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Abstract: Creating a safe and resilient urban environment is a crucial part of sustainable urban
development. Therefore, it is imperative that a city’s safety resilience is evaluated from various
perspectives. To evaluate and improve the resilience of urban fire safety more scientifically, this
study proposes a theoretical framework for evaluating urban safety resilience based on the triangle
model and an index system including fire hazard, regional characteristics, and fire resilience is
established. The entropy weight method and cloud model are used for quantitative evaluation, and
the weights and risk level ratings are analyzed and discussed. The results demonstrate that the
method considering urban safety resilience plays a significant role in promoting the development of
urban fire safety and can provide a reference for policymakers in improving fire services.
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1. Introduction

Promoting urbanization is a significant part of each country’s modernization and
economic development, and the city problem gradually becomes a composite grand subject.
The reason is that cities carry more functions such as housing, traveling, industrial pro-
duction, commercial activities, medical care, and education. In addition, the planning and
construction of cities have become increasingly focused on ensuring safety and stability.
In China, fire is a main threat to urban safety, and rapid urbanization has simultaneously
led to an increase in fire risk [1]. With the increase in building height, it is more difficult to
evacuate and rescue when a fire occurs, and fire accidents occur more frequently. According
to the data from the China Fire Service Bureau, a total of 636,800 fires were reported in the
first three quarters of 2022. The number and direct losses of fires show an overall increasing
trend, indicating that the fire situation is still serious, especially electrical fires which are
still one of the most important causes of fire. In addition, some new energy or industries
constantly bring about new risks of fire. The probability of death in crowded places is
relatively high, and the consequences of fire on vulnerable groups are very serious.

But compared to forest fires, little attention is paid to urban fires. From the perspec-
tive of urban fires, Turner studied the social and organizational factors associated with
unintentional fire events, Jennings reviewed studies on fire risk and incidence from the
perspective of socioeconomic parameters and geographic planning, and Hu continued to
study typical socioeconomic factors on urban fire risk about developing countries [2–4];
Liu et al. analyzed the effects of governmental data governance on urban fire risk, based
on data for 105 Chinese cities [5]. In addition, there are also studies combining artificial
intelligence algorithms and IoT technologies to identify key points of urban fires, formulate
urban fire station planning, and establish fire spread models [6–8].

Due to the specificity of the spatial scale, the study of urban fires, unlike single-building
fires, will put more emphasis on the association with the whole city. Urban resilience makes
cities resilient to disasters with buffering and carrying capacity. However, considering that
fire risk and vulnerability of disaster carriers in different areas are dynamically changing,
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we hope to maintain the level of urban fire safety within an acceptable range. Therefore,
urban fire risk evaluation is inextricably linked to urban safety resilience. Many researchers
have revealed the relationship between city disaster reduction and construction plans for a
safety-resilient city. For example, Burby et al. proposed a conceptual model for urban land
use planning oriented to disaster reduction [9]. Anelli et al. established an index method to
measure urban natural risk, therefore enhancing the resilience to natural hazards in urban
planning [10]. Xu and Xue emphasized the importance of improving the resilience of urban
public spaces and explored key indicators, which provided management decision-makers
with suggestions for planning and construction [11].

However, there is an absence of comprehensive research about safety resilience and
urban fire risk. On this basis, the research structure of this paper is as follows: Section 2
reviews the concept and evolution of urban safety resilience to explore the application
scenarios of the triangular theoretical model. Section 3 establishes an index system for urban
fire risk based on the triangular safety resilience model and presents the methods used
in evaluating risk level—the entropy weighting method and the cloud model. Section 4
obtains the weight of each index through the statistical data of a selected Chinese city and
analyzes its situation of fire risk to improve safety resilience and fire safety management.
Section 5 summarizes the core idea and expands on the future use of the proposed model.

