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Abstract: Predicting the behaviour of wildfires can help save lives and reduce health, socioeconomic,
and environmental impacts. Because wildfire behaviour is highly dependent on fuel type and
distribution, their accurate estimation is paramount for accurate prediction of the fire propagation
dynamics. This paper studies the effect of combining automated hyperparameter tuning with
Bayesian optimisation and recursive feature elimination on the accuracy of three boosting (AdaB,
XGB, CatB), two bagging (Random Forest, Extremely Randomised Trees), and three stacking ensemble
models with respect to their ability to estimate the vegetation cover type from cartographic data. The
models are trained on the University of California Irvine (UCI) cover type dataset using five-fold
cross-validation. Feature importance scores are calculated and used in recursive feature elimination
analysis to study the sensitivity of model accuracy to the different feature combinations. Our results
indicate that the implemented fine-tuning procedure significantly affects the accuracy of all models
investigated, with XGB achieving an overall accuracy of 97.1% slightly outperforming the others.

Keywords: forest fire; fuel load; hyperparameter tuning; machine learning; ensemble models;
Bayesian optimisation

1. Introduction

Annually, wildfires burn an area of approximately 420 million hectares around the
world [1], resulting in a broad range of health, socioeconomic, and environmental impacts.
A fire regime is the pattern of fuel consumption, fire intensity (severity) and fire frequency
characteristic of a given area over extended periods of time. A regime is characterised
by fire seasonality, fuel type and distribution, topography, weather patterns, and impact
on vegetation and soil [2,3]. Affected by climate change and increased land-use pressure,
wildfires have progressively become more frequent and severe, with this trend predicted to
continue [4,5]. Billions of dollars are spent every year to prevent or mitigate the negative
impacts of wildfires [6].

There are three basic types of wildfires, namely ground fires, surface fires and crown
fires. Ground fires burn organic material beneath the surface such as peat, roots and buried
logs. They are smouldering fires typically ignited by a passing surface fire, though they can
also be ignited directly. Surface fires burn fuels above the ground and below the canopy
such as logs, leaves, grass and shrubs, whereas crown fires burn canopy fuels (typically
with higher moisture and lower bulk density) [7]. Wildfires may be characterised by other
features as well, such as the cause of ignition, physical properties, fire size, and type of
fuel. Fuel properties (e.g., moisture, biomass, distribution) are required inputs into all
fire behaviour models [6], whether in the form of a categorical vegetation type as in FAR-
SITE [8], exact physical quantities as in FIRETEC [9] and WFDS [10], or a fuel gas bed as in
FireProM-F [11,12] (after pyrolysis has occurred). Therefore, meaningful predictions of fire
behaviour and propagation require precision in the fuel characterisation and distribution
over the landscape [13,14]. Thus, fast and accurate mapping of land cover and vegetation
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type is crucial to support fire propagation prediction models, especially those aimed at real-
time or faster simulations [12]. This information can support a range of fire management
activities, including fire prevention, fire suppression, and evacuation [4,15–17]. Research to
characterise vegetation is generally concerned with:

(i) Capturing individual structural features such as height, diameter at breast height (DBH),
branching structure, canopy volume, and single-tree biomass (e.g., [18]).

(ii) Estimating vegetation properties over a landscape (metrics) such as canopy biomass, canopy
fuel load (CFL), moisture content, canopy base height (CBH), and canopy bulk density
(CBD) (e.g., [19–22]).

Some structural features are obtained directly, e.g., via traditional field measurements,
while others are predicted using more easily measured variables. For example, single-tree
biomass is traditionally estimated from tree measurements using allometric equations [23].
Although traditional methods can yield precise measurements and estimates of cover
and biomass, they require intensive and challenging field work to collect data in a highly
localised manner (not easily scalable) [24,25]. Conversely, single-tree biomass may be
estimated from effective crown data obtained via laser scans [26], while three-dimensional
point clouds generated by (terrestrial or aerial) laser scans are ideal for capturing the
structural features of trees via tree segmentation [27].

