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Abstract: 5-aminotetrazole (5AT) has been widely used as a fuel in SPGGs for its high nitrogen
content, heat resistance, and environmentally friendly product. However, 5AT-based propellants
still have disadvantages, such as a high exhaust temperature and unstable combustion rate, which
somewhat limit their application. Given that transition metal oxides are typically employed in
small quantities to enhance the performance of solid propellants, this study selected nickel oxide
(NiO) nanoparticles as a catalyst and employed them in conjunction with 5AT via mechanical ball
milling to investigate their impact on the pyrolysis behavior of 5AT. It was found that the nanoscale
NiO particles can significantly reduce the thermal degradation temperature of 5AT according to
TG-DSC tests. The calculation of the energy required to initiate the pyrolysis of 5AT using three
kinetic methods, namely Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose
(KAS), indicated that the use of NiO nanoparticles can reduce the energy required by more than 46 kJ
mol−1, thereby increasing the likelihood of 5AT pyrolysis. Meanwhile, the reduced thermal safety
parameters indicated that NiO makes 5AT more susceptible to thermal decomposition due to thermal
explosion transition, so more care is needed for the storage of 5AT. Moreover, the TG-FTIR test was
conducted to study the pyrolysis mechanism with or without NiO; the results showed that NiO exerts
different catalytic effects on the gas products. The results from this study can offer direction and
recommendations for future research on solid propellants.

Keywords: nano-NiO; 5-amino-1H-tetrazole; catalyst; degradation mechanism; kinetic; safety parameters

1. Introduction

Solid propellant gas generators (SPGGs) are an emerging technology in the field of
Halon alternative research, which has potential applications for fire suppression in dry
bays and nacelles [1,2]. Fire suppression agents can be expelled under the reaction of solid
propellant, including 1,1,1,2,3,3,3-heptafluoropropane, pentafluoroethane, or potassium
carbonate. SPGGs have some exceptional properties, which include easy storage, rich in
inert gases, and no liquid component, all of which significantly enhance its applicability in
aviation firefighting.

According to the Next Generation Fire Suppression Technology Program [3], green
energetic materials (GEMs) are widely used as fuels in SPGGs. Examples of GEMs include 5-
aminotetrazole (5AT), bitetrazole (BT), guanidinium bitetrazole (GBT), triaminoguanidinim
nitrate (TAGN), and bis(aminotetrazolyl)tetrazine (BTATZ). Among the studied fuels,
5AT (as shown in Figure 1) is the most readily available, and its commercial application
prospect is the broadest. In contrast, many of the other fuels considered have limited
commercial availability. As an environmentally friendly green energetic material, 5-amino-
1h-tetrazole (5AT/CH3N5) has become the top candidate for use in solid propellants, rocket
engines, airbags, and fire extinguishing areas. What makes 5AT extremely attractive is its
surprisingly potential energy properties, e.g., high nitrogen content (82.3%), high formation
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enthalpy (208.7 kJ mol−1), moderate mechanical, and thermal sensitivity. Once the mixtures
of 5AT and oxidizers (strontium nitrate, potassium nitrate, etc.) are ignited, violent redox
reactions will immediately take place with the generation of large amounts of gases and
heat, creating desirable impetus. Undoubtedly, the pyrolysis behavior of thermal hazard
substances usually plays a crucial role in burning rates and gas production performance
for propellants, pyrotechnics, and explosives. Pyrolysis of 5AT is also regarded as the
fundamental step to generate gaseous products which support fuel ignition, burning, and
energy release. To elucidate the mechanism governing propulsive performance, it appears
essential to analyze the thermal degradation behavior of 5AT.
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Pyrolysis analysis is an effective method to study the properties of energetic materials,
which is a crucial chemical conversion method that can help us to understand the thermal
and combustion behaviors. Thermogravimetry (TG) technology can exhibit the generation
of products in different phases in a given temperature range and the kinetic parameters
can be obtained through the TG data, which is of great importance for the prediction and
understanding of the pyrolysis and combustion characteristics of energetic materials and
can further expand its application ranges. Thermogravimetry combined with Fourier trans-
form infrared spectroscopy (TG-FTIR) is another method to investigate these properties,
which can convert the inherent energy inside the molecule of energetic materials to the
solid, gas and liquid products, which allow us determine the decomposition pathways of
the energetic materials and aid their application, management, and computer simulations.