2. Urban Safety Resilience
2.1. Concept of Urban Safety Resilience

The concept of resilience originally came from physics and mechanics when referring
to the ability of an object to recover its deformation after being deformed by external forces.
Later, Holling, a scholar in the field of ecology, introduced it as an indicator to measure
the ability of ecosystems to restore their balance [12]. Since then, the theory of resilience
has been widely used and promoted from simplified abstract ecosystems and traditional
engineering systems to complex multi-stable systems. Cities are not just complex social-
ecological systems, they are also disaster-bearing systems with flexible safety functions and
primary targets for safety management. From the perspective of enhancing resilience to
ensure safety, resilience and safety are closely related, so promoting urban safety resilience
has received wide attention as a new topic. Desouza pointed out that safety resilience
refers to the ability of urban systems to absorb, adapt, and cope with external changes [13].
Meerow states that urban security resilience is the ability of urban systems and their socio-
ecological and socio-technical networks to maintain their state and recover quickly in the
face of perturbations to adapt to current or future changes [14]; Marana studies urban
security resilience from the perspective of public-private relations and defines it as the
ability of cities to resist, absorb, adapt to, and recover from acute shocks and chronic
stresses. Additionally, this study argues that urban resilience can be improved through
public-private relationships [15]. Chinese researcher Fan proposes, based on the national
safety governance system, to strengthen the construction of urban resilience in terms of
science and technology, management, and culture, focusing on the ability to resist and
adapt to risks during the response to unexpected public safety events and to advance the
level of urban safety governance [16].

The Chinese government has decided to improve urban resilience, an important part of
national planning, and the Fourteenth Five-Year Plan and Vision 2035 outline explicitly calls
for building “livable, innovative, intelligent, green, humanistic, and resilient cities”. The
main initiatives include reducing the dangers of urban disaster sources, such as avoiding
the construction of parks with major hazards in densely populated areas; reducing the
vulnerability of urban disasters, such as improving the construction quality of urban
pipeline projects and enhancing their adaptability to catastrophic weather; improving the
resilience of cities, such as stocking emergency relief materials, preparing redundant water
and power supply facilities, and building shelters. By enhancing urban safety resilience, a
series of processes can be realized in which the complex city system reacts to dangerous
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perturbations, absorbs them, maintains resilience, and restores safety, meaning that the city
can return to the expected level of safety function in a shorter period after an impact.

2.2. Urban Safety Resilience Models

There are many different definitions of safety resilience, but few systematic models of
urban security resilience are discussed. Fan et al. proposed a public safety triangle theoreti-
cal model, which formed a public safety theoretical framework on urban safety resilience
from three aspects: emergencies, disaster carriers, and emergency management [16]; Chen
et al. assessed urban resilience from three aspects: adaptability, resistance, and recov-
ery, and demonstrated that the proposed model could be used to simulate the resilience
of cities under different disaster scenarios [17]; Bruneau and Liu, respectively, aimed at
urban resilience in earthquake disaster scenarios and the spatial-temporal evolution of
resilience in Chinese provincial capitals, but both judged and constructed a system of safety
resilience in four dimensions: economic, social, organizational (or environmental), and
technological [18,19].

To use urban safety resilience as the basic logic for evaluating risk, an urban safety
resilience model needs to be established to clarify the basic framework of safety resilience
management and construction so that it can reflect the relationship between disaster el-
ements, resilience recovery capacity, and response subjects. Applying the public safety
triangle theory model to urban safety resilience has theoretical rationality and opera-
tional feasibility. Huang et al. practiced the model in the field of safety-resilient city
research, adapting it to the study of public safety events, urban safety systems, and urban
resilience [20]. The model, as shown in Figure 1, constructs public safety events, urban
disaster-bearing systems, and safety-resilient management as the three sides of a triangle
theory model, with their corresponding key features for response, recovery, and adaptation
as the resilience phases.
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Figure 1. Triangle theoretical model of urban safety resilience.

Based on the basic model, a more specific urban safety events’ framework of safety
resilience can be extended, which contains resilience processes that reflect the resilience of
the city’s continuous adaptation and safety stability. They can reflect the city’s ability to
cope with the risk of uncertainty and can be used to continuously improve and enhance
strategies and programs for urban adaptation and resilience.

3. Model and Methods
3.1. Fire Risk Evaluation Model Based on Safety Resilience

When conducting research in the practical field of fire safety, it is essential to consider
China’s urban safety construction, fire protection planning, and emergency planning.
Based on Fan and Huang’s model, this study takes fire hazard, regional characteristics, and
fire resilience as the three edges of the triangle model, which correspond to the disaster
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elements, response subject, and recovery capacity in the resilience model, as shown in
Figure 2 [16,20].
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As a disaster element itself, a fire hazard is an external disturbance acting on the safety
state of the city, which can be quantified by hazard source distribution, key firefighting units,
historical accident damage, etc. Especially for the areas where the elderly and children are
concentrated, there are fewer discussions in past studies on the fire hazard they endure.