Evidently, metrics such as the canopy biomass and CFL can be obtained from vegeta-
tion structural features (e.g., [28,29]). For instance, Crespo-Peremarch et al. [30] estimated
canopy fuel variables such as above-ground biomass, CBD and CFL from LiDAR full-
waveform data. Similarly, Hartley et al. [25] proposed using UAV laser scanning point
clouds from which spatial and intensity metrics are extracted and used as predictor vari-
ables to estimate above-ground biomass and above-ground available fuel.

Because the type of fuel has a strong influence on fire behaviour [31], it is use-
ful not only to characterise the fuel but also to classify the fuel type [25] (see [6,14,32]).
Hartley et al. [25] used deep learning multi-class segmentation to classify fuel types from
aerial imagery. Previous research indicates that the percentage cover of different fuel types
can be a useful metric for estimating fuel load [25,33].

Modern research on fuel characterisation and fuel type classification centres around the
use of laser scan point clouds and machine learning (ML) or Deep Learning (DL) methods
for both, regression and classification tasks (e.g., [24]). Li et al. [34] investigated the effect
of variable selection with three different ML algorithms, namely Linear Regression (LR),
Random Forest (RF), and Extreme Gradient Boosting (XGB). Their results indicate that variable
selection can significantly improve the accuracy of all models, especially for the XGB
algorithm. In turn, Luo et al. [35] used feature selection algorithms along with RF, XGB, and
Category Boosting (CatB) regression models to estimate the above-ground biomass in forests.
Their results suggest that feature selection significantly affects model accuracy and that
a combination of Recursive Feature Elimination (RFE) and CatB considerably outperforms
other models. Recently, Carpenter et al. [27] proposed an unsupervised canopy-to-root
pathing tree segmentation algorithm as a prerequisite for automatic forest mapping.

In an early study, Blackard and Dean [36] compared the accuracy of a Feed-Forward
Neural Network (FFNN) model against the Gaussian Discriminant Analysis (GDA) algorithm
in predicting forest cover types from cartographic variables. Using a large dataset, FFNN
achieved an accuracy of 70.5% compared to the 50.4% accuracy achieved by GDA. Pierce
et al. [37] used a RF model to map the forest canopy fuel in Lassen Volcanic National Park,
California, by integrating ML and satellite imagery data. Patil and Sivagami [38] used a
stacking of ensembles, namely RF, Extra Trees (XT) classifier, and Adaptive Boosting (AdaB)
of XTs, integrated with a FFNN to improve the accuracy of forest cover classification. Their
results show an overall accuracy of 87.5%. Macmichael and Si [39] achieved an overall
accuracy of 97.01%, significantly outperforming all other models. They used a FFNN with
five hidden layers combined with Principle Component Analysis (PCA) for feature selection,
k-fold cross-validation, and model parameter optimisation. Samat et al. [40] proposed a
GPU-accelerated CatB-forest method to increase the accuracy of hyperspectral image classi-
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fication for land cover mapping. They concluded that even though the proposed method
outperforms other models (including basic CatB), this comes at a high computational
cost. In a recent study, Sjöqvist et al. [41] implemented three classifiers, namely RF, Naïve
Bayes (NB), and Support Vector Machine (SVM), integrated with PCA for the classification of
different cover types from cartographic variables using the University of California Irvine
(UCI) cover type dataset. The combination of RF with PCA achieved an overall accuracy
of 94.7%, with class-wise accuracy of 93.7%, 96.7%, 95%, 77.9%, 77%, 86%, and 94.5% for
Class 1 through Class 7, respectively. For the same dataset, Al Sameer et al. [42] achieved an
overall accuracy of 93% using XGB with PCA, whereas Kumar and Sinha [43] achieved an
overall accuracy of 94.6% using a RF classifier trained via ten-fold cross-validation tuned
with a grid search algorithm. Comparing the results in [42] to those in [43], it appears
that a RF model with automated hyperparameter tuning outperforms XGB with feature
selection. This suggests that finding the optimal values of the hyperparameters may be
more important than implementing a feature selection method.