However, 5AT-based propellants have some limitations in their combustion and ther-
mal decomposition behaviors that hinder their development [4,5]. These include the
high exhaust temperature and the unstable burning rate. To improve its combustion
performance, different chemical compounds have been incorporated into 5AT-based pro-
pellants [6,7]. Research has indicated that transition metal oxides (TMOs) can be employed
in minute quantities in solid propellants to enhance their combustion characteristics. Ex-
amples of these TMOs include Fe2O3, ZnO, CuO, NiO, and TiO2. The pyrolysis property
of combustible materials is a fundamental aspect of material combustion [8]. Therefore,
the thermal stability of catalyzed 5AT is essential for its safe handling, storage, and usage.
Thus, to study the pyrolysis process and thermal behavior of 5AT with the addition of
additives is necessary for its practical application. The objective of this study is to examine
how nano-sized NiO affects the thermal decomposition characteristics of 5AT.

In previous studies, the effects of TMO addition have been conducted on traditional
propellant ingredients [9,10]. Prajakta et al. [9] and Wang et al. [10] conducted studies on
the effect of two different catalytic agents containing nano-copper oxide and nano-sized
NiO on the degradation behavior of AP-based propellants, respectively. Prajakta et al. [9]
found that the degradation temperature and the activation energy decreased with the
addition of nano-copper oxide. Wang et al. [10] proposed that the degradation temperature
of AP decreased by 93 ◦C after adding 2% nano-sized NiO. Paletsky et al. [11] studied
the degradation kinetic characteristics of 5AT at high heating rates (~100 ◦C s−1), and
distinguished two routes of 5AT decomposition. Levchik et al. studied the energies of
atomic bonding of 5AT tautomers during its decomposition process [12]. A review of the
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literature reveals that the kinetic parameters, thermodynamic parameters, and thermal
safety parameters of 5AT with catalysts have not been extensively studied.

This article presents a comprehensive analysis of the thermostability of pure 5AT
and its mixture with nano-sized NiO. The study used thermogravimetry (TG), differential
scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy to evaluate
the thermal kinetics, thermodynamic parameters, and thermal safety. The dynamic thermal
TG-DSC techniques were used to obtain the mass and heat flow variations with the increase
in temperature. The weight-loss curves were used to evaluate the thermal kinetics and
thermodynamic parameters, while the heat flow curves were used to evaluate the thermal
safety. The 3D spectrogram was plotted using FTIR analysis to identify the evolved gas
distribution during pyrolysis. In this study, NiO nanoparticles were investigated due to
their catalytic effects on the degradation process of 5AT. This may have implications for the
research field of solid propellant gas generators in the aviation industry.

2. Theoretical Considerations

An examination of the degradation kinetics and pyrolysis mechanism of 5AT was
conducted using three iso-conversional methods (FWO, FR, and KAS). These approaches
can estimate the activation energy as an outcome of the conversion process without assum-
ing any decomposition model. This is provided that at least three different heating rates
are used. Below are the detailed descriptions of each method. A general expression for
degradation kinetics can be found in equation [13].

β
dα

dT
= A f (α)exp

(
− E

RT

)
(1)

where α, T, and β denote the conversion rate, temperature, and heating rate constant
(β = dT

dt = Constant), respectively. A, E, and f (α) are the kinetic triplets, which refer to the
pre-exponential factor, the activation energy, and the kinetic function, respectively. R is the
gas constant (8.314 J mol−1 K−1). In terms of weight loss, the conversion coefficient α is
calculated as follows [14]:

α =
W0 −Wt

W0 −W f
(2)

Here, the instant mass of a sample at time t, Wt, represents the difference between its
initial weight, W0, and its final weight, Wf, which is the weight of the sample after it has
been completely decomposed.

