample of pixels from the Canadian fuel product. The
results of the study demonstrated that an overall accuracy of 60–70% could be achieved
after regrouping the less-frequent fuel types.

The review of the literature in Table 1 also shows that, while different sources of
imagery have been used to extract multispectral information at the points of interest, high-
resolution images have not been used yet as an independent input to identify fuels. In the
cases where high-resolution aerial or satellite optical images (e.g., NAIP and Quickbird
imagery) have been used ([18,23,27]), only RGB pixel values were collected as scalar inputs
similar to other spectral or biophysical features. In Mutlu et al. [20]—while bands of 2.5-m
resolution Quickbird images were used to create composite images with lidar-generated
bands of height bins, variance, and canopy cover—per-pixel classification using decision
rules essentially resulted in the treatment of pixels in isolation, rather than within the
landscape context. Therefore, an investigation of the application of high-resolution images
as distinct inputs for fuel identification is lacking and would be useful.

The literature review also reveals that none of the previous approaches provide a
measure of fuel identification uncertainty. Such uncertainty is well-recognized to exist
within any identification task and can be a result of a variety of sources, including random-
ness in the data, models, and sensors, as well as environmental noise. Knowledge of the
uncertainty in the identified fuels is important as it provides a means to account for wildfire
simulation uncertainties, which can be helpful in risk assessment and uncertainty-aware
decision-making [28]. Furthermore, knowledge of the confidence with which fuels are
predicted can be a useful tool for model diagnostics and quality control. In other words,
increased uncertainty in the identification can point to underlying problems in the data and,
thus, to methods that can be used to improve their accuracy. Specifically, the active learning
framework in machine learning aims to improve model performance while reducing the
costs associated with large-scale data labeling by actively querying ground truth labels for
data points with the highest uncertainty. Providing fuel identification uncertainties would
enable the use of active learning to improve fuel identification efforts in the future.

Research Significance. To overcome the current limitations in fuel mapping using
remote sensing, this paper leverages emerging deep learning technology to examine the
feasibility of creating surface fuel maps at a much larger scale than the existing fuel mapping
capabilities, while quantifying fuel map uncertainty. To that end, we use a data fusion
scheme to integrate spectral and biophysical features with high-resolution imagery and
identify surface fuels using a single end-to-end model for the State of California. To train
the model, fuel pseudo-labels are generated using a geospatial sampling of the LANDFIRE
fuel maps. This information is then coupled with multimodal input data sourced from
various data repositories and geospatial data products, including multispectral satellite
data (bands of Landsat surface reflectance), spectral indices (e.g., Normalized Difference
Vegetation Index (NDVI)), topography and terrain data (from the U.S. Geological Survey
(USGS) Digital Elevation Model), and high-resolution aerial imagery from the NAIP. The
proposed approach presents the following technical contributions and benefits with respect
to the existing literature:

1. Creating fuel identification models that are applicable at large spatial scales (e.g.,
state and national levels) while integrating spectral and biophysical information with
high-resolution imagery and providing a measure of model uncertainty;

2. Creating a method for anomaly detection in the existing surface fuel mapping systems
(specifically the LANDFIRE products) by comparing the predicted fuels with the
existing fuel labels and using the discrepancies as a starting point for quality control;
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3. Providing a means to interpolate fuels for the intermediate years when fuel maps are
not available within the LANDFIRE database.

A detailed analysis of the effect of the individual components of the model, the pro-
posed stochastic ensemble approach, and the size of the dataset utilized for model training
is presented in the discussions. It should be noted that the use of pseudo-labels sampled
from the LANDFIRE products is to demonstrate the proof-of-concept and examine the
feasibility of developing large-scale fuel identification models. However, the proposed
framework is readily applicable to large collections of field data from national data collec-
tion campaigns, such as the Forest Inventory and Analysis (FIA) program of the United
States Forest Service, which is not publicly available at this time [29].

2. Materials and Methods

Proposed System. This paper investigates the use of deep learning for large-scale
surface fuel mapping. Figure 1 provides a schematic of the proposed identification model
where two types of neural networks are used to extract information from different modali-
ties of input data in a way that facilitates their fusion and end-to-end training on labeled
data. For tabular data—such as biophysical metadata (e.g., terrain and climate features),
seasonal spectral values (e.g., bands of Landsat multispectral imagery), and statistics of
spectral indices (e.g., NDVI), a multi-layer artificial neural network (ANN) consisting
of multiple fully connected neural layers is used. For image-based contextual data (i.e.,
high-resolution imagery), a convolutional neural network (CNN) is used, which leverages
a deep hierarchy of stacked convolutional filters that constitute layers of increasingly mean-
ingful visual representations. The number, arrangement, and characteristics of these layers
can be designed for each specific task. Alternatively, a variety of state-of-the-art CNN
architectures exist that can be utilized as backbones and outfitted with custom dense output
layers. Examples of these architectures include VGGNet [30], ResNet [31], DenseNet [32],
Inception [33], and InceptionResNet [34]. These architectures have been used in several
remote sensing applications with different degrees of success [35], and the selection of the
optimal architecture is known to be dependent on the characteristics of the specific task at
hand. In this work, an array of architectures is trained and compared with each other to
maximize fuel identification performance. To speed up and improve the learning process,
a learning mode called transfer learning can be used, wherein the extracted features in
state-of-the-art CNN architectures that have been pre-trained on generic large-scale com-
puter vision datasets are repurposed and fine-tuned to the existing task. This is built upon
the widely known observation that the intermediate visual features extracted in visual
recognition tasks are not entirely task-specific, except for the final classification layer [36,37].
Even in cases with a large distance between the source and target tasks, transferring fea-
tures from networks pre-trained on large datasets is better than random initialization [36].
This has been shown to be applicable to various remote sensing problems involving RGB
imagery [38–40]. In remote sensing applications involving spatial data other than RGB
imagery (e.g., multi/hyper-spectral data, lidar, and radar images), the number and nature
of input bands are usually not consistent with such pre-trained networks. However, in the
proposed approach, the application of the CNN backbone on high-resolution RGB imagery
allows for the use of transfer learning. As a result, the weights of the CNN backbone are
initialized from those pre-trained on the generic computer vision ImageNet dataset [41],
which are then fine-tuned using the high-resolution fuel imagery herein.