Therefore, the present paper proposes the use of state-of-the-art ML algorithms and
automated hyperparameter tuning based on Bayesian optimisation to improve the accuracy
of vegetation cover type classification. Furthermore, recursive feature elimination is used to
study the effect of feature selection on model accuracy. To the best of our knowledge, only
a handful of studies have focused on using recent algorithms such as CatB, XGB, and the
ensemble stacking technique for fuel type classification. In addition, feature selection and
automated hyperparameter tuning have been proven to increase the accuracy of classifica-
tion models in different studies (e.g., [44–46]). The remainder of this paper is organised as
follows: the dataset, main ML methods used, and hyperparameter optimisation approach
are presented in Section 2; the experimental results are presented in Section 3 and discussed
in Section 4; and our conclusions are provided in Section 5.

2. Materials and Methods
2.1. Dataset

This study uses the University of California Irvine (UCI) cover type dataset, which
contains 581,012 datapoints, twelve features, and seven cover type categories. Observations
are taken from four wilderness areas, namely (1) Neota (3904 ha), (2) Rawah (29,628 ha),
(3) Comanche Peak (27,389 ha), and (4) Cache la Poudre (3817 ha) within the Roosevelt
National Forest in Northern Colorado, 70 miles northwest of Denver [36] (see Figure 1).

The twelve features are: (1) elevation [m]; (2) aspect [degrees] (a.k.a. exposure or
azimuth); (3) slope [degrees]; (4) horizontal distance to hydrology (HDH) [m]; (5) vertical
distance to hydrology (VDH) [m]; (6) horizontal distance to roadway (HDR) [m]; (7) hillshade
index at 9:00 am (HI9); (8) hillshade index at noon (HI12); (9) hillshade index at 3:00 pm (HI3);
(10) wilderness area designation (four groups); (11) soil type designation (40 one-hot encoded soil
types); and (12) horizontal distance to nearest wildfire ignition point (HDF) [m]. The seven forest
cover type categories are: Spruce/Fir (C1), with 211,840 datapoints; Lodgepole Pine (C2),
with 283,301 datapoints; Ponderosa Pine (C3), with 35,754 datapoints; Cottonwood/Willow
(C4), with 2747 datapoints; Aspen (C5), with 9493 datapoints; Douglas Fir (C6), with
17,367 datapoints; and Krummholz (C7), with 20,510 datapoints. Generally, Neota has the
highest mean elevation and is mainly covered with spruce/fir, while Rawah and Comanche
Peak are mainly covered with lodgepole pine, spruce/fir, and aspen.
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Figure 1. Study area location map: Roosevelt National Forest wilderness areas (extracted and
modified from [47]).

This dataset [36] was prepared using a combination of digital spatial data obtained
from the US Geological Survey (USGS) and the US Forest Service (USFS). Thus, using digital
elevation model (DEM) data with a resolution of 30 m, cartographic variables such as aspect,
slope, and hillshade indices were extracted using the Geographic Information System (GIS).
The distances from surface water resources were calculated by applying Euclidean distance
analysis to the USGS hydrology and transport data, while soil type and wilderness areas
were obtained from the USFS data. Hence a series of variables were obtained for each raster,
comprising the input features into the classifier. Its output is the vegetation cover type.