2.1. FR Method [15]

As a result of Friedman’s method, activation energy is determined by TG data for
different heating rates, and the mathematical equation may be expressed as follows:

ln
dα

dt
= ln[A f (α)]− E

RT
(3)

By mathematically plotting ln(dα/dt) vs. 1/T, a linear relation indicating a slope equal
to −E/R can be obtained.

2.2. FWO Method [16]

In terms of the FWO method, it is an integral approach that does not depend on the
degradation mechanism. It can be expressed in logarithmic form as follows:

lgβ = ln
AE

Rg(α)
− 2.315− 0.4567

E
RT

(4)

An estimate of E can be obtained by linear regression of lnβ vs. 1/T at a fixed
conversion with a slope of 0.4567E/RT.
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2.3. KAS Method [17]

The KAS method, similar to the FWO method, is an integral method. The following is
the equation for KAS:

ln
β

T2 = ln
AR

Eg(α)
− E

RT
(5)

Plotting ln(β/T2) vs. 1/T allows the calculation of E for each degree of conversion
values.

3. Experimental Setup
3.1. Sample Preparation

The 5AT base (Table 1 presents the materials information) was blended with 2% nano-
sized NiO particles. As a solvent, alcohol was used to ensure a uniform dispersion at a
volume ratio of 1:3 for both pure 5AT and 5AT–NiO mixtures. It can prevent a reaction
from occurring between 5AT and NiO. On the other hand, anhydrous ethanol, as a fluid, in
the ball milling process, it allows 5AT and NiO to be fully dispersed and flowing, and it is
beneficial to achieve a homogeneous blend between 5AT and NiO. The mixtures were then
ground using SFM-2 planetary centrifugal mill at 150 rpm for 24 h. To remove the solvent,
the powders were dried in a vacuum oven for eight hours. A total of two samples were
prepared: a pure 5AT foundation material (designated 5AT–1) and a pure 5AT foundation
material containing 2% nano-sized NiO (designated 5AT–2).

Table 1. Information on the ingredients of propellant samples.

Constituents Purity Particle Size Source Type

5AT ≥99.0% 5~20 µm Dongyang Tianyu Chemical Co., Ltd,
in Dongyang, China. Base

Nano-sized NiO ≥99.8% <50 nm Sigma-Aldrich Corporation, in
Shanghai, China. Additive

3.2. Thermal Decomposition Measurement

An analysis of the thermal properties was carried out using TG and TG-DSC at tem-
peratures ranging from room temperature to 800 ◦C. To obtain the thermal decomposition
parameters for comparison, conventional TG measurements with four different heating
rates of 5, 10, 15, and 20 ◦C min−1 were conducted. For each experimental run, approxi-
mately 3 mg of the powdery sample was evenly spread in an open alumina cup. In the
course of the process, the nitrogen purge flow was maintained at 100 mL min−1.

3.3. FTIR Test

To differentiate the evolved gas from the propellant, a Fourier transform infrared
(FTIR) spectrometer in conjunction with a thermobalance was employed to analyze the
degradation behaviors of the 5AT samples. The FTIR and the TG analyzer were connected
by a transfer line. The pure helium purge flow was set at 100 mL min−1 during the test.

4. Results and Discussion
4.1. Thermal Degradation Behavior

TG and DTG profiles for 5AT–1 and 5AT–2 with a characteristic heating rate are shown
in Figures 2 and 3. Table 2 lists the characteristic temperatures of different mass-loss stages
at different conversion rates. Comparing Figure 2 with Figure 3, the trends of the mass
loss curves were similar, while both the degradation of 5AT–1 and 5AT–2 exhibited four
degradation stages, which can be seen from the four peaks in DTG. The pyrolysis process
is attributed to the decomposition of crystalline water inside the 5AT molecular structure
when the temperature is below 100 ◦C.
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Table 2. Characteristic temperatures at different conversions of mass-loss stages.