At the conclusion of each neural network branch, the computed features are concate-
nated before the final prediction layer to fuse the multimodal data. The optimal share of
the branches in the data fusion will be determined through training in terms of the weights
of the prediction layers. This end-to-end architecture is shown in Figure 1, which is built
upon the established notion that different modalities of sensing the same subject usually
provide complementary information, enabling deep learning methods to produce more
reliable predictions. Details on the network and data fusion design are presented in a
later section.
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Figure 1. Proposed deep learning-based surface fuel identification framework (definition of spectral
indices is presented in the data extraction section).

Training the same machine learning model on different sets of observations from
the same population has been shown to result in a degree of variance in the resulting
models [42]. Furthermore, aside from the CNN backbone that is initialized from pre-
trained weights according to transfer learning, all other neural network layers are randomly
initialized, resulting in slightly different models, some of which may not provide optimal
fuel identification results. To improve the accuracy and robustness of the model in response
to variations in observation subsets and training randomness, and to provide a measure
of model uncertainty, a stochastic ensemble of models was created, which is depicted in
Figure 2.
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In the proposed model, the dataset is first randomly split into multiple subsets for
training and validation, following the widely used k-fold cross-validation scheme. A
separate randomly initialized model is trained on each of the training subsamples to
capture the variance from the randomness in the observations. Subsequently, each of
these k models is further randomized in inference mode using a process called Monte
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Carlo dropout [43]. Dropout refers to a regularization technique in neural networks that
was originally proposed to combat overfitting by applying a binary mask drawn from a
Bernoulli distribution, which has the effect of randomly dropping some of the nodes in the
network during training [44]. This, in turn, is known to prevent complex co-adaptation
between nodes and can result in improved robustness of trained models [44].

Monte Carlo dropout [43] has been proposed as a mechanism specific to neural
networks that aims to quantify machine learning model uncertainties and improve their
robustness. In this process, dropout layers embedded before every dense layer in the
network are activated at testing time, and the model is applied m times on each observation
resulting in m different neural network models where a fraction of the nodes are deactivated
at random, hence creating a stochastic ensemble of many slightly perturbed models. Gal
and Ghahramani [43] demonstrated that using the mentioned dropout scheme at the testing
time provides an approximation of Bayesian inference over the neural network weights
that is computationally efficient. This technique has been successfully utilized to derive
model uncertainty in visual scene understanding [45], medical imaging [46], robotics,
and autonomous driving [47]. However, aside from a few recent applications in road
segmentation from synthetic aperture radar [48], ocean hydrographic profiles [49], lunar
crater detection [50], and urban image segmentation [51], its applications in remote sensing
and especially in wildfires have been limited.

To account for the variations from observation subsets and training randomness by
means of the stochastic model ensemble proposed in this work, an overall array of k × m
softmax scores are created for each data point. Lastly, the average of the softmax scores
is used to arrive at the final fuel identification, and the variance of the probability scores
provides a measure of model uncertainty. Figure 2 depicts this process and its components
schematically. In this figure, the arrows at the conclusion of the process denote the softmax
scores from each one of the individual models acting on each pixel’s inputs, whose average
and variance determine the fuel type classification and its uncertainty, respectively.

Area of Study. To investigate the feasibility of creating a large-scale fuel identification
model using deep learning, the state of California was selected as the area of study for data
extraction and model training. To train the system, fuel labels were generated by a random
geospatial sampling of the 2016 LANDFIRE Scott and Burgan 40 fuel model. An initial
sample of 40,000 points was generated to provide a large training and validation dataset to
test the feasibility of training large-scale deep learning models. However, smaller subsets
of data were also later created to study the effects of the number of training samples on the
performance of the model. This dataset is then divided into training and validation subsets
for cross-validation as previously described. Figure 3a depicts the spatial distribution of
the collected training samples. To create a means for evaluating the developed models, a
random test set was also independently generated. To avoid the proximity and correlation
of training and testing samples that could affect the generalizability of the testing results,
a minimum distance of 1 mile was enforced between the training and testing samples.
This eliminates the possibility of very similar points ending up in both the training and
testing sets, which can lead to overly optimistic results. An initial sample of 5000 points
was selected for testing (Figure 3b). Fuel type labels in Figure 3 are based on the Scott and
Burgan fuel models [8], as presented in Table 2.

Data Extraction. For each data point in the extracted sample, an array of input
features was extracted. Table 3 summarizes the input features used in the modeling,
which was informed by the fuel mapping literature reviewed in the background section.
Multispectral data are the most widely used data for wildfire fuel modeling, with the
Landsat mission being one of the primary sources of open data for these applications [52].
The atmospherically corrected and orthorectified Landsat-8 Operational Land Imager and
Thermal Infrared Sensor (OLI/TIRS) surface reflectance data were used at 30-m resolution.
A seasonal composite of Landsat OLI/TIRS data was computed for each sample location
using the medoid compositing criterion [53]. This criterion minimizes the sum of Euclidean
distances in the multispectral space to all other observations over the time period of interest
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(i.e., seasons). This method selects seasonal representative values while preserving the
relationships between the bands and has been shown to produce radiometrically consistent
composites [54]. The quality assessment (QA) band codes were utilized to mask pixels
contaminated with cloud and cloud shadow.
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Table 2. Fuel type description based on the Scott and Burgan fuel models adapted from [8].

Fuel Type Fuel Description

GR1

Grass: Nearly pure grass
and/or forb type.

The grass is short, patchy, and possibly heavily grazed. The spread rate is moderate;
flame length is low.

GR2 Moderately coarse continuous grass with an average depth of about 1 foot. Spread
rate is high; flame length is moderate.

