
Citation: Zhou, M.; Zhou, B.; Zhang,

Z.; Zhou, Z.; Liu, J.; Li, B.; Wang, D.;

Wu, T. Fire Egress System

Optimization of High-Rise Teaching

Building Based on Simulation and

Machine Learning. Fire 2023, 6, 190.

https://doi.org/10.3390/fire6050190

Academic Editors: Lizhong Yang,

Zhijian Fu and Yanqiu Chen

Received: 12 April 2023

Revised: 2 May 2023

Accepted: 5 May 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Fire Egress System Optimization of High-Rise Teaching
Building Based on Simulation and Machine Learning
Muchen Zhou, Bailing Zhou * , Zhuo Zhang, Zuoyao Zhou, Jing Liu, Boyu Li, Dong Wang and Tao Wu

School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China;
wutao@wust.edu.cn (T.W.)
* Correspondence: zhoubailing@wust.edu.cn

Abstract: A fire egress system is one of the most critical aspects of fire emergency evacuation, which is
the cornerstone technology of building fire safety. The high-rise teaching buildings on campus, where
vast crowds of people gather, need to be qualified for rapid evacuation in the event of a fire especially.
Conventional teaching building egress system design places more emphasis on individual elements
(e.g., stairwells, evacuation doors, and evacuation walkways) rather than on their co-regulation as
a whole. Furthermore, there are not enough holistic and effective optimal design strategies, which
is because most of the existing studies rely on experiments or simulations and often suffer from
a lack of sufficient data to fully reveal the interactions of individual variables. In this study, the
co-effectiveness of stairwells, walkways, and room doors in reducing total evacuation time was
investigated by simulation and machine learning. We selected a typical high-rise teaching building as
an example and integrated two simulation software, Pyrosim and Pathfinder, to compare the available
safe evacuation time (ASET) and required safe evacuation time (RSET). Then, a framework consisting
of five factors—stair flight width (SFW), stairwell door width (SDW), corridor width (CW), room door
width (RDW), and location of the downward stair flight (LDSF)—was established for the optimization
through statistical analysis of big data obtained by the preferred machine learning algorithm. Results
indicate that (1) By modifying just one factor (SFW), the total evacuation time (TET) can be reduced
by at most 12.1%, with the mortality rate dropping from 26.5% to 9.5%; (2) although ASET could not
be achieved either, among 4000 cases of multi-factor combinations, a maximum TET improvement
degree, 29.5%, can be achieved for the evacuation optimization compared to baseline model, with
a consequent reduction in mortality to 0.15%; (3) it shows that the emphasis of the egress system
optimization is on the geometric features of the evacuation stairwell; furthermore, the multi-factor
combination approaches have better compromised evacuation performances than the single-factor
controlled schemes. The research results can be applied as rational design strategies to mitigate fire
evacuation issues in high-rise teaching buildings and, in addition, the methodology suggested in this
paper would be suitable to other building types.

Keywords: fire safety; egress system optimization; simulation; machine learning

1. Introduction
1.1. Background

While fire has brought civilization to mankind, it has also brought disaster to us,
leading to the loss of property and even human life [1]. There are around seven million
fires globally every year [2], including nearly 14,500 in high-rise buildings [3]. With the
advancement of construction technology, high-rise buildings have become very popular
in the world, and high-rise teaching buildings are one of the common types. A high-
rise teaching building on university campuses generally consists of classrooms, offices,
studios, laboratories, etc., which is usually a typically staff-intensive place. According to
statistics [4], more than 4000 fires have occurred in universities across China over the past
decade, mostly in classrooms and laboratories. These catastrophes resulted in the deaths of
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over 50 students and educators, with total economic losses amounting to USD 25 billion.
Hence, the issue of fire safety in high-rise teaching buildings has received considerable
critical attention.