Sample β ◦C min−1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5AT–1
5 209.6 216.7 224.4 234.6 254.2 342.0 502.4 612.3 669.3
10 215.9 224.1 233.1 243.9 261.7 343.1 516.0 644.0 692.2
15 220.7 230.8 240.8 252.4 271.7 358.6 530.0 656.8 701.7

5AT–2
5 208.5 214.4 220.9 228.7 240.2 294.6 458.1 530.8 578.5
10 214.7 222.7 230.9 240.5 253.7 310.3 479.5 553.8 622.0
15 219.9 229.3 238.4 248.9 264.1 332.1 495.9 548.7 579.1

However, from Table 2, it can be found that the characteristic temperatures at different
conversions for 5AT–1 were obviously lower than those for 5AT–2, indicating that nano-
sized NiO particles could reduce the decomposition temperature. This result implies that
the thermostability of 5AT–2 has been slightly reduced with NiO addition, even though a
similar decomposition process occurs.

4.2. Reaction Kinetics of Isoconversions

To calculate the activation energy, three heating rates and three iso-conversional
kinetic methods (FR, FWO, and KAS approaches) were employed to analyze the thermal
degradation characteristics. According to Equations (3)–(5), the linear regression parameters
against 1/T can be calculated, respectively using the three thermal kinetic methods (FR,
FWO, and KAS). The activation energy for each conversion was calculated based on the
linear relationship between variables. Table 3 shows the activation energy results and the
linear correlation coefficients for 5AT degradation.
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Table 3. Characteristic kinetic parameters for 5AT–1 and 5-AT-2, varying with conversion method.

Sample α
FR FWO KAS

E/kJ mol−1 R2 E/kJ mol−1 R2 E/kJ mol−1 R2

5AT–1

0.1 98.75 0.84 188.60 1.00 190.22 0.99
0.2 116.65 0.97 151.40 0.99 150.96 0.99
0.3 122.11 0.99 135.96 0.99 134.56 0.99
0.4 119.18 0.99 130.99 0.99 129.16 0.99
0.5 180.68 0.87 140.47 0.95 138.80 0.94
0.6 144.44 0.47 203.07 0.97 147.81 0.64
0.7 187.53 0.99 196.14 0.98 193.13 18.30
0.8 187.01 0.97 156.69 0.99 149.70 0.99
0.9 293.53 0.99 240.70 0.99 237.20 0.99

Mean 161.10 0.90 171.56 0.98 163.51 2.87

5AT–2

0.1 98.04 1.00 182.32 0.99 183.61 0.99
0.2 112.97 0.98 143.62 0.99 142.81 0.99
0.3 93.81 1.00 125.85 1.00 123.99 1.00
0.4 89.97 1.00 113.57 1.00 110.92 1.00
0.5 74.85 0.96 100.56 1.00 97.02 1.00
0.6 63.26 0.98 78.14 0.95 72.41 0.93
0.7 207.34 0.98 130.03 1.00 124.28 1.00
0.8 213.13 0.46 201.49 0.70 198.33 0.67
0.9 81.82 0.11 21.75 0.03 8.35 0.03

Mean 115.02 0.83 121.92 0.85 117.97 0.84

From Table 3, it can be seen that the square of the correlation coefficient at higher
conversions were much smaller than 1 when the kinetic calculations were performed on the
sample doped with nano-sized NiO, which may be responsible for the pyrolysis process
being dominated by the reaction temperature at the beginning of the pyrolysis reaction.
As the reaction continues, the catalytic effect of NiO plays an important role in the later
pyrolysis process, which promotes the pyrolysis reaction and more gas products are rapidly
generated; this causes the instability of the pyrolysis process in the later stage with an
increased conversion rate. Therefore, the square of the correlation coefficient at higher
conversions were much smaller due to the catalytic effect of NiO and the accelerated
generation of gas products.