GR3 Very coarse grass, with an average depth of about 2 feet. Spread rate is high; flame
length is moderate.

GS1 Grass-Shrub: Mixture of
grass and shrub, up to
about 50 percent shrub

coverage.

Shrubs are about 1 foot high with a low grass load. The spread rate is moderate; flame
length is low.

GS2 Shrubs are 1 to 3 feet high, with moderate grass load. The spread rate is high; flame
length is moderate.

SH1

Shrub: Shrubs cover at
least 50 percent of the site;

the grass is sparse to
nonexistent.

Low shrub fuel load, fuel bed depth of about 1 foot; some grass may be present. The
spread rate is very low; flame length is very low.

SH2 Moderate fuel load (higher than SH1), depth is about 1 foot, no grass fuel present. The
spread rate is low; flame length is low.

SH5 Heavy shrub load, depth 4 to 6 feet. The spread rate is very high; flame length is
very high.

SH7 Very heavy shrub load, depth 4 to 6 feet. The spread rate is lower than SH5, but the
flame length is similar. The spread rate is high; flame length is very high.
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Table 2. Cont.

Fuel Type Fuel Description

TU1

Timber-Understory: Grass
or shrubs mixed with litter

from the forest canopy.

Fuel bed is low-load grass and/or shrub with litter. The spread rate is low; flame
length is low.

TU2 The fuel bed is a moderate litter load with a shrub component. The spread rate is
moderate; flame length is low.

TU3 The fuel bed is a moderate litter load with grass and shrub components. The spread
rate is high; flame length is moderate.

TU5 The fuel bed is a high-load conifer litter with shrub understory. The spread rate is
moderate; flame length is moderate.

TL1

Timber Litter: Dead and
down woody fuel (litter)

beneath the forest canopy.

Light to moderate load, fuels 1 to 2 inches deep. The spread rate is very low; flame
length is very low.

TL2 Low load, compact. The spread rate is very low; flame length is very low.

TL3 Moderate load conifer litter. The spread rate is very low; flame length is low.

TL4 Moderate load, including small-diameter downed logs. The spread rate is low; flame
length is low.

TL5 High load conifer litter; light slash or mortality fuel. The spread rate is low; flame
length is low.

TL6 Moderate load, less compact. The spread rate is moderate; flame length is low.

TL7 Heavy load, including larger-diameter downed logs. The spread rate is low; flame
length is low.

TL8 Moderate load and compactness may include a small amount of herbaceous load. The
spread rate is moderate; flame length is low.

TL9 Very high load, fluffy. Spread rate moderate; flame length moderate.

NB1 Non-burnable:
Insufficient wildland fuel

to carry wildland fire
under any condition.

Urban or suburban development; insufficient wildland fuel to carry wildland fire.

NB3 Agricultural field, maintained in non-burnable condition.

NB9 Bare ground.

Table 3. Geospatial datasets used for deriving predictors and class variables.

Data Category Source Dataset Derived Data

Spectral

Landsat Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS)
seasonal surface reflectance values

Band 2 (blue), band 3 (green), band 4 (red), band 5 (near
infrared), band 6, 7 (shortwave infrared 1, 2), band 10, 11
(brightness temperature)

Landsat annual spectral index statistics (see
Table 4 for definitions)

Annual median, minimum, maximum, and range of {NDVI,
EVI, SAVI, MSAVI, NDWI, VARI, TCB, TCG, TCW, NBR}

Biophysical USGS Digital Elevation Model (DEM) with
1/3 arc-second resolution [55]

Elevation (m), computed slope (deg.) and aspect (deg.),
multi-scale topographic position index (mTPI)

PRISM historical climate normal [56]

Mean temperature (◦C), mean maximum and minimum
temperatures (◦C), precipitation (mm), mean dew point
temperature (◦C), minimum and maximum vapor pressure
deficit (hPa), horizontal, sloped, and clear sky solar
radiation (MJ m−2 day−1)

Imagery National Agricultural Imagery Program
(NAIP), 1-m resolution [57] Three-channel (RGB) image centered at the point of interest

Surface Fuels
LANDFIRE 2016 map of standard surface fire
behavior fuel models [10] (based on Scott
and Burgan 40 fuel models)

Surface fuel types
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In addition to the seasonal spectral values, annual statistics of well-established spectral
indices were also computed using the Landsat data as shown in Table 4. The annual median,
minimum, maximum, and range of each of the spectral indices were computed for each
point at 30-m resolution. Biophysical characteristics of each point of interest, including
terrain properties and climate normal, were also extracted. Elevation data were collected
from the 1/3 arc-second National Elevation Dataset (NED) by the USGS [55], from which
slope and aspect were calculated and added to the input data. In addition, NED-derived
multi-scale topographic position index (mTPI) calculated as the elevation difference from
the mean elevation within multiple neighborhoods was retrieved as a differentiator of ridge
and valley landforms [58]. Climate normal values, including temperature, precipitation,
dew point, vapor pressure deficit, and horizontal, sloped, and clear sky solar radiation,
were extracted from the Parameter-Elevation Regressions on Independent Slopes Model
(PRISM) dataset from Oregon State University [56].

Table 4. Spectral indices used as training features.