In order to improve model performance, 5339 outliers based on the VDH were removed
from the dataset, reducing the total number of datapoints to 575,576. This dataset was then
split in two subsets, one for training the models (70%) and the other for testing their accuracy
(30%). Pearson’s correlation coefficients (r) and associated p-values between different input
features and the cover type are shown in Figure 2. Elevation, slope, wilderness area, and
soil type are among the features showing higher correlation with the cover type. Because
HI9 and HI3 were found to be highly correlated (Pearson’s r = 0.98), the former was
eliminated from the dataset and from Figure 2. The p-values show that the correlation
coefficients (r) are statistically significant. The pairwise relationship of several of the most
important features and their distributions are shown in Figure 3. It can be observed, for
example, that elevation has a trimodal distribution, HDF and aspect have bimodal and
right-skewed distributions, and HDH has a right-skewed distribution.
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Figure 2. Feature correlation matrix (Pearson), with r below and p-value above the diagonal.

2.2. Base and Ensemble Learning Algorithms
2.2.1. Support Vector Machine

With applications in both classification and regression, SVM [48] is a form of super-
vised ML technique which relies in the use of spatial coordinates to assign training samples
in order to maximise the distance between the categories. New samples are then projected
into that same region and estimated to belong to one of many categories depending on
which side of the gap they fall. The complexity of real-world problems frequently requires
more precise assumptions than those provided by contemporary linear learning machines,
which have certain processing limitations. Thus, it would be beneficial to examine more
complex relationships such as polynomial and radial basis function kernels [49]. In this
study, an SVM model with an RBF kernel is used as the first base model.

2.2.2. Decision Trees

Despite the difficulties of reaching a universality given their core structure, the class
of supervised learning techniques known as Decision Trees (DTs) [50] represents an excel-
lent example of a universal function approximator. Applications include regression and
classification. A DT is made up of a number of branches connected by decision nodes, all
of which end in leaf nodes. The decision node of the tree consists of a number of alternate
leaf nodes that represent the output of the model, with each branch denoting a potential
procedure. In classification and regression, this can be used as a label or a continuous value.
The structure of the DT is largely composed of decision nodes. A basic goal when using
this method is to minimise overfitting by using the shortest feasible tree. In an ensemble
DT model (EDT), many trees are used either simultaneously (using bootstrap aggregation
or bagging) or sequentially to produce a final model [6].
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Figure 3. Pairwise distribution and relationship of features in the dataset.

2.2.3. Random Forest

Random Forest (RF) is a mathematically solid ML method which aims to build more
complex and robust models using bagging and random subspace as a base. Bagging is
used to create a number of learner trees, which are then combined to obtain an overall
prediction. Original training data are utilised to create bootstrap samples, which are then
used to train the learning trees. A random selection of n instances from the initial training
data (D), which consists of N instances, is used to construct each bootstrap sample (Db).
Fresh instances may be used in place of the bootstrap samples. Db has a size of around
two-thirds that of D, and does not have any duplicate instances [6]. The main idea behind
RF entails building numerous “simple” Decision Trees (DTs) during training and using a
majority voting method for classification. Among other advantages, this voting method
corrects for the unfavourable tendency of DTs to overfit the training data [51].

Extremely Randomised Tree, or Extra Trees (XT) [52], is a tree-based method similar to
RF that aims to increase accuracy by using the entire dataset rather than bootstrap samples
to reduce bias, as well as to reduce the variance of the RF model by randomly selecting the
optimal split points. Notably, XT executes faster than RF.
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2.2.4. Stacked Models

The method of stacking regressions, initially introduced in [53], linearly combines
several predictors to improve prediction accuracy. The approach primarily comprises
two steps: (i) specifying a list of base learners and training each one on the dataset, and
(ii) using the predictions of the base learners as input to train the meta-learner, which then
predicts new values.

The defined structures of the stacked models in this study are depicted in Figure 4.
Three different Stacking Classifiers (SC1 to SC3) were constructed based on combinations
of different optimised base and ensemble algorithms in order to produce more complex
classifiers. For consistency, the meta-learner of all models is the optimised RF model.

(a) Stacking Classifier 1

(b) Stacking Classifier 2

(c) Stacking Classifier 3

Figure 4. Structure used for the Stacked Classification models.