The mean value of E for 5AT–1 was 161.1–171.6 kJ mol−1, while that for 5AT–2 was
115.0–121.9 kJ mol−1 (varying with the kinetic methods). The derived E of 5AT–2 was much
lower than that of 5AT–1, indicating that the nano-sized NiO significantly affected 5AT
activity. As a result, the 5AT decomposition with NiO required a lower temperature and
less energy.

The correlation relationships between the activation energy (E) obtained from the
three kinetic methods (FR, FWO, and KAS methods) and the conversion (α) are shown in
Figures 4–6. Generally speaking, the activation energy values of 5AT–2 were mostly lower
than those of 5AT–1 in the conversion (α) range from 0.1 to 0.9. Kinetic parameters are
influenced by multiple factors, such as reaction time, temperature, reaction rate, conversion,
etc. Moreover, the kinetic parameters also can be influenced by each other. As the thermal
decomposition reaction progresses, the reaction time, temperature, and conversion are
increasing, but the reaction rate is not a constant and it causes the activation energy and
conversion rate to keep fluctuating, which further affects the instability of reaction.
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The differences between the FR, KAS, and FWO methods, according to the results
in Figures 4–6, may be attributed to the formula’s calculation principle. Specifically, the
independent variables are all associated with temperature (1/T), but the dependent vari-
ables are different for these three methods. For the FR method, the dependent variable
(ln(dα/dt)) is related to time (t) and conversion (α), which is only directly influenced by
the accuracy of the experimental recordings of time (t) and conversion (α) accompanied
by no approximations for the formulation’s reasoning and expression. For the KAS and
FWO methods, both the formulations’ reasoning processes and expressions are adjusted
by several approximations. Therefore, there is a difference between these three methods
due to the formula’s calculation principle and reasoning process. However, no matter what
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method is used, the mean activation energy calculation results had similar variation trends
and effectively reflected the catalytic effect of NiO.

4.3. Effects of Heating Rate on DSC Curves

Figures 7 and 8 show the DSC curves of 5AT–1 and 5AT–2 at 150–400 ◦C using four
different heating rates. The decomposition temperature of both 5AT–1 and 5AT–2 was
shifted to higher temperatures.

Fire 2023, 6, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 6. Comparison for E vs. α between 5AT–1 and 5AT–2 obtained using KAS method. 

4.3. Effects of Heating Rate on DSC Curves 
Figures 7 and 8 show the DSC curves of 5AT–1 and 5AT–2 at 150–400 °C using four 

different heating rates. The decomposition temperature of both 5AT–1 and 5AT–2 was 
shifted to higher temperatures. 

 
Figure 7. DSC profiles of 5AT–1 using four different heating rates. 

 
Figure 8. DSC profiles of 5AT–2 using four different heating rates. 

Three characteristic temperatures were obtained from the DSC profiles, i.e., T0, Tonset, 
and Tp; the determination method was same as that used in previous studies [18]. Figure 
9 shows the characteristics of the temperature changes (To, Tonset, and Tp). With the growth 
of the heating rate, the characteristic temperatures increased. On the other hand, the To, 
Tonset, and Tp of 5AT–2 were lower than those of 5AT–1.  

Figure 7. DSC profiles of 5AT–1 using four different heating rates.

Fire 2023, 6, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 6. Comparison for E vs. α between 5AT–1 and 5AT–2 obtained using KAS method. 

4.3. Effects of Heating Rate on DSC Curves 
Figures 7 and 8 show the DSC curves of 5AT–1 and 5AT–2 at 150–400 °C using four 

different heating rates. The decomposition temperature of both 5AT–1 and 5AT–2 was 
shifted to higher temperatures. 