Index Formula Application Reference

NDVI (Normalized Difference
Vegetation Index)

NIR − R
NIR + R

Sensitive to
vegetation greenness [59]

EVI (Enhanced
Vegetation Index) 1 G NIR − R

NIR + (C1 ∗ R) − (C2 ∗ B) + L (1 + L)
Sensitive to vegetation

greenness with enhancement [60]

SAVI (Soil-adjusted
Vegetation Index) 2 (1 + L) NIR − R

NIR + R + L
Sensitive to vegetation in

presence of soil brightness [61]

MSAVI (Modified Soil-adjusted
Vegetation Index)

2 ∗ NIR + 1 −
√
(2 ∗ NIR + 1)2 − 8 ∗ (NIR − R)

2

Sensitive to vegetation in
presence of bare soil [62]

NDMI (Normalized Difference
Moisture Index)

NIR − SWIR1
NIR + SWIR1

Sensitive to
vegetation moisture [63]

TCB (Tasseled Cap Brightness) 3 b1 ∗ B + b2 ∗ R + b3 ∗ G + b4 ∗ NIR
+ b5 ∗ SWIR1 + b6SWIR2

Sensitive to vegetation
brightness [64]

TCG (Tasseled Cap Greenness) 4 g1 ∗ B + g2 ∗ rR + g3 ∗ G + g4 ∗ NIR
+ g5 ∗ SWIR1 + g6SWIR2

Sensitive to
vegetation greenness [64]

TSW (Tasseled Cap Wetness) 5 w1 ∗ B + w2 ∗ R + w3 ∗ G + w4 ∗ NIR
+ w5 ∗ SWIR1 + w6SWIR2

Sensitive to
vegetation moisture [64]

VARI (Visible Atmospherically
Resistant Index)

G − R
G + R − B

Sensitive to vegetation while
atmospherically resistant [65]

NBR (Normalized Burn Ratio) NIR − SWIR2
NIR + SWIR2

Sensitive to
fire-induced disturbances [66]

R: red, G: green, B: blue, NIR: near-infrared, SWIR: shortwave infrared. 1 C1 = 6, C2 = 7.5, and L = 1 [67].
2 L = 0.5 [68,69]. 3 b1 = 0.2043, b2 = 0.4158, b3 = 0.5524, b4 = 0.5741, b5 = 0.3124, b6 = 0.2303 [69]. 4 g1 = −0.1603,
g2 = 0.2819, g3 = −0.4934, g4 = 0.7940, g5 = −0.0002, g6 = −0.1446 [69]. 5 w1 = 0.0315, w2 = 0.2021, w3 = 0.3102,
w4 = 0.1594, w5 = −0.6806, w6 = −0.6109 [69].

Aerial imagery from the NAIP [57] was used. This program of the US Department of
Agriculture’s Farm Service Agency has collected high-resolution aerial imagery during the
agricultural growing seasons for the conterminous United States nearly every two years
since 2002 [57]. A 1-m resolution color image centered at each sample location (120 × 120-m)
was collected for 2016 representing the most recent release of LANDFIRE’s comprehensive
fuel remap. In cases where an image was not found for 2016, the closest image within
a one-year window was retrieved. Figure 4 depicts sample NAIP images for fuel types
under investigation in this study. Of note, Figure 4 shows that some of the fuel types can
be difficult to differentiate even for the human eye due to their close visual similarity at the
scale under study (e.g., GR1, GR2, and GS1). This depicts the difficulty of the classification
task and can foreshadow potential areas of misclassification even by powerful machine
learning algorithms. The definitions of the fuel type labels in Figure 4 are based on the Scott
and Burgan fuel models [8], and their characteristic differences are presented in Table 2.
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To train the model, ground truth labels describing the fuels found at each location
are required. However, large-scale datasets obtained by field surveys that could be used
for this purpose are not publicly available (e.g., the Forest Inventory and Analysis (FIA)
Database by the United States Forest Service) and fuel model assignments may not be
available as part of data collection. To demonstrate the proof of concept and feasibility of
training such models, pseudo-labels using an existing fuel map were used in this work. To
this end, pseudo-labels for the points of interest were retrieved by randomly sampling fuel
pixels from the 2016 LANDFIRE map of standard surface fire behavior fuel models based
on Scott and Burgan fuel models. As a result of the random sampling, the distribution of
the extracted labels is a function of the frequency of different fuel types across California.
Figure 5 depicts a histogram of fuel types for the pixels within the 2016 LANDFIRE fuel
map and shows that several fuel types are not widely represented in the fuel map within
the area of study. This is important because fuel types with a small frequency of occurrence
are known to be difficult for models to learn as a result of the lack of representative data
and the resulting imbalance between the classes. On the other hand, mis-predicting a very
small number of isolated pixels has a less pronounced effect on the overall fire spread than
making errors in the prediction of large areas of dominant fuel types. As a result, identifying
the most common fuel types in the study area provides a more important contribution to
the effectiveness of the resulting fire spread simulations. Future sensitivity analyses to
quantify the effect of individual fuel types—especially rare and small categories—on fire
spread modeling are needed to evaluate these effects. To investigate the effects of class size
on the fuel identification performance of the model, Table 5 lists the fuel types larger than
different minimum sizes and their cumulative coverages. For example, with a minimum
class size of 4%, the model will include 8 classes that cover 78.1% of the pixels of the study
area. Alternatively, by aggregating the classes of the same fuel category that are smaller
than the minimum class size, models with full coverage of all pixels can be created.

Model Development and Evaluation. This section presents the details of the overall
deep learning framework and its design choices previously presented in Figures 2 and 3.
Extensive testing was carried out to design the optimal architecture for the proposed model
via cross-validation. Pretrained CNN architectures—including VGGNet [30], ResNet [31],
DenseNet [32], Inception [33], and InceptionResNet [34]—were tested as the backbone to ex-
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tract the visual features from the NAIP imagery, and the best accuracy results were achieved
using the InceptionResNet_v2 backbone; hence, this architecture was used throughout
the rest of the analyses. InceptionResNet_v2 is a 64-layer CNN architecture based on the
Inception family of architectures that employs residual connections similar to those in
the ResNet variants. The standard implementation of InceptionResNet_v2 available in
the Keras library was used in this work, and further information about this architecture
can be found in [34]. Input image size was selected to be 128 × 128 pixels, where each
pixel represents 1 m on the ground. Data augmentation in the form of random horizontal
and vertical flipping and random rotation was applied to the images during training to
increase the robustness of the training. Any transformation that could visually change the
scene, such as rescaling, recoloring, or non-affine transformations, were not applied, and
the original image was maintained during testing. The output of the InceptionResNet_v2
backbone was passed through an average pooling layer that reduces the last convolutional
feature map by calculating the average of the feature maps. A dense layer with 128 nodes
followed by a dropout layer was added to the end of the CNN branch before concatenation
with the multilayer ANN outputs.
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Table 5. List and cumulative coverage of fuel types larger than different minimum class sizes. See
Table 2 for fuel type descriptions.