2.2.5. Extreme Gradient Boosting

Gradient Boosting Decision Tree (GBDT) [54] is a supervised learning technique intro-
duced by Jerome H. Friedman. Starting with a group of (xi, yi) values, where xi stands
for the input values and yi for the associated target values, it involves iteratively creating
a set of functions F0, F1, . . . Ft, . . . Fm which are then used to form the corresponding
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loss function L(yi, Ft) that estimates yi. To enhance the accuracy of estimations, another
function Ft+1 = Ft + ht+1(x) is created to calculate ht+1 as in Equation (1) [21,55]:

ht+1 = arg min
h∈H

EL
(
y, Ft) (1)

where H is the group of potential DTs being taken into account for the ensemble. Thus, the
loss function can be defined as in Equation (2) [56]:

EL
(

y, Ft+1
)
= EL

(
y, Ft + ht+1

)
(2)

A variant of GBDT called Extreme Gradient Boosting (XGB) was developed by Chen
and Guestrin [57]. In general, the XGB approach combines several base learners (DTs) to
create an aggregated model that is more resilient.

Overfitting may result from incorrectly specifying DT parameters such as the depth
or number of iterations. XGB penalises overfitted models by incorporating regularisation
techniques. However, numerous hyperparameters need to be adjusted.

2.2.6. K-Nearest Neighbour

K-Nearest Neighbour (KNN or k-NN) is a supervised learning algorithm that can be
used for both classification and regression tasks [58]. It aims to classify an unknown sample
according to its distance to surrounding samples called neighbours. The defined context of
distance is the Euclidian distance from the k-dimensional input vector x to its neighbour
(x2). In a regression context, the result is equal to the average of the target values over the
desired k-nearest neighbours.

2.2.7. Adaptive Boosting

Adaptive Boosting (AdaB), formulated in [59], is a boosting ensemble that attempts
to produce a strong learner by combining the outputs of weak base learners (though the
method works for strong base learners as well), producing a stronger boosted classifier.
AdaB attempts to learn from the mistakes of previous weak learners by increasing the
weights assigned to incorrectly classified samples [60]. Higher weights are assigned to
more accurate base learners.

2.2.8. Categorical Boosting

Categorical Boosting (CatB), proposed by Prokhorenkova et al. [61], is an enhanced
variant of GBDT. It has several advantages over the basic GBDT model:

• It is generally more rigorous at handling categorical data, and uses one-hot encoding
for categories with low cardinality.

• It utilises the Ordered Boosting technique, which means that it is able to use the same
examples used for computation of Ordered Target Statistics to compute ht+1 by assum-
ing D to be the set of all available data for training the GBDT model, keeping in mind
that the DT ht+1 is the tree that minimises the loss function (L).

• Its approach to building DTs relies heavily on Oblivious Decision Trees (ODTs). CatB
creates a number of ODTs, which are full binary trees. Hence, there will be 2n nodes if
there are n levels. The ODT’s non-leaf nodes divide according to the same standard.
In order to increase confidence in the selection of the most productive feature combi-
nations by CatB during training, the capabilities of GBDT are expanded to enable it to
consider feature interactions. [56,61].

Since CatB is highly sensitive to its hyperparameters’ settings, their tuning is crucial.

2.3. Hyperparameter Optimisation

The performance of a ML model can be greatly improved by using AutoML (short
for Automated ML), which automates complicated tasks without the need for human
understanding [62]. A crucial process is the optimal tuning of its hyperparameters.
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Bayesian optimisation is a robust and potent technique for determining the extreme
values of computationally difficult functions [63]. It can be used to optimise functions which
are non-convex or those with derivatives that are challenging to calculate or evaluate [64].
Assuming that F : X → R is a well-behaved function defined on subset X ⊂ Rd, the
optimisation problem is formulated as shown in Equation (3).

x∗ = arg max
x∈X

F (x) (3)

Bayesian Optimisation assumes F (x) to be unknown and treats it as stochastic, with a
prior probability distribution that captures the beliefs about its structure. After collecting
function evaluation data, the distribution is updated (the posterior distribution) and used
to sample the next query point. Gaussian processes such as Kriging are typically used to
define the probability distributions over F (x).