According to the urban safety resilience triangle model, urban areas as disaster-bearing
carriers are the objects of production accident fires and living fires, so people and the
environment in the city absorb and bear the main impacts brought by emergencies. The
personnel injuries, economic losses, building destruction, and environmental damages
caused by fire events will increase the fire risk level. From the perspective of urban safety
resilience construction, the greater the resilience, the higher the bearing capacity of the
urban carrier will be, and the impact and loss on the carrier will be smaller.

Fire resilience is a part of emergency and safety management in response to sudden
fire accidents and is a series of policies and measures taken by the government and other
public organizations to prevent, manage, and mitigate the effects of fire. Improving urban
safety resilience to protect public life, health, and property, and to maintain social stability,
is an important manifestation of urban safety management during the recovery period.

3.2. Fire Risk Evaluation Index System
3.2.1. Index System Establishment

Based on the established fire risk evaluation model, an urban fire risk evaluation
index system adapted to Chinese cities is proposed. Considering the accessibility and
authority of data, 12 indicators are selected under the three perspectives of fire risk, regional
characteristics, and fire resilience. Each indicator is expressed quantitatively by specific
numbers, which can be divided into positive and negative indicators according to their
effects on fire risk. Among them, the positive indicators reveal a promoting effect on the
risk level, whereas the negative indicators are the opposite, and each indicator is presented
in Table 1.

Taking C7 Urbanization level as an example to explain the direction dividing founda-
tion. According to the comparison of the occurrence of fires in recent years, rural fires are
still a difficult point for fire prevention and control, and promoting urbanization can reduce
the risk of fire. Typically, from the data released by the Ministry of Emergency Management
on urban and rural fires nationwide in 2020, fires in rural areas accounted for 49.3% of
the total number of fires, which is 6.1% higher than in cities and towns, causing 48.1% of
the total losses, which is 12.2% higher than in cities and towns [21]. Not only there are
more rural fires, but larger fires in rural places also account for more than 60% and more
casualties. Due to the poor escape awareness of rural residents, low fire resistance rating of
buildings, and weak firefighting infrastructure, 84.7% of the total number of people killed
on the spot at the scene of a fire in rural areas, the proportion is 7.3% higher than in cities.
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Based on these data trends, it can be found that as the C7 Urbanization level grows, the risk
of fire will be decreased, denoted by a negative indicator.

Table 1. Urban fire risk evaluation index system.

Perspective Indicators Indicator Direction

Fire risk

C1 Fire hazard places Positive
C2 Important populations distribution Positive

C3 Fire severity Positive
C4 Historical fire casualties Negative

Regional characteristics

C5 Regional population Positive
C6 Economic status Positive

C7 Urbanization level Negative
C8 Seasonal influence Positive

Fire resilience

C9 Fire stations construction Negative
C10 Firefighting capacity Negative
C11 Safety supervision Negative

C12 Danger management Negative

The main sources of data selected for each indicator are:
(1) Fire accident yearbook released by China Fire and Rescue Bureau: C3 historical fire

severity is expressed by the average loss of fire accidents, C4 historical fire casualties are
expressed by using the million casualty rate due to fires in the previous year, C8 seasonal
influence is expressed by the proportion of fires in winter and spring, C9 fire stations
construction, and C10 firefighting capacity are expressed by the number of fire stations per
10,000 people and the number of hydrants per 10,000 people, respectively.

(2) Socio-economic indicators from regional statistical bureaus: resident population
density, disposable income of urban residents, and overall urbanization rate of the re-
gion are used as indicator data for C5 regional population, C6 economic status, and C7
urbanization level.

(3) Emergency Management department statistical information disclosure: C11 safety
supervision, C12 danger management use the annual report of regional firefighting work,
website of inspection public listing information, etc. They are expressed by the number of
fire hazards in key units inspected per 10,000 square kilometers and the number of major
hidden dangers which were listed for supervision and rectification.

(4) POI (point of interest) obtained from Baidu Map: based on the geographical
distribution, the unit density of buildings such as factories, industrial parks, gas stations,
etc., is used as the indicator of C1 fire hazard places, and the unit density of buildings
such as social welfare institutions, nursing homes, colleges, and secondary, primary, and
kindergarten schools is used as the indicator of C2 important populations distribution.