Minimum
Class

Size (% *)

Number of
Classes

Cumulative Pixels
Covered (% *) Classes

1% 17 96.5
TL9 (1.2), TL4 (1.5), SH5 (1.5), TL3 (1.5), TL8 (1.5), SH7 (2.0), SH2 (2.4),

TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 (9.8), TU5 (10.1),
NB9 (10.9), GS2 (14.5), GR2 (18.6)

2% 12 89.3 SH7 (2.0), SH2 (2.4), TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), NB8 (4.9),
GR1 (9.8), TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6)

3% 10 84.9 TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 (9.8), TU5 (10.1),
NB9 (10.9), GS2 (14.5), GR2 (18.6)

4% 8 78.1 NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 (9.8), TU5 (10.1), NB9 (10.9),
GS2 (14.5), GR2 (18.6)

5% 5 63.9 GR1 (9.8), TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6)

* % of total pixel population.
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A series of DNN hidden layers and node arrangements ranging from 2 to 6 layers and
64 to 256 nodes in increments of 64 were tested to select the configuration that provides
the highest accuracy on the validation sets. A substantial increase in the number of layers
or nodes did not result in appreciable performance gains. The final configuration of the
DNN was determined to include three dense hidden layers each with 128 nodes. Finally,
the outputs of the two branches are concatenated with each other and fed to two hidden
layers of 128 nodes followed by a softmax classifier (see Figure 1). Softmax is an operator
which transforms the outputs from the last layer of a neural network into class probabilities,
from which the final classification is decided [70]. Equation (1) shows the softmax operator,
where Sj(x) is the probability of an observation belonging to class j, and n_Class is equal to
the number of fuel types under consideration.

Sj(x) =
exj

∑n_Class
l = 1 exl

(1)

A dropout layer with a dropping probability of 0.5 was used after each hidden layer
throughout the network to implement the Monte Carlo dropout scheme, as shown in
Figure 2. Furthermore, a Rectified Linear Unit (ReLU) activation function in the form of
Re(x) = (0, x) was used to provide nonlinearity in the neural network that aids the
learning of complex patterns. The resulting network was then trained using the Stochastic
Gradient Descent (SGD) algorithm [70]. In this process, following every forward pass
through the network, training loss is estimated via a cross-entropy loss function. This
function is shown in Equation (2), where yi and ŷi represent the i-th label and predictions,
respectively, and N denotes the size of the training set. The estimated loss in each training
epoch is then used in the back-propagation process that updates the unknown parameters
(i.e., weights) of the network on small subsets of training data (i.e., mini-batches). In each
epoch, the gradients of loss, L, are calculated with respect to the weights, w, ( ∂L

∂w ), and a
fraction (η, called learning rate) of the gradient is added to the weights from the previous
step (wi − 1) (Equations (3) and (4)). To improve the convergence, a term called momentum
(α) is added to the update. Finally, another regularization mechanism called weight decay
(λ) is also used to discourage overfitting by imposing smaller weights [70]. This process is
iteratively repeated until convergence.

L(yi, ŷi) = − 1
N

N

∑
i

yilog(ŷi) (2)

∆wi = α∆wi − 1 + η
∂L
∂w

+ ληwi − 1 (3)

wi = wi − 1 + ∆wi (4)

Training of the models was carried out for a maximum of 300 epochs while an early
stopping criterion was applied to stop the training if validation accuracy did not improve
for 30 consecutive epochs. A minibatch of 100, momentum of 0.9, weight decay of 0.0001,
and learning rate of 10−3 were used to start training, and the learning rate was reduced
by 1/10 after every 15 epochs, following He et al. [31]. Further trial-and-error with these
hyperparameters did not provide appreciable accuracy improvements.

The performance of the model was evaluated using well-established classification
metrics, including global accuracy, precision, recall, f -score, and Cohen’s Kappa statistic.
Global accuracy (Acc) measures the ratio of total correct predictions over the entire data
points. Recall (Rec) is the ratio of correct predictions of each fuel type to all predictions
of that fuel type. Precision (Pre) is the ratio of correct predictions of each fuel type to all
existing labels in that class. F1 score is a widely used metric that is the harmonic mean of
precision and recall. Precision, recall, and F1 were computed per class, and both their macro-
average (regardless of the size of each class) and their weighted average were calculated.
To quantify the agreement between the fuel maps developed through the proposed method
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with those of LANDFIRE, Cohen’s Kappa statistic was used as a well-established agreement
metric in the literature that measures the agreement between predicted and observed labels
while accounting for agreement by chance.

The implementation of the deep learning procedures in this paper was carried out
using the Keras neural network Application Programming Interface (API) with the Ten-
sorFlow deep learning platform as the backend. These platforms provide an array of
tools compatible with the Python programming language for designing, developing, and
training neural networks [71]. Training of the models was deployed on an NVIDIA Tesla
V100 GPU node with 112 GB of RAM.

3. Results

Using the proposed methodology, the models were trained for surface fuel identifi-
cation. Figure 6 depicts the evolution of training and validation accuracy as well as loss
during the training of the model. In this figure, solid lines show the mean of the accuracy
and loss for the ensemble, and the shaded band provides the 95% confidence interval. As
can be seen in this figure, the model demonstrates stable behavior with the convergence
of accuracy and loss to a plateau. Furthermore, the small gap between the training and
validation curves in each case demonstrates the proper training of the model with minimal
effects of overfitting. Table 6 summarizes the overall accuracy of the model trained using
different minimum class sizes ranging from 1–5%. These models were first trained on
original unfiltered fuel labels obtained from LANDFIRE 2016 fuel maps, as previously
described. The accuracy of the model ranged from 51.74% to 69.59% based on the minimum
class size without aggregating the classes smaller than the threshold. The reduction in
accuracy with the inclusion of the smaller classes is to be expected, as the model will have
less information to learn about the smaller classes. Furthermore, aggregating the small
classes with the most similar fuels also results in an accuracy reduction on the order of 10%,
which is associated with insufficient information about the small classes as well as possible
discrepancies between the aggregated classes. For a closer examination of the performance
of the system, Figure 7 presents the confusion matrices for the model with a minimum class
size of 4%. This case was selected for demonstration as it provides a reasonable accuracy of
nearly 70% while covering nearly 80% of the fuel pixels in California.
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Table 6. Testing accuracy of the model trained both on original unfiltered labels and labels filtered
with the National Land Cover Database (NLCD).