Bayesian optimisation is frequently used for optimal hyperparameter tuning [65].
In this study, it is used to automatically tune all models’ hyperparameters separately
using the Optuna library [66]. The dataset is relatively large and highly imbalanced, with
211,840 datapoints for the C1, 283,301 datapoints for the C2, and 2,747 datapoints for the
C4 cover types. This results in an imbalance ratio of Nmax/Nmin = 77.1. Therefore, we used
random under-sampling to ensure a balanced dataset, with 2700 datapoints for each cover
type extracted from the general dataset. Hyperparameter tuning was then performed on
the smaller dataset using five-fold cross-validation for the model training corresponding to
each candidate set of hyperparameters. Models were finally trained on the whole dataset
with the obtained optimal set of hyperparameters, again using five-fold cross-validation.

Figures 5 and 6 show the multi-dimensional space of the hyperparameters searched
during fine-tuning of the DT and XGB models. For each iteration, the corresponding
values of the hyperparameters are linked to the resulting accuracy. The model parameters
obtained from the optimisation process for all models are presented in Tables 1 and 2.

Figure 5. Visualisation of the hyperparameter optimisation procedure for the DT algorithm.
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Figure 6. Visualisation of the hyperparameter optimisation procedure for the XGB algorithm. Note
that notation Ae-B is meant to represent A× 10−B in scientific notation.

Table 1. Hyperparameters for base learners and bagging ensembles.

SVR DT RF XT

Kernel = RBF Splitter : best Splitter : best
tolerance = 0.483 Criterion : entropy Criterion : entropy Criterion : entropy
Regularization(C) = 8.75 Min sample split = 3 Min sample split = 2 Min sample split = 2
gamma = 0.4 Min sample lea f = 1 Min sample lea f = 1 Min sample lea f = 1
Decision Function : ’ovo’ Max depth = 23 Max depth = 25 Max depth = 25

Nestimators = 348 Nestimators = 348

Table 2. Hyperparameters for boosting ensembles.

AdaB XGB CatB

Baseestimator = DT objective = ’multi:softprob’ iterations = 3500
Nestimators = 180 Nestimators = 1073 loss_ f unctionMultiClassOneVsAll
Learning rate = 1.2 eta = 0.274 Learning rate = 0.47
algorithm = ’SAMME’ max depth = 25 depth = 10

subsample = 0.5 subsample = 0.8
colsample bytree = 0.6 l2_lea f _reg = 2.44
tree method = ’exact’ model_size_reg = 2.62
booster = ’gbtree’ bootstrap type : ’Bernoulli’
min child weight = 2 boosting type : ’Plain’
grow policy = ’lossguide’
lambda = 2.55× 10−5

alpha = 3.95× 10−7

2.4. Model Development and Accuracy Assessment

The models in this paper made use of the Scikit-learn library [67], XGBoost library [68],
and CatBoost [69] library. Four measures were used to evaluate the accuracy of the models:
accuracy, precision, recall, and F1 score.

1. Accuracy is defined as the ratio of correct predictions over the total number of instances
evaluated, and is calculated as in Equation (4).

acc =
tp + tn

tp + tn + f p + f n
(4)
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2. Precision is defined as positive patterns that are correctly predicted from the total
predicted patterns in a positive class, and is calculated as in Equation (5).

prec =
tp

tp + f p
(5)

3. Recall is defined as the percentage of positive patterns that are correctly categorised,
as in Equation (6).

rec =
tp

tp + tn
(6)

4. F1 score is the harmonic mean between recall and precision, and is calculated as in
Equation (7) [70].

F1 =
2 · prec · rec
prec + rec

(7)

3. Results
3.1. Model Feature Importance

Increasing model accuracy via feature selection is an important step when implement-
ing ML algorithms, especially for high-dimensional data structures. A reliable approach to
selecting the features which contribute the most and removing those which are detrimental
is through feature importance analysis. The relative importance of features for the RF, XT,
XGB, and CatB models is shown in Figure 7. The stacked models are not included here due
to their hierarchical model fitting procedure.