 
Figure 7. DSC profiles of 5AT–1 using four different heating rates. 

 
Figure 8. DSC profiles of 5AT–2 using four different heating rates. 

Three characteristic temperatures were obtained from the DSC profiles, i.e., T0, Tonset, 
and Tp; the determination method was same as that used in previous studies [18]. Figure 
9 shows the characteristics of the temperature changes (To, Tonset, and Tp). With the growth 
of the heating rate, the characteristic temperatures increased. On the other hand, the To, 
Tonset, and Tp of 5AT–2 were lower than those of 5AT–1.  

Figure 8. DSC profiles of 5AT–2 using four different heating rates.

Three characteristic temperatures were obtained from the DSC profiles, i.e., T0, Tonset,
and Tp; the determination method was same as that used in previous studies [18]. Figure 9
shows the characteristics of the temperature changes (To, Tonset, and Tp). With the growth
of the heating rate, the characteristic temperatures increased. On the other hand, the To,
Tonset, and Tp of 5AT–2 were lower than those of 5AT–1.
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4.4. Kinetic Parameters Derived from DSC Curves

The thermal decomposition of the two 5AT samples was investigated using the ASTM
method E698 [19] to determine the Arrhenius parameters. To obtain the parameter value
of A, the decomposition was deemed to follow the first-order kinetics. As a result, the
first-order kinetics model fit the overall observed decomposition behavior of both 5AT
samples over this temperature range, as evidenced using the linear regression method. The
linear representation of ln(β/Tp

2) vs. 1/Tp made it possible to determine E from the linear
slope, as shown in Figure 10. The logarithm of A, lgA, can be derived from the numerical
relationship from ASTM E698:

A = β

(
E

RTp
2

)
exp
(

E
RTp

)
(6)
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As for the thermodynamic parameters of the activation reaction, the thermal kinetic
parameters were also investigated. Shown in Equations (7)–(11), ∆G 6=, ∆H 6=, and ∆S 6= are
free energy, enthalpy, and entropy of the activation, respectively.

Aexp(−E/RT) =
kBT

h
exp
(
−∆G 6=/RT

)
(7)

−∆H 6= = E− RT (8)

∆G 6= = ∆H 6= − T∆S 6= (9)

A summary of the characteristic kinetic parameters is presented in Table 4. Compared
to 5AT–1, 5AT–2 remained lower in activation energy. The positive values of ∆G 6= imply
that the propellants require heating to undergo exothermic decomposition. Moreover, the
higher thermodynamic value of 5AT–1 indicates a higher heat demand for exothermic
decomposition.

Table 4. Characteristic kinetic parameters calculated using ASTM methods.

Sample Ea
(kJ/mol)

lgA
(s−1) r2 ∆G 6=

(kJ/mol)
∆H 6=

(kJ/mol)
∆S 6=

(kJ/mol)

5AT–1 78.95 6.50 0.99 94.10 74.11 −34.35
5AT–2 61.15 4.88 0.98 80.03 56.38 −41.21
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4.5. Thermal Safety Studies

When the heating rate approaches zero, i.e., β→ 0 , the values of T00, Te0, and Tp0
can be calculated using Equation (10). Equation (11) [18] can be used to estimate the
temperature of self-accelerating decomposition.

T0(or e or p) = T00(or e0 or p0) + bβ + cβ2 + dβ3 + eβ4 (10)

where b, c, d, and e are coefficients.

TSADT = Te0 (11)

In Equation (12), TTIT is the thermal ignition temperature [20]. Alternatively, the
thermal explosion critical temperature (Tb) can be determined by incorporating E and Tp0
into the equation below.

TTIT(or b) =
E−

√
E2 − 4ERTeo(orp0)

2R
(12)

All the thermal safety values of the propellants are listed in Table 5. We can see that
both TSADT and TTIT of 5AT–1 were higher than those of 5AT–2, indicating that the NiO
addition into 5AT resulted in a reduced resistance to heat and thermal safety of the 5AT
propellant. Meanwhile, the critical value of Tb for 5AT–2 was lower than that of 5AT–1,
indicating that the process of thermal explosion for 5AT–2 occurred more readily.