The core purpose of fire safety is to protect human life. The most fundamental
and important technology for the fire protection design of buildings is, specifically, fire
emergency evacuation. Ensuring occupant safety in fire hazard involves a number of
essential aspects, including behavioral patterns of escapees, fire development process,
building structure, building fire prevention facility configuration, and so on. The purpose
of fire emergency evacuation is to make sure that the RSET is less than ASET.

As an important part of fire safety, the egress system made up of a variety of com-
ponents, including stairs, refuge floors, sky bridges, etc., has a significant impact on the
comprehensive evacuation performance of the building. Additionally, the geometric fea-
tures of the egress system elements, such as the number and placement of staircases,
influence how well it works [5]. These variables are defined in the stage of architectural
scheme design, and once the plan is put into place, it cannot be changed afterward. There-
fore, it is critical to select suitable parameters at the outset of the schematic design phase,
which will ensure the effective operation of the egress system.

Based on the current study, the principal objective of this paper is to reveal the intrinsic
linkages and combined impacts of egress system factors in high-rise teaching buildings by
means of simulation, machine learning, and statistical analysis, which provides a basis for
choosing parameters during the architecture scheme stage. Furthermore, this information
would serve as a theoretical and technical foundation for development and remediation in
the field of building egress system optimization.

1.2. Literature Review

Building egress systems have been extensively studied, most of which were con-
ducted in densely populated places such as hospitals [6,7], campuses [8–10], subway
stations [11–13], and airports [14].

One of the most important advances in this field was that Tweedie et al. [15] first
calculated evacuation durations by using a computer simulation of the fire evacuation
procedure in the 1980s. Since experimenting with fire in the real world would result in
accidents or severe injuries, the simulation method marked an important turning point
for the research of fire evacuation [11]. Recent years have witnessed a growing academic
interest in the areas of fire lighting simulation [16], fire smoke flow simulation [17], fire
safety assessment [18,19], fire evacuation simulation [20–23], etc.

The rapid development of computer computing power allowed for more detailed,
complex scenarios of three-dimensional fire simulations, the use of which can facilitate
research on this topic [24]. While computer simulations have undoubtedly made the study
more convenient, what is known about fire evacuation comes from small-scale experiments
with inadequate samples [25]. Given that data analysis is a key method of the scientific
research [26], small sample sizes have been a serious limitation for previous studies on fire
emergency evacuation.

Recent advances in machine learning have made it easier to expand the data capacity
and build the sample database [27]. Because of its advantage of extracting hidden rules
from real data, it has a broad range of developments in computer science and is quickly
expanding to economics and medicine [28], and then to a wide range of fields. Up to
now, several studies have been developed around the theme of machine learning, such as
investigating the factors influencing people movement patterns during evacuation [29],
detecting the trend of crowd flow during evacuation [30], creating a training system
to improve evacuation capability by inducing crowd movement state through dynamic
guidance signs [31], applying ANN to precisely model people’s behavior during evacuation
and their responses to other people and obstacles [32], and developing a rescue route
planning algorithm that takes credit for all aspects of local safety performance [33]. These
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papers demonstrate how useful the prediction results of machine learning can be as a basis
for evacuation studies.

The main focus of the studies in building egress systems included exit numbers [9], exit
widths and locations [34], stairway forms [8], stair number and locations, stair widths [5],
and corridor widths [34,35] and lengths [34]. In addition, most of them only discussed a
specific stage of the evacuation process, such as the evacuation from the room to the RD [36],
the evacuation from the RD to the walkway [37], and the evacuation in the stairwell [5,38].
However, few writers have been able to draw on any structured research into the entire
building evacuation process. Moreover, there is a lack of analytical studies on the combined
effects of various design variables.

The summary of literature is shown in Table 1.

Table 1. Summary of the research.