(a) XGB (b) RF

(c) CatB (d) XT

Figure 7. Relative importance of features.

It can be observed, for instance, that the slope of the terrain, HI12, and HI3 are among
the least important features in the dataset.
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3.2. Recursive Feature Elimination

Recursive Feature elimination is a feature selection technique which eliminates the
weakest feature(s) from a model in a sequential manner until it reaches an optimal or
predefined number of features. The obtained accuracy of the RF, XT, XGB, and CatB models
during recursive feature elimination analysis is presented in Figure 8 for an increasing
number of features. The highest accuracy for CatB is obtained using ten features, excluding
slope. For XGB and RF, the maximum accuracy is obtained using nine features, while
XT achieves maximum accuracy using only seven features.
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Figure 8. Accuracy during recursive feature elimination test.

3.3. Accuracy Measures

The overall classification accuracy (macro average) achieved by each of the different
models studied here is shown in Table 3. It can be observed that the highest accuracy over
the whole dataset equals 0.97, and is obtained by XGB. This is slightly higher than the
accuracy achieved by CatB (0.967), SC3(0.967), and XT (0.968). Even though the optimised
RF achieves an accuracy of “only” 0.964, this still surpasses other similar research results,
including [41,43]. Despite its higher overall accuracy, XGB exhibits lower precision com-
pared to XT and SC2 and a lower F1 score compared to XT. The lowest overall accuracy is
0.913, achieved by SVM with radial basis kernel (SVR). Nonetheless, this value surpasses
accuracy values previously reported in the literature using SVM on the same dataset.

Table 3. Accuracy metrics for the implemented models.

Metric DT SVR KNN RF XT Ada XGB CatB SC1 SC2 SC3

acc 0.934 0.913 0.934 0.964 0.968 0.963 0.971 0.967 0.935 0.967 0.940
prec 0.901 0.897 0.897 0.951 0.955 0.952 0.952 0.951 0.898 0.955 0.895
rec 0.898 0.869 0.872 0.928 0.939 0.922 0.941 0.938 0.890 0.932 0.910
F1-score 0.900 0.882 0.884 0.939 0.947 0.936 0.946 0.943 0.893 0.943 0.902

Figure 9 presents the accuracy achieved by the five best-performing models for each
of the seven cover types in the dataset. It is clear that all models perform poorly on the C4
and C5 cover types, with the highest accuracy values being 0.881 and 0.884, respectively.
Unsurprisingly, these are the two classes with the fewest data samples. However, SC3
and RF performed significantly worse than other models for the C5 cover type. Figure 10
presents the confusion matrix for the XGB, XT, CatB, and SC2 models. It can be observed
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that the accuracy of estimations for the majority C1 and C2 cover type classes is higher than
0.96 for all models. It is interesting to note that the most prominent misclassifications by all
four models are “C5 misclassified as C2” and “C4 misclassified as C3”, and not vice versa.

Figure 9. Accuracy of different classifiers for each cover class.

(a) XGB (b) SC2

(c) CatB (d) XT

Figure 10. Confusion matrix of the four best-performing classifiers for predicted cover type classes.

4. Discussion

This paper proposes a methodology based on Machine Learning (ML) algorithms with
automated fine-tuning of the model combined with recursive feature elimination to predict
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vegetation type from cartographic data. The overall accuracy obtained by the proposed
approach using the XGB model on the UCI dataset is 97.1%, which surpasses those reported
in other studies. For example, Sjöqvist et al. [41] reported an overall accuracy of 94.7%,
Al Sameer et al. [42] reported 93%, and Macmichael and Si [39] achieved an accuracy of
97.01% (the latter using deep learning models).