Minimum Class
Size (% of Total

Pixel Population)

Acc (Small Classes Not
Aggregated) Acc (Small Classes Aggregated)

Unfiltered
Labels

Labels Filtered
with NLCD

Unfiltered
Labels

Labels Filtered
with NLCD

1% 51.74 55.62 51.01 52.95

2% 54.08 61.66 52.50 54.94

3% 59.89 64.58 51.17 53.65

4% 67.11 74.31 56.69 59.32

5% 69.59 73.87 57.02 58.17
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Confusion matrices shown in Figure 7 demonstrate a concentration of the predictions
along the diagonal, which shows desirable behavior and noticeable agreement between
the predicted fuel labels and the corresponding true labels. To further examine the sources
of confusion, in Figure 7a, six cases of misclassification are marked for further visual
examination, as presented in Figure 8. In Figure 8, samples of images pertaining to each
fuel type that were mistaken for a different fuel type are presented. In each case, the
assumed “ground truth” labels show noticeable discrepancies with the contents of the
images. For example, Case 2 includes images that are visually consistent with agricultural
land cover while they have been labeled as “GR2,” and Case 5 shows mostly non-urban
land cover that has been labeled as “urban.” This demonstrates that the labels suffer from a
degree of impurity, which can be associated with the fact that these labels are not a direct
result of field surveys by fuel experts but are instead sampled from derivative fuel maps,
potentially with a level of inherent inaccuracies. Note that agricultural and urban land
covers are mapped via external sources ([72,73]) in LANDFIRE [74]. To demonstrate the
effect of this label impurity, the models were re-trained after filtering the labels against the
National Land Cover Database (NLCD) land cover map for 2016 [73]. Because the NLCD
maps do not have fuel information, any burnable fuel pixels that had a non-burnable land
cover label were filtered out, and vice versa. These land cover types include developed land
(open space and low- to high-intensity development), barren land (rock, clay, and sand),
and cultivated crops. This resulted in the removal of 16.3% of the pixels from the training
dataset. The results of this filtering are shown in Figure 7b,d, where the severity of the
off-diagonal elements has visibly decreased. This resulted in an accuracy improvement of
the individual classes by more than 10% on average across all classes and a global accuracy
improvement of 7.2% (from 67.11% to 74.31% in Table 6). This demonstrates an important
opportunity for the improvement of fuel maps by using the proposed method to detect the
discrepancies that can highlight potential label impurities.
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Figure 9 shows six of the biggest off-diagonal confusion elements highlighted in
Figure 7b after filtering the labels with the NLCD land cover maps. As can be seen, these
cases are mostly concentrated adjacent to the diagonal, which implies that the model’s
mistakes are mostly among the most similar fuel types. In Figure 9, each column shows the
two fuel types that have been mistaken for each other. Visual inspection of the two cases in
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each column shows that the differences between these classes are sometimes subtle and
can be difficult to differentiate even for human annotators.
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Based on the results presented in this section, the evidence suggests that the proposed
model is relatively successful at identifying the surface fuel types in the test set given an
assumed degree of impurity associated with the labels used for training. The level of fuel
identification accuracy is dependent on the desired degree of granularity with smaller
minimum class sizes, resulting in learning difficulty with less information to support
the extracted patterns. Moreover, based on the confusion matrices in Figure 7b, the non-
burnable urban land cover (NB3) is the easiest to detect (class accuracy of 95.3%), which is
to be expected, as this class has the most discernible features even to the untrained eye. On
the other hand, the grass-shrub class (GS2) is the hardest to detect (class accuracy of 66.1%),
which is associated with its close similarity to the grass fuel types.

To further visualize the performance of the model outside the testing set and in
mapping, Figures 10 and 11 present samples of fuel maps generated by the proposed
model together with the corresponding uncertainty maps created as previously described
using the average and variance of the model probabilities. As can be seen in Figure 10,
the qualitative comparison of the predicted maps with LANDFIRE counterparts shows
noticeable overall agreement, consistent with the Cohen’s Kappa values of 0.854, 0.477,
and 0.475 for the three images from left to right, respectively. Figure 11 shows a sample
of results with relatively large discrepancies between the predictions and the target labels,
with Cohen’s Kappa values of 0.046, 0.016, and 0.321. Examination of the first column in
this figure shows that a large portion of the GR1 and GR2 area in the target map indeed
seems to be visually consistent with the predicted NB3 (agricultural). This may be pointing
to a potential discrepancy in the target map (i.e., LANDFIRE) that could be used for
map correction or improvement. Note that LANDFIRE uses external mapping data for
agricultural lands [72]. The second column in this figure shows that the model replaced the
area covered by TL6 in the label map with TU5. In this case, the corresponding uncertainty
map shows that the model has some awareness of the potentially erroneous prediction that
could be accounted for in the resulting decisions. Finally, the third column shows a similar
case where, despite the overall relative agreement between the maps, the predictions seem
to have missed areas of NB9 (bare ground), TL6, and GR1. Similarly to the previous case,
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the corresponding uncertainty map may be leveraged to highlight the areas where the
model has lower confidence in its predictions.
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4. Discussion