References Research Tools Scenarios Content

Fang, Z.M. (2012) [38] Empirical study High-rise commercial
building

Factors affecting the
evacuation speed of stairwells

Li, Y. (2020) [6]

Simulation

Hospital Effect of overlap and
acceleration on evacuation

Zang, Y. (2021) [10] Campus Effect of obstacles on
evacuation

Zhang, X. (2018) [23] Subway station Effect of floor plan on
evacuation

Liu, Y.Q. (2021) [17] Subway station Fire smoke flow simulation

Wang, N. (2021) [19] Underground shopping malls Fire safety assessment

Tajima, Y. (2001) [36] Effect of door size of exit on
evacuation

Weifeng, F. (2003) [37] Bidirectional pedestrian
movement characteristics

Rostami, R. (2021) [9] Elementary school Effect of parameters such as
exit numbers on evacuation

Kodur, V.K.R. (2020) [5] High-rise office building Effect of stair location on
evacuation

Li, J.C. (2022) [34] Optimal ratio of parameters
for convex exit

Syed Abdul Rahman,
S.A.F. (2021) [35] Campus Evacuation emergency

management

Wang, K. (2019) [29]

Machine learning

Evacuees’ movement pattern

Horii, H. (2020) [30] Identification of crowd
behavior

Gu, J.L. (2022) [31] Campus Emergency management and
evacuation simulation

Tkachuk, K. (2018) [32] Prediction of the evacuation
route

Wang, K. (2023) [21] Intelligent algorithm Evacuation route optimization

Deng, H. (2021) [33]
Simulation, machine learning

Campus Evacuation route planning

Guo, K. (2022) [11] Subway station Evacuation optimization

Zhong, Y. (2021) [16] Simulation, intelligent algorithm Fire emergency lighting
distribution
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1.3. Scientific Originality

Fire emergency evacuation includes numerous processes that each integrate a wide
variety of components, while component characteristics determine the building egress
system. Previous studies have predominantly focused on one particular stage of evacuation
or investigated how one particular component affects evacuation, which ignored the linkage
effect between multiple components. Moreover, a lot of earlier studies only used data from
simulation, which were somewhat limited due to their lack of sample sizes.

To this end, we (1) generalized all the egress system components and their parameters,
allowing the optimization gaze to be more thorough and multifaceted; (2) counted on
machine learning to gather vast amounts of basic research data and compare them to
the evacuation performance of baseline model in order to investigate the potential for
optimization; (3) utilized Design Explorer software to visualize the data analysis in order
to examine the interaction effects of the variables and generate suggestions for improving
evacuation performance. (4) Additionally, because different types of buildings have similar
egress system components, the workflow put forth in this paper can be used to optimize
evacuation of other building types.

1.4. Aim of This Work

This paper aimed to address the following research questions: (1) How important is
each factor and how much does it affect the building egress system when several indepen-
dent factors are in play at once? (2) Is it possible to identify a collection of solutions that
work best for each variable parameter to reduce TET? To achieve the research objectives,
this study used a real-world building case to test the efficacy of the analysis method, and
it created a database using a preferred machine learning algorithm to enhance the single
simulation method and lower the likelihood of the outcomes. Our major contributions
were: (1) Several variables in the evacuation process route were taken into consideration,
and sensitivity analysis was used to determine the contribution potential and weights
of each factor to the evacuation efficiency; (2) the interactive combination effects of the
variables were investigated through data screening and comparison; (3) the study results
would offer a foundation for parameter choice in architecture scheme design and enrich
the research framework of building egress system optimization.

The rest of the essay is laid out as follows: a four-step framework of high-rise teaching
building egress optimization is established in Section 2. In Section 3, the outcomes of
single-factor effects and multi-factor combination effects based on simulation and preferred
machine learning algorithms are displayed. Finally, Section 4 concludes the research.

2. Research Methodology

In this work, Pyrosim simulation software was used to determine the ASET, Pathfinder
simulation software was utilized to simulate the fire evacuation process for obtain the RSET.
Then, closely followed by MATLAB (R2019b Update9) software to preprocess, manipu-
late and sample the data, machine learning algorithms were continuously introduced to
effectively study large-capacity samples, and ultimately suggest evacuation optimization
strategies through a series of data analysis. The following is the technology workflow for
this research (Figure 1).