3.2.2. Criteria of Risk Level

The quantified fire risk indicators in the above system have different units and mean-
ings. To derive the final comprehensive fire risk evaluation results, the risk level correspond-
ing to each indicator needs to be divided. The data of each indicator is nondimensionalized
and divided into five levels according to the relevant standards, norms, safety planning,
management objectives, etc. Levels are divided from I to V, which indicates low risk (I),
general risk (II), high risk (III), higher risk (IV), and extremely high risk (V), and then the
fuzzy operation method of weight and membership is used to derive the comprehensive
fire risk level.

3.3. Entropy-Cloud Model Risk Evaluation Method
3.3.1. Entropy Weight Method

The concept of entropy originates from thermodynamics. According to the second law
of thermodynamics, entropy is a matter’s state parameter that reflects the irreversibility
of spontaneous processes, indicating that the thermal change process is directional and
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irreversible. In general, the larger the entropy value, the greater the disorder of the
thermal motion of molecules, so the magnitude of entropy reflects the violent degree
of molecular motion. In 1948, Shannon introduced it to information theory, proposed to
quantify disordered, abstract information by entropy, and digitize it to describe the degree
of disorder of a system [22]. Until now, information entropy has been widely used in the
fields of computers, engineering risk evaluation, and economic management, and it is
reasonable and feasible to use it in the fire risk evaluation of cities [23,24].

According to the principle of the entropy weight method, the weight is determined
by the scale of information contained in the index, which can eliminate the interference of
human subjective factors and is an objective way of assigning weights. When the index data
are also objective data, the influence of subjective factors is completely excluded during
the calculation of index weights. In other words, it enables the researcher to decide on
indicators with more effective information from the statistics. The steps are as follows.

1. Raw data processing

To eliminate the differences in weights caused by different scales in the process of risk
assessment, the relevant indicators need to be nondimensionalized and turned into positive
indicators. The common calculation methods include Min-Max normalization, Z-score
standardization, regularization, and mean valuation. Min-Max normalization is used to
map the data to a specified range to better fit the relevant risk indicator data. The greater
positive indicators manifest higher fire risk, and the greater negative indicator reflects the
lower fire risk, and the normalization is calculated according to the following formula.

For positive indicators:

xij =
x− xmin

xmax − xmin
(1)

For negative indicators:

xij =
xmax − x

xmax − xmin
(2)

2. Standardization of data matrix

Supposing there are n evaluation objects and m evaluation indicators, the original data
corresponding to each indicator can form the judgment matrix A =

(
aij
)

n×m, and after the
standardization the matrix is X =

(
xij
)

n×m.

3. Calculation of the indicators’ entropy

The information entropy of the jth indicator can be expressed as

Hj = −
1

ln n

n

∑
i=1

pij ln pij (3)

pij is the weight of the jth indicator in the ith case, which indicates the variation of the
indicator.

pij =
xij

n
∑

i=1
xij

(4)

4. Calculation of the indicators’ entropy weight

ωj =

(
1− Hj

)
∑m

j=1
(
1− Hj

) (5)

3.3.2. Cloud Model Method

The cloud model was proposed by Deyi Li, a member of the Chinese Academy of
Engineering [25]. Based on stochastic mathematics and the fuzzy theory, the cloud model
realizes the interconversion between qualitative and quantitative. It is an uncertainty
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transformation model between a qualitative concept and its quantitative representation
expressed in natural language values [25]. Suppose that U is a quantitative universe
represented by exact values, C is a qualitative concept on U. Let x ∈ U is a random
instantiation of the qualitative concept, and µ(x) ∈ [0, 1] is the certainty degree of x
belonging to C. Then the distribution of x over the domain is called a cloud and each x is
called a cloud drop. The properties of the cloud model are described by three numerical
characteristics: expectation Ex, entropy En, and hyperentropy He, which construct the
mapping relationship between qualitative and quantitative. The main algorithms of the
cloud model include the normal cloud generator and the backward cloud generator, where
the normal cloud generator represents the process of moving from qualitative concepts
to quantitative representations and is a concrete implementation of generating cloud
drops from the numerical characteristics of clouds, and the backward cloud generator is
the opposite.

The use of cloud models as an aid for various types of assessments in the safety
field has been widely used and has proven the superiority of the models [26–28]. Under
the urban fire risk assessment scenario, to apply the normal cloud generator to generate
the standard cloud map of each evaluation indicator, first of all, the three numerical
characteristics of the evaluation indicator should be determined.