Considering class-wise accuracy, Figure 10 shows that the four models are slightly
overfitted on the majority class, the C2 cover type (283,301 datapoints), achieving the highest
accuracy (97.3–97.9%). Unsurprisingly, the lowest accuracy (87.5–88.1%) corresponds to
the minority class, the C4 cover type (2747 datapoints). Somewhat surprisingly, all four
models show high accuracy for the C7 cover type, despite its moderate sampling size
(20,510 datapoints). Nonetheless, it is important to note that the proposed approach with
all four models achieves higher accuracy for the undersampled classes than those reported
by previous researchers. For example, while our proposed approach with XGB reaches
88.1%, 88.4%, and 93.9% for classes 4, 5, and 6, respectively, Sjöqvist et al. [41] reported
respective accuracy of 77.9%, 77%, and 86%. This comprises a significant improvement.
For classification of the C1 and C2 cover types, the same authors reported an accuracy of
93.7% and 96.7%, respectively, while our method using the XGB model achieved 96.9% and
97.8%, respectively. It is notable that using our proposed approach with the RF model used
in [41] resulted in an overall accuracy of 96.4%, which is a significant improvement over
the results reported in their study.

5. Conclusions

The dynamic behaviour and propagation characteristics of wildfires are highly affected
by the type and distribution of the available fuel. Therefore, their accurate estimation
is paramount for wildfire model predictions to be of any practical use. To this end, a
methodology was proposed in this paper for the accurate classification of vegetation cover
type over a landscape from cartographic data. In essence, the proposed methodology is
based on state-of-the-art Machine Learning (ML) classifiers combined with automated
tuning of their hyperparameters and recursive feature elimination.

The performance of three boosting (AdaB, XGB, CatB), two bagging (RF, XT), and
three stacking ensemble models (see Figure 4) were investigated, with XGB outperforming
the others. All classifiers were trained and tested on the University of California Irvine
(UCI) cover type dataset using five-fold cross-validation, while Bayesian Optimisation was
used for the tuning of their hyperparameters. The dataset was subsampled for tuning of
the models to cope with imbalance and reduce the required computational effort. A feature
importance analysis was carried out to identify the sets of features to be considered by
each classifier to achieve its highest overall accuracy. XGB with nine features and tuned
with Bayesian Optimisation on a subsampled balanced dataset achieved the highest overall
accuracy at 97.1%. This is higher than previous values reported in the literature. Because
training was performed on the full rather than the subsampled dataset, the class-wise accu-
racy was slightly lower for the undersampled cover type classes, as expected. Nonetheless,
these values were significantly higher than those previously reported in the literature for
the same dataset. It is interesting to note that the resulting class-wise accuracies are more
uniform than those reported by other authors, which suggests that the proposed method is
effective at handling imbalanced datasets. This may be thanks to the automated tuning of
the model’s hyperparameters using a balanced subsampled dataset.

While the results obtained here show that the proposed approach is accurate at pre-
dicting vegetation cover type over a landscape from cartographic data, and therefore the
fuel type and distribution, it goes without saying that the trained models would work
accurately only in the region where they were trained and tested. It is hypothesised that
the generalisability of the classifier can be enhanced by a number of methods, including:
removing region-specific features such as wilderness; emphasising general features such
as slope, hillshade indices, and parameterised soil type; incorporating climatic variables such
as temperature and precipitation; and training on larger datasets covering different regions.
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Potential lines of future work might include investigating the feasibility, accuracy, and
generalisability of fusion between classifiers based on cartographic data and vegetation
cover type predictors based on remote sensing. In order to foster and facilitate adoption, it
is important to work on the integration of vegetation cover type classifiers such as the one
proposed in this paper into existing fire hazard/danger systems.
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