Table 7 summarizes the contribution of the different components of the model by listing
the per-class and overall F1 scores. As shown in Table 7, in most cases, models made from
individual components have the lowest performance, and the fusion of complementary
components results in improvements with respect to individual components. Among the
individual components, NAIP imagery has the highest overall performance, followed by
spectral values. Although the detection of some classes (e.g., NB3, NB1) is substantially
easier with imagery than spectral values, others (e.g., NB8, NB9) are easier to differentiate
using spectral values. This is associated with how discernible these classes are using
their spectral or visual signatures (e.g., agricultural lands may be harder to miss using
their unique farm patterns than their spectral differences compared with grasslands).
Furthermore, although biophysical data show weak correlations with non-vegetation
classes (e.g., NB1, NB8, NB9), they provide the highest performance in the grassland classes.
Of note, the addition of imagery data always results in performance improvement. This
can be seen by comparing every model (single or multi-component) with its counterpart
after the inclusion of imagery data. By comparing the full model with the one that includes
all non-imagery data types (SV + SI + BP), all classes except NB8 (water) show accuracy
improvement. This lack of improvement for NB8 can be attributed to the apparent visual
similarity of some surface water image patches to simple grassland landscapes. Finally,
the full model that includes the fusion of all components results in the highest detection
performance, both across most individual classes and overall. This demonstrates the benefit
of data fusion in improving the fuel identification performance of the system.

Table 7. Performance of different combinations of input components of the model (numbers in the
table are F1 scores; values in bold indicate the best result in each category). Fuel types are described
in Table 2. M-Avg. and W-Avg. refer to macro- and weighted-average, respectively.

Fuel
Class BP SV IM SI BP

+ SI
SV +
IM

SI +
IM

SI +
SV

SV +
BP

BP +
IM

BP + SI
+ IM

SV + SI
+ IM

BP + SI
+ SV

BP + SV
+ IM

BP + SI +
SV + IM

GR1 67.4 65.5 67.1 64.4 72.4 67.7 67.4 66.8 70.4 71.3 73.6 68.8 72.7 72.8 74.1
GR2 61.9 62.7 65.2 55.5 67.6 66.1 59.2 59.9 66.7 67.2 68.3 65.9 67.1 69.9 70.7
GS2 57.2 65.6 63.2 62.1 65.0 66.4 64.9 64.6 65.7 65.4 67.0 66.6 67.1 67.9 68.1
TU5 73.2 84.4 82.6 82.4 84.0 85.7 84.5 83.9 84.2 83.4 85.1 85.5 84.7 85.2 86.0
NB1 45.4 57.5 75.8 50.5 64.1 76.4 72.3 56.2 67.9 74.2 74.3 75.3 68.4 76.9 77.9
NB3 67.2 70.9 90.4 60.8 78.5 90.4 88.5 75.8 81.8 91.7 90.5 89.7 83.3 90.7 90.3
NB8 40.7 77.4 63.3 66.7 71.2 76.9 72.7 72.4 72.7 67.7 78.7 74.6 78.7 77.6 77.4
NB9 42.6 70.1 56.5 70.1 73.0 72.4 72.7 69.1 67.1 64.3 74.5 72.2 71.5 71.1 75.6

M-Avg. 57.0 69.3 70.5 64.1 72.0 75.3 72.8 68.6 72.1 73.2 76.5 74.8 74.3 76.5 77.4

W-Avg. 62.0 68.3 69.2 63.9 70.8 71.6 68.6 67.3 70.7 71.2 72.9 71.6 72.0 73.6 74.3

SV: spectral values, IM: NAIP imagery, SI: spectral indices, BP: biophysical data.

Table 8 compares the performance of the Monte Carlo dropout ensemble with the
sub-sample ensemble (without the dropout) and the best individual model. Both ensemble
models have higher performances than the best individual model, confirming that the
generation of the random ensembles improves predictive performance. Monte Carlo
dropout has a slightly higher performance than the sub-sample ensemble in addition to
enabling the quantification of fuel identification uncertainty. In Table 8, precision (Pre) and
recall (Rec) denote the ratio of correct predictions from each fuel type to all predictions of
that fuel type, and to the population of that fuel type, respectively, while the F1 score refers
to the harmonic mean of precision and recall.

To study the effect of the size of the training set, the proposed model was trained with
different fractions of the overall training set population while maintaining the relative size
of the classes. Figure 12 summarizes the accuracy of the model as well as its training time
for different fractions of the training set size. Based on the figure, increasing the number of
data points usually increases the accuracy, but at the cost of increased training time. For
example, cutting the training set size in half results in an average of 2.2% and a maximum
of 7.2% reduction in per-class accuracies while decreasing the training time from 4.13 to
1.64 h (2.5 times reduction). However, it should be noted that this is a one-time increase
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during training and that the size of the training set does not affect the computational
complexity of the testing and model application if the same model architecture is being
used with different training set populations. We also note that the reported training times
are based on model deployment on an NVIDIA Tesla V100 GPU node with 112 GB of RAM.
The results of this analysis demonstrate that, to create useful large-scale fuel identification
models, datasets consisting of tens of thousands of fuel plots may not be required, as the
model with 1/10 of the largest data size still achieves an overall accuracy within nearly
5 percent of that with 40,000 observations (Figure 12). The proposed method can also be
augmented with semi-supervised learning techniques, such as label propagation, which
has been previously used in the remote sensing context to remedy the shortage of ground
truth data [75,76].

Table 8. Effect of stochastic ensemble modeling (values in bold indicate the best result in each
category). Fuel classes are described in Table 2. M-Avg. and W-Avg. refer to macro- and weighted-
average, respectively.