Taking the actual distribution into account, in addition to the intervals with exact
values at both ends, there exists the evaluation interval of

[
0, Ck

min

]
and

[
Ck

max,+∞
]
, where

the indicator variables no longer obey the traditional cloud model distribution. So, the finite
interval cloud model is improved on the basis of the traditional cloud model. Therefore, the
infinite interval normal distribution transforms into a finite-interval normal distribution,
and the marginal fuzzy interval transforms into a uniform distribution with a certainty
of 1, which can better adapt to the indicators under the fire risk assessment scenario. The
corresponding characteristic parameters are calculated as follows.

Ek
x =

Ck
max + Ck

min
2

(6)

Ek
n =

Ck
max − Ck

min

2
√
[γ] + 3

(7)

Hk
e = λEk

n (8)

where: Ek
x, Ek

n, and Hk
e are the expectation, entropy, and hyperentropy of the evaluation

level interval k, respectively; Ck
max and Ck

min are the upper and lower bound values of the
interval k; [γ] is the order of the normal density function in the finite interval, taking the
largest integer of γ; λ is the empirical value, referring to the relevant literature, generally
taken as 0.01.

After obtaining the cloud model characteristic parameters of each indicator, the normal
finite interval cloud generator is used to create the standard cloud map of each indicator
belonging to each risk level, and the specific algorithm is implemented as follows.

1. Generate a normal random number E′n with expectation En and variance He
2.

2. Generate a random number xi with expectation Ex and variance E′n2.
3. Calculate the membership of xi to the qualitative concept, in the traditional cloud

model, when obeying the normal distribution:

µ(xi) = e
(xi−Ex)2

2E′n2 (9)

According to the improved normal cloud generator, when the indicator is far from the
expectation Ex, xi obeys a uniform distribution with a membership of 1, i.e.,
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µ(xi) = 1 x ∈

(
0, Ekmin

x

]
∪
[

Ekmax
x , Ckmax

max

)
µ(xi) = e

(xi−Ex)2

2E′n2 x ∈
(

Ekmin
x , Ekmax

x

) (10)

4. Repeat the above steps N times to obtain a cloud consisting of N cloud droplets of
(xi, µi).

3.3.3. Risk Evaluation Steps

Integrating the principles of the above methods, the entropy weight-cloud model
approach is used to evaluate urban fire risk. First, a reasonable evaluation index system
and the corresponding evaluation criteria are established, and the weight of each index is
determined by the entropy weight method. Then the membership degree of each evaluation
index is calculated by the improved normal cloud generator of the finite interval cloud
model and generates the corresponding cloud drops [26]. Finally, the fire risk evaluation
of the area is given according to the comprehensive determination results, as shown in
Figure 3.
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The method takes into account the fuzzy nature of the relevant indicators, which
is in line with the concept of resisting uncertainty and randomness emphasized in the
construction of safety resilience, and the specific steps are as follows.

Step 1: Based on the assessment index system C = {C1, C2, · · · , C12} and the cor-
responding index data, the weight of each index is calculated using the entropy weight
method, and the weight vector is expressed as ω = {ω1, ω2 · · · , ω12}.

Step 2: According to the risk grading criteria of the evaluation index system, the cloud
characteristic value (Ex, En, He) corresponding to each grade is calculated, and the standard
cloud map is generated by using the normal cloud generator of finite intervals according to
the cloud characteristic value on each grade of every index.

Step 3: Input the data to be evaluated into the X-conditional cloud generator to
get the membership degree µij of each indicator of the region to be evaluated on each
grade, through the fuzzy operation of the weight vector and the membership matrix, the
comprehensive membership degree of the evaluation region for each risk grade is obtained

as Kj =
n
∑

i=1
ωiµij, where j is the jth risk grade (j = 1, 2, ..., 5);

Step 4: Considering the limitations of the maximum membership principle in risk
evaluation scenarios, the rank eigenvalues K are used to quantify the final overall evaluation

rank, i.e., K =
5
∑

j=1
j

Kj
5
∑

j=1
Kj

.

4. Case Study
4.1. Calculation of Weights

Take Changsha city, Hunan Province as the evaluation area. Changsha City is located
in the northeast of central Hunan, where there are diverse landscapes and rich vegetation
in the city, and it’s near the Xiangjiang River and Mount Yuelu. The resident population
and economic development level of Changsha are the first and largest in the province, and
there are industrial parks, assembly occupancies, storages, and logistics in the city. With
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the social-economic development and the expansion of the urban scale, the number of fires
has increased, facing more serious fire hazard problems. According to the urban fire risk
evaluation index system established in Section 3.2, the index weights are calculated by
combining the statistical data of China Fire Yearbook 2013–2019, the data public information
released by the Changsha Government, and the map POIs collected based on online
maps [29,30].