2.1. Study Building Specification

This paper only centered on the second teaching area of the building, which has ten
floors and is located in the middle of the building’s three distinct teaching areas (Figure 2a).
Each level in this area is 4.2 m high, with a total building height of 52.5 m (Figure 2b). Its
symmetrical layout, as seen in Figure 2c, features the same general layout on each level
with a total of four staircases. The atrium is only present in the center of the first through
seventh stories, and a corridor has also been created in between the two stairs on the east
side of the fourth and fifth levels. Auxiliary rooms and restrooms are also included on the
west side of the floor layout.



Fire 2023, 6, 190 5 of 25

Fire 2023, 6, x FOR PEER REVIEW 4 of 25 
 

 

on machine learning to gather vast amounts of basic research data and compare them to 
the evacuation performance of baseline model in order to investigate the potential for op-
timization; (3) utilized Design Explorer software to visualize the data analysis in order to 
examine the interaction effects of the variables and generate suggestions for improving 
evacuation performance. (4) Additionally, because different types of buildings have sim-
ilar egress system components, the workflow put forth in this paper can be used to opti-
mize evacuation of other building types. 

1.4. Aim of This Work 
This paper aimed to address the following research questions: (1) How important is 

each factor and how much does it affect the building egress system when several inde-
pendent factors are in play at once? (2) Is it possible to identify a collection of solutions 
that work best for each variable parameter to reduce TET? To achieve the research objec-
tives, this study used a real-world building case to test the efficacy of the analysis method, 
and it created a database using a preferred machine learning algorithm to enhance the 
single simulation method and lower the likelihood of the outcomes. Our major contribu-
tions were: (1) Several variables in the evacuation process route were taken into consider-
ation, and sensitivity analysis was used to determine the contribution potential and 
weights of each factor to the evacuation efficiency; (2) the interactive combination effects 
of the variables were investigated through data screening and comparison; (3) the study 
results would offer a foundation for parameter choice in architecture scheme design and 
enrich the research framework of building egress system optimization. 

The rest of the essay is laid out as follows: a four-step framework of high-rise teaching 
building egress optimization is established in Section 2. In Section 3, the outcomes of sin-
gle-factor effects and multi-factor combination effects based on simulation and preferred 
machine learning algorithms are displayed. Finally, Section 4 concludes the research. 

2. Research Methodology 
In this work, Pyrosim simulation software was used to determine the ASET, Path-

finder simulation software was utilized to simulate the fire evacuation process for obtain 
the RSET. Then, closely followed by MATLAB (R2019b Update9) software to preprocess, 
manipulate and sample the data, machine learning algorithms were continuously intro-
duced to effectively study large-capacity samples, and ultimately suggest evacuation op-
timization strategies through a series of data analysis. The following is the technology 
workflow for this research (Figure 1). 

    
Figure 1. Research framework. 

2.1. Study Building Specification 
This paper only centered on the second teaching area of the building, which has ten 

floors and is located in the middle of the building’s three distinct teaching areas (Figure 
2a). Each level in this area is 4.2 m high, with a total building height of 52.5 m (Figure 2b). 
Its symmetrical layout, as seen in Figure 2c, features the same general layout on each level 
with a total of four staircases. The atrium is only present in the center of the first through 
seventh stories, and a corridor has also been created in between the two stairs on the east 

Figure 1. Research framework.

Fire 2023, 6, x FOR PEER REVIEW 5 of 25 
 

 

side of the fourth and fifth levels. Auxiliary rooms and restrooms are also included on the 
west side of the floor layout. 

 

  
(a) (b) (c) 

Figure 2. (a) Photo of the teaching building; (b) model of the teaching building; (c) typical plan and 
fire source setting. 