Fuel
Class

Best Single Model Sub-Sample Ensemble MC-Dropout Ensemble

Pre Rec F1 Pre Rec F1 Pre Rec F1

GR1 71.8 65.9 68.7 71.7 74.5 73.1 71.9 76.6 74.1
GR2 65.3 72.7 68.8 68.2 70.7 69.5 68.7 72.8 70.7
GS2 67.6 63.7 65.6 68.8 68.3 68.6 70.2 66.1 68.1
TU5 87.3 80.8 83.9 86.0 85.6 85.8 86.3 85.6 86.0
NB1 75.4 73.7 74.5 80.2 72.9 76.4 83.6 72.9 77.9
NB3 81.4 98.1 89.0 88.4 92.5 90.4 85.7 95.3 90.3
NB8 71.9 67.6 69.7 88.9 70.6 78.7 85.7 70.6 77.4
NB9 65.0 71.2 68.0 90.2 63.0 74.2 76.8 72.6 75.6

M-Avg. (Acc) 71.6 73.8 77.4

W-Avg. (Acc) 71.6 73.9 74.3
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Finally, to investigate whether the quality of the training set could be improved by
avoiding sampling from isolated noisy pixels, a filter was added to the sampling such that
only the points with similar fuels within their neighborhood of radius r were selected as
training samples. This filter essentially ensures that only the pixels belonging to a relatively
homogeneous and continuous body of similar fuel will be sampled, thus reducing the
potential noise from the random sampling strategy used. Three different values of r equal
to 50, 100, and 150 m were tested. Although some of the individual classes showed small
improvements, the overall accuracy of the model slightly decreased with the increase in
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the radius. This could be attributed to the fact that increasing r resulted in a slight decrease
in samples taken from smaller and naturally less prevalent fuel types, thus limiting any
potential improvement from the increased sample homogeneity. More generally, enforcing
homogeneity by selecting pure sample sites and filtering the minority classes can result in
missed opportunities for the identification of natural discontinuities for fuel breaks and
other forest management actions. However, the use of survey-based ground truth fuel labels
from national data collection campaigns (e.g., FIA database), and large-scale satellite-based
lidar measurements (e.g., the Global Ecosystem Dynamics Investigation -GEDI- mission)
for canopy fuel modeling can address such limitations by providing high-confidence labels
and can be studied in future works.

5. Conclusions

Most past wildfire surface fuel mapping studies proposed models trained for and
applicable to small areas of interest. In contrast, this paper discussed a model for creating
large-scale wildfire surface fuel mapping models that can be applied at regional (e.g.,
state) scales. The proposed model takes advantage of deep learning to create a predictive
model that can fuse information from spectral, biophysical, and high-resolution imagery.
The model also features a stochastic ensemble approach using the Monte Carlo dropout
technique, which both improves the performance of the model and produces a measure of
model uncertainty for the predicted fuels.

The proposed system was applied to a dataset that was compiled using a random
sample of the 2016 LANDFIRE surface fuel product based on the Scott and Burgan
40 fuel models for the state of California as the target fuel labels. The results demon-
strated the feasibility of the proposed approach that yielded approximately 55% to 75%
accuracy, depending on the desired smallest fuel type size to be included in the model. A
considerable portion of the error is attributed to the close visual similarity of some of the
fuel types at the scales under study, as evidenced by the difficulty of differentiating them
even through human examination. In this regard, the proposed model can thus be used to
reveal areas of potential discrepancies and high uncertainty in existing fuel maps and to
interpolate fuel distributions for points of interest in time. Although the effect of minimum
class size included in the model on the fuel identification accuracy was studied and showed
an anticipated decrease in the model’s performance when including very small classes, its
cascading effect on the performance of the resulting fire spread simulations was outside
the scope of this study and is deferred to a future study that could compare the predicted
fire spread parameters with different fuel identification models.

Analysis of the properties of the proposed system revealed that the fusion of differ-
ent types of data improves identification accuracy compared to using each data source
individually. Specifically, the addition of high-resolution imagery from the NAIP program
to any of the models from individual or combined data sources always improved their
fuel identification performance. Furthermore, the proposed stochastic model ensemble
generation approach resulted in improved performance with respect to individual models
while allowing for the generation of model uncertainty estimates that could be propagated
throughout resulting fire spread simulations. This can in turn enable uncertainty-aware
scenario-based decision-making and model updating. A study of the effect of the size of
the training set on the performance of the model revealed an increase in accuracy with
an increase in the training set size. Namely, cutting the training set in half resulted in a
maximum reduction of 7.2% and an average reduction of 2.2% in per-class performance,
while cutting the training time by 2.5 times. This implies that the model has the capacity to
benefit from an increased training set (i.e., more data), considering that the training of even
the largest model was relatively manageable given the hardware used in this study (overall
training of the ensemble model took approximately 4 h).

This proof-of-concept study used a random geospatial sampling of existing LAND-
FIRE fuel products to extract target labels for training. However, the proposed approach
is generic and can be applied to collections of field data resulting from in situ fuel plots.
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Although the reviewed literature has successfully used small collections of field plots from
site-specific campaigns to create fuel identification models, large-scale state- or nationwide
fuel identification models can be created using the proposed approach and national data
collection campaigns such as the Forest Inventory and Analysis (FIA) program of the United
States Forest Service. Furthermore—with fire behavior fuel models being classification
systems that use simplifying assumptions that limit their capability to capture the full
variation of fuels—the development of quantitative, physics-based fuel models that more
accurately characterize the combustible biomass would be beneficial. The success of the
proposed approach in creating large-scale models that can describe fuels illuminates a
promising pathway for creating such models, given access to in situ biomass measure-
ment data from national programs. This approach could be used to create the real-time
on-demand capability for updating fuel maps. Finally, an underlying limitation of the
proposed approach is the limited ability of the optical remote sensing data sources (Land-
sat multispectral and NAIP imagery) to capture information about the understory layers
covered by dense canopies, or to provide information about the height of the understory
vegetation. Similarly to most of the previous works in the literature, this work attempted
to leverage latent and indirect relationships between understory conditions and those from
the uppermost canopy layers that are more readily discernible in optical remote sensing
data. However, unlike some of the recent work in vegetation and fuel mapping, the use of
lidar data was not possible due to the lack of consistent state-wide coverage for the given
period of time. With the future introduction of large-scale yet high-resolution lidar sensors,
the proposed approach could be extended to allow for the fusion of the resulting spatial
data into the fuel identification model.
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