MATLAB R2016a is used as a statistical analysis tool, and ArcGIS is used as a pro-
cessing tool for relevant geographical location information. The indicator data for each
year from 2013–2019 are shown in Table 2 below, and after normalization, the weights of
each indicator, information entropy, redundancy, and weight values are calculated by the
entropy weight method, as shown in Table 3.

Table 2. Urban fire risk evaluation index values.

Indicator Code Indicators 2013 2014 2015 2016 2017 2018 2019

C1 Fire hazard places 0.154 0.171 0.172 0.193 0.194 0.206 0.209

C2
Important populations

distribution 0.194 0.258 0.366 0.418 0.371 0.382 0.397

C3 Fire severity 1.813 1.375 1.465 1.253 3.186 2.559 2.440
C4 Historical fire loss 0.688 2.078 1.870 1.931 1.964 1.837 1.913
C5 Regional population 609.349 616.952 627.103 645.110 668.138 688.102 708.337
C6 Economic status 3.366 3.683 3.996 4.329 4.695 5.079 5.521
C7 Urbanization level 47.960 49.280 50.890 52.750 54.620 56.020 57.220
C8 Seasonal influence 54.657 63.345 57.952 58.543 59.988 60.064 59.192

C9
Fire stations
construction 0.023 0.029 0.030 0.031 0.032 0.038 0.041

C10 Firefighting capability 5.206 4.997 5.749 9.316 10.354 11.418 12.509
C11 Safety supervision 13.751 105.681 153.324 172.969 105.100 124.225 39.171
C12 Danger management 0.822 4.824 0.944 2.653 5.364 11.321 14.729

Table 3. Weights of indicators.

Indicator Information Entropy Redundant Degree Entropy Weight

C1 0.877 0.123 0.062
C2 0.896 0.104 0.052
C3 0.773 0.227 0.114
C4 0.665 0.335 0.169
C5 0.801 0.199 0.100
C6 0.846 0.154 0.078
C7 0.840 0.160 0.081
C8 0.896 0.104 0.053
C9 0.872 0.128 0.065
C10 0.833 0.167 0.084
C11 0.832 0.168 0.084
C12 0.885 0.115 0.058

4.2. Determination of the Standard Cloud

Regarding the “14th Five-Year Development Plan” of firefighting and rescue in Hu-
nan Province, “Changsha New Urbanization Development Plan (2021–2025)” and other
planning and policy documents, combined with the distribution of major fire hazards and
key enterprises in Changsha City, the city’s risk level is divided into five levels [29,31].

In the fire incident response plan of the region, the response to a fire is classified
into four levels, i.e., general fire, larger fire, great fire, and extremely great fire, while the
above four levels are also characterized for fire incidents in China [32]. Considering the
relative safety state of no fire as level one, this study classifies the fire risk into low risk
(I), general risk (II), high risk (III), higher risk (IV), and extremely high risk (V) five levels.
Since the selected indicators and data are different and there is no unified quantitative
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standard to determine their risk level, this paper has tried to use objective data to confirm
the classification of risk level criteria from two aspects.

First, the government’s five-year plan will make corresponding plans for the number
of fire stations and hydrants in the city. The target quantities and the visionary goal of
2035 are taken as the boundary of the low-risk interval, which is reasonable and feasible
during a certain period. In addition, expectant values of population density and economic
development of 2035 planning are available, and using them as interval boundaries can
roughly measure the relative size of risk. As for the indicators that are difficult to obtain
the implementation criteria, such as distribution density and safety management, the most
value in the statistical data is used as the interval boundary.

On the other hand, after obtaining the interval boundaries, the division of the five
levels needs to be determined, and the division of even intervals was mostly used in the
relevant studies [33,34]. But considering that indicators such as Urbanization Level and
Fire Stations Construction have a weakening effect on the suppression of risk when they are
close to saturation, the uneven division was used in the interval division of these indicators,
as shown in Table 4.

Table 4. Grading table of evaluation indexes.