The main cause of fire fatalities is smoke from combustion [39], and due to the chim-
ney effect, smoke will quickly travel to higher floors through vertical traffic nuclei such as 
stairwells and elevator shafts, decreasing visibility and producing hazardous gases to im-
pede evacuation progress. Therefore, when the fire source is situated on a lower floor, the 
impact is greater and more widespread [5]. 

Given the real circumstances of the case, the fire source was set in the second-floor 
substation room, which is adjacent to the storage room (Figure 2c). The fire is thought to 
have been sparked by an old electrical wire short circuit, and the textile, plastic, and paper 
products in the warehouse helped it spread more quickly. The scenario setting essentially 
replicated the fire’s unfavorable circumstances. 

This research focused on the design parameters of evacuation-related components in 
buildings, excluding the effect of positive fire protection systems. Elevators are not in-
cluded in the essential egress coordination, and a number of extra conditions must be ful-
filled before they can be used in a fire emergency [40]. Furthermore, many nations ex-
pressly forbid using elevators as a means of evacuating citizens in the event of a fire [41]. 
As a result, it is predetermined that an emergency cannot be handled by using the eleva-
tor. 

2.2. Indicators for Evaluations of the Building Egress System 
By comparing the available and required safe evacuation time, it is possible to assess 

the building egress system. The building egress system complies with the evacuation re-
quirements if the ASET is greater than the RSET, and vice versa [42] (Table 2). 

Table 2. Building egress system evaluation. 

Scenarios Evaluation 
ASET > RSET Safe 
ASET < RSET Dangerous 

2.2.1. Criterion for Evaluation of the ASET 
In this paper, Pyrosim 2021 software was chosen to simulate the fire in order to de-

termine the ASET. Developed by the National Institute of Standards and Technology 
(NIST), Pyrosim software is particularly intended for fire dynamics simulation (FDS) [43]. 
By setting parameters such as material combustion performance, fire source location, and 
combustion release rate, it can effectively portray the smoke development situation under 
actual fire scenarios [44]. 

Figure 2. (a) Photo of the teaching building; (b) model of the teaching building; (c) typical plan and
fire source setting.

The main cause of fire fatalities is smoke from combustion [39], and due to the chimney
effect, smoke will quickly travel to higher floors through vertical traffic nuclei such as
stairwells and elevator shafts, decreasing visibility and producing hazardous gases to
impede evacuation progress. Therefore, when the fire source is situated on a lower floor,
the impact is greater and more widespread [5].

Given the real circumstances of the case, the fire source was set in the second-floor
substation room, which is adjacent to the storage room (Figure 2c). The fire is thought to
have been sparked by an old electrical wire short circuit, and the textile, plastic, and paper
products in the warehouse helped it spread more quickly. The scenario setting essentially
replicated the fire’s unfavorable circumstances.

This research focused on the design parameters of evacuation-related components
in buildings, excluding the effect of positive fire protection systems. Elevators are not
included in the essential egress coordination, and a number of extra conditions must be
fulfilled before they can be used in a fire emergency [40]. Furthermore, many nations
expressly forbid using elevators as a means of evacuating citizens in the event of a fire [41].
As a result, it is predetermined that an emergency cannot be handled by using the elevator.

2.2. Indicators for Evaluations of the Building Egress System

By comparing the available and required safe evacuation time, it is possible to assess
the building egress system. The building egress system complies with the evacuation
requirements if the ASET is greater than the RSET, and vice versa [42] (Table 2).

Table 2. Building egress system evaluation.

Scenarios Evaluation

ASET > RSET Safe
ASET < RSET Dangerous
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2.2.1. Criterion for Evaluation of the ASET

In this paper, Pyrosim 2021 software was chosen to simulate the fire in order to
determine the ASET. Developed by the National Institute of Standards and Technology
(NIST), Pyrosim software is particularly intended for fire dynamics simulation (FDS) [43].
By setting parameters such as material combustion performance, fire source location, and
combustion release rate, it can effectively portray the smoke development situation under
actual fire scenarios [44].