Table 5. The derivative parameters of 5-AT-1 and 5AT–2 samples.

Sample 5AT–1 5AT–2

T00 (◦C) 229.3 214.7
TSADT/e0 (◦C) 235.4 232.6

Tp0 (◦C) 277.6 263.2
TTIT (◦C) 241.5 240.9
Tb (◦C) 286.2 273.4

4.6. Gas Product Analysis Using Fourier Transform Infrared Spectroscopy

Following the acquisition of all FTIR data, a typical 2D spectrogram for the two
samples were plotted from the TG-FTIR. The temperature and wavenumber of 5AT–1 and
5AT–2 were used to identify the related evolved gas information. By comparing the two
spectrograms, it was observed that the addition of nano-sized NiO generated new gases.

As can be seen in Figures 11 and 12, two spectrum band peaks within 3400–3250 cm−1

suggest that there were symmetrical stretching vibrations of primary amine (–NH2) groups
within the organic compounds. The absorption bands at 1650–1500 and 3336 cm−1 could be
attributed to the in-plane bending vibrations and stretching vibrations of secondary amine
(–NH) groups. The presence of the absorption band at 2150–2000 cm−1 was considered to
indicate the existence of hydrazoic acid (HN3). Additionally, another remarkable spectrum
band at 2410–2200 cm−1 was associated with the formation of a cyanogroup (–CN).

NiO exerts different catalytic effects on different groups. For the –NH and –CN
groups, the initial evolving temperature is moved forward with the addition of NiO, and
the evolving temperature range of HN3 is extended due to the presence of NiO. However,
the terminal temperature of –NH2 is shortened when adding NiO.

Previous research had confirmed that the generation of CH2N2 can be detected at
250~500 ◦C during the pyrolysis process. Therefore, the –NH group is associated with the
generation of CH2N2. The gas product of NH2CN can be detected when the temperature
is over 500 ◦C. The –CN is most likely to belong to the characteristic group of NH2CN.
The two spectrum band peaks within the 3400–3250 cm−1 range are the characteristic
absorption peaks of HCN.
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Based on the above analysis, there were no new gas products generated when adding
nano-sized NiO, but different catalytic effects on different groups were obvious. Specifically,
the initial evolving temperature of CH2N2 was detected in advance (about 50 ◦C earlier)
with the presence of NiO. Moreover, the generation of HCN followed a similar variation
trend. The evolving temperature range of HN3 was extended from 330 ◦C to 430 ◦C with
the same initial temperature. In particular, the temperature range of NH2CN was shortened
from 780 ◦C to 580 ◦C under the same terminal temperature.

5. Conclusions

The addition of nano-sized NiO lowered the characteristic temperature values at differ-
ent conversions, as shown by the comparison of the TG-DTG curves. The iso-conversional
reaction kinetics indicated that the nano-sized NiO has a significant catalytic effect on the
5AT decomposition process by reducing the activation energy and facilitating the reaction
process. The thermodynamic parameters derived from the DSC study, including the free
energy, entropy, and enthalpy of activation, indicated that less heat is required for the
exothermic decomposition to occur when NiO is present, further corroborating the catalytic
activity of NiO. From the thermal safety studies, it was more likely to transform from degra-
dation to explosion for 5AT with the addition of NiO. The 5AT catalyzed by nano-sized
NiO was more heat sensitive during storage than raw 5AT. Moreover, the TG-FTIR test was
conducted to study the pyrolysis mechanism with or without NiO; the results showed that
NiO exerts different catalytic effects on the gas products. In a future simulation study, the
kinetic parameters, thermodynamic parameters, and evolved gases obtained in this study
will be incorporated into the degradation model for propellants.
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