Indicator
Risk Level

I II III IV V

C1 0–0.1 0.1–0.4 0.4–0.7 0.7–1 >1
C2 0–0.1 0.1–0.4 0.4–0.7 0.7–1 >1
C3 0–0.5 0.5–1 1–1.5 1.5–2 >2
C4 >2.5 2.5–2 2–1.5 1.5–1 0–1
C5 <500 500–1000 1000–1500 1500–2000 >2000
C6 <3.5 3.5–5 5–6.5 6.5–8 >8
C7 0.8–1 0.8–0.65 0.65–0.5 0.5–0.35 0.35–0
C8 0.45–0.5 0.5–0.52 0.52–0.55 0.55–0.6 >0.6
C9 >0.07 0.07–0.06 0.06–0.04 0.04–0.02 0.02–0
C10 >20 20–15 15–10 10–5 0–5
C11 >160 160–120 120–80 80–40 0–40
C12 >10 10–7 7–4 4–1 0–1

Based on the improved finite interval cloud model, the numerical characteristics of
the standard cloud for each indicator are calculated as shown in the following Table 5.

Table 5. Indicators’ numerical characteristics.

Indicator
Cloud Model Numerical Characteristics (Ex,En,He)

I II III IV V

C1 (0.050, 0.042, 0.004) (0.250, 0.127, 0.013) (0.600, 0.127, 0.013) (0.850, 0.127, 0.013) (1.150, 0.127, 0.013)
C2 (0.050, 0.042, 0.004) (0.250, 0.127, 0.013) (0.600, 0.127, 0.013) (0.850, 0.127, 0.013) (1.150, 0.127, 0.013)
C3 (0.250, 0.212, 0.021) (0.750, 0.212, 0.021) (1.250, 0.212, 0.021) (1.750, 0.212, 0.021) (2.250, 0.212, 0.021)
C4 (2.750, 0212, 0.021) (2.250, 0.212, 0.021) (1.750, 0.212, 0.021) (1.250, 0.212, 0.021) (0.500, 0.425, 0.042)
C5 (250.000, 212.314, 21.231) (750.000, 212.314, 21.231) (1250.000, 212.314, 21.231) (1750.000, 212.314, 21.231) (2250.000, 212.314, 21.231)
C6 (2.750, 0.637, 0.064) (3.609, 0.637, 0.064) (4.883, 0.637, 0.064) (6.157, 0.637, 0.064) (8.750, 0.637, 0.064)
C7 (0.900, 0.085, 0.008) (0.725, 0.064, 0.006) (0.575, 0.064, 0.006) (0.425, 0.064, 0.006) (0.175, 0.149, 0.015)
C8 (0.475, 0.021, 0.002) (0.510, 0.008, 0.001) (0.535, 0.013, 0.001) (0.575, 0.021, 0.002) (0.625, 0.021, 0.002)
C9 (0.075, 0.004, 0.000) (0.065, 0.004, 0.000) (0.050, 0.008, 0.001) (0.030, 0.008, 0.001) (0.010, 0.008, 0.001)
C10 (22.500, 2.123, 0.212) (17.500, 2.123, 0.212) (12.500, 2.123, 0.212) (7.500, 2.123, 0.212) (2.500, 2.123, 0.212)
C11 (180.000, 16.985, 1.699) (140.000, 16.985, 1.699) (100.000, 16.985, 1.699) (60.000, 16.985, 1.699) (20.000, 16.985, 1.699)
C12 (11.500, 1.274, 0.127) (8.500, 1.274, 0.127) (5.500, 1.274, 0.127) (2.500, 1.274, 0.127) (0.500, 0.425, 0.042)

After obtaining the cloud model parameters for each indicator, the cloud model is
generated by the normal cloud generator, taking the indicators C3 Fire severity (limited
interval cloud) and C7 Urbanization level (normal cloud) as examples, see Figure 4.
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Figure 4. (a) Cloud drops graphs of C3 Fire severity belonging to each level; (b) Cloud drops graphs
of C7 Urbanization level belonging to each level.

The abscissa of the graph corresponds to the evaluation quantity values of C3 and C7,
and the ordinate corresponds to the degree of certainty, or membership, of the cloud drops
at a certain risk level. According to the value of each indicator of the evaluating area, its
affiliation degree corresponding to different risk levels can be determined in the figure to
determine the certainty of the risk of the evaluating area on the indicator. From left to right,
Figure 4a represents the risk level from I to V corresponding to the cloud chart. Due to the
evaluation criteria of C3 on both sides being an open interval, so the affiliation degrees are
1 at both ends. Additionally, Figure 4b, from left to right, represents the risk level from V to
I, this is because C7 is a negative indicator, with the higher value, the risk turns out to be
lower. Moreover, C7

′s criteria at both ends are closed intervals, so the cloud map generated
by the traditional positive cloud generator is used, which presents as a normal distribution.

4.3. Risk Evaluation Results and Analysis

According to the basic data of Changsha city, the index weights, as well as the evalu-
ation criteria cloud, were obtained, and the Yuelu district of Changsha city was selected
as the evaluation sample. The data of its indexes were input into the X-conditional cloud
generator to work out the membership degree of each indicator corresponding to each level
in the sample area and construct the membership matrix.

V =



0 0.022 0.997 0.168 0
0 0 0 0 1

0.003 0.494 0.494 0.003 0
1 0 0 0 0
0 0 0 0 1
0 0 0.026 0.746 0.006

0.865 0.004 0 0 0
0 0 0.001 0.822 0.211

0.001 0.322 0.525 0.002 0
0.005 0.588 0.409 0.002 0
0.090 0.989 0.048 0 0
0.002 0.425 0.568 0.004 0


The weight vector ω and membership matrix V perform a fuzzy operation that can

receive the comprehensive membership degree [0.248, 0.236, 0.226, 0.113, 0.164]. By the
principle of rank eigenvalue, the calculated rank eigenvalue is 2.7, so the fire risk level of
the evaluation area Changsha City Yuelu District is a level III greater risk. Combined with
the actual situation, this area is rich in educational resources and has sufficient medical
and healthcare institutions. Important people gathered in these areas, which causes a
rise in the fire severity. In addition, there are vegetation and forests distributed in the
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area, and the possibility of fire in the dry season is higher. But the fire planning and fire
hazard remediation management in the area are better, so the fire safety resilience of the
area is improved to a certain extent, the evaluation results are reasonable and the method
is feasible.

5. Discussion and Conclusions

This study constructed a fire risk evaluation system from the triangular model of
urban safety resilience and mainly selected 12 representative indicators in three aspects:
fire hazard, regional characteristics, and fire resilience, which correspond to the disaster
elements, response subjects, and resilience recovery capacity in the resilience model. To
ensure more reliable and reasonable evaluation results, the entropy weighting method was
used to calculate the index weights. Based on the ability and characteristics of cloud model
theory to solve the transformation of qualitative and quantitative information, this study
introduces the finite interval cloud model into the urban fire risk evaluation and uses the
membership degree to determine the risk level of the assessment area, which solves the
ambiguity and randomness of the risk evaluation indicators under the safety and resilience
perspective. Furthermore, the assessment data used in the study are from objective reality
and survey reports, etc., which enhances the authenticity and reliability of the results. The
evaluation results can accord with the actual situation, and the proposed assessment model
has a certain reference value for the control of regional fire risk and the improvement of
safety level.

For other datasets, the model is also applicable. Firstly, the triangle theoretical model
of urban fire risk evaluation proposed in Section 3.1 and the indicators system established
in Section 3.2 construct a basic framework for assessing urban risk. In Section 4, this paper
uses statistical data and map data of Changsha Hunan to calculate the indicator weights
to assess the level of fire risk in a region over a subsequent period, but the framework
is scalable and dynamically adaptable. For example, when applied to the assessment of
other cities, it is not necessary to modify the relevant indicators, but only to update the
weights according to the statistical data and update the evaluation criteria according to the
urban planning or national policy requirements, so that the entropy weighting method and
the cloud model can be applied to assess the fire risk level of other regions in other cities.
Secondly, it’s the same from a time dimension, when a new statistical yearbook is obtained,
we add the data of the new year and update the evaluation weights to be able to evaluate
the fire risk for the following period. Moreover, to test the applicability of the model, the
weight and membership can be calculated using data from previous years, data from recent
years as a test, and actual fire conditions as a control group to compare whether more fires
occur in areas with a higher predicted fire risk.

Lastly, the above research results can reflect the shortcomings of urban safety resilience
construction in terms of fire safety, which can be used to establish and improve the resilience
and firefighting ability of the city. By effectively optimizing the overall safety pattern of the
city, this research has provided a direction combining safety resilience and risk evaluation,
the scientific and reasonable solutions for urban safety management.
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