During the fire simulation trials, the grid parameters needed to be set to ensure the
accuracy of the computation. Typically, the size of the mesh cell (δx) is linked to the diameter
size of the fire characteristic (D∗) with a ratio (D∗/δx) between 4 and 16. The following
formula can be used to calculate the diameter size of the fire characteristic (D∗) [45]:

D∗ =
(

Q∗

ρ∞cpT∞
√

g

) 2
5

(1)

where Q∗ is the overall heat release rate of the fire (KW), ρ∞ is the air density (1.204 kg/m3),
cp is the air specific heat (kJ/(kg·K)), T∞ is the ambient temperature, and g is the acceleration
of gravity (m/s2).

Given that the assumed ambient temperature was 20 ◦C, the grid was speculated to
be between 0.23 and 0.93 m [46]. In view of the software running duration and model
calculation accuracy needs, the grid size was set to 0.25 m × 0.25 m × 0.25 m [47], making
simulation results sensitive to the mesh employed (554,812 grids). The overall simulation
duration was 600 s [43], the fire source area was set to 1 m × 1 m, with fire heat release rate
set to 6 MV [48] and the combustion reaction set to polyurethane combustion [49]. The fire
growth time can be calculated as follows [46]:

Q = αt2 (2)

where Q is the fire heat release rate (KW), α is the fire growth coefficient (KW/s2), t is
the time (s). The fast-growing fire mode, with a fire growth coefficient of 0.0469 KW/s2,
is selected based on the case’s real circumstances. It is clear from the computation that
the fire will burn for 361 s before reaching its maximum value of the chosen heat release
rate. Hence, the fire simulation duration was chosen to be 600 s in order to achieve more
complete simulation data [43].

In general, the time it takes for temperature, CO concentration, or visibility to reach a
critical level is used as an indicator for ASET. According to previous literature, people will
become exceedingly uncomfortable and unable to breathe when the temperature reaches
60 ◦C [50]; hence 60 ◦C is utilized as the critical danger temperature. People will asphyxiate
quickly when the CO concentration hits 500 ppm. Therefore, the hazard threshold for
CO is 500 ppm [50,51]. Although the Australian Guide for Fire Engineers states that the
5 m visibility level is the standard for small places [52], previous study [53] unequivocally
discovered that walking speed decreases sharply when visibility reaches 1 m, and then stops
changing relatively significantly even visibility continues to decline. Thus, the moment
when visibility reaches 1 m is identified as one of the criteria for determining the value of
ASET. The mentioned data above are detailed in Tables 3–5.

Table 3. Critical danger temperature setting.

Temperature (◦C) Endurance Time (min)

<60 >30
100 12
180 1
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Table 4. Critical danger CO content setting.

CO Content (ppm) Exposure Time Harm Effect

100 Within 8 h No feeling
400–500 Within 1 h No feeling
600–700 Within 1 h Headache, nausea, breathing disorder

1000–2000 Within 2 h Consciousness, breathing disorders,
coma, die within 2 h

3000–5000 Within 20–30 min Death
10,000 Within 1 min Death

Table 5. Critical danger visibility setting.

Visibility Threshold (m) Scenarios

1 Small spaces
10 Large spaces

2.2.2. Criterion for Evaluation of the RSET

In this paper, Pathfinder software was chosen to simulate evacuation to obtain the
RSET. It can be calculated as follows [54]:

RSET = Td+Tpre+Tt (3)

where Td signifies the fire detection alarm time (s), Tpre denotes the personnel pre-movement
time (s), and Tt represents the personnel evacuation movement time (s).

Since this paper aimed to investigate the influence of building design parameters on
evacuation, excluding Td and Tpre from consideration, the values of both were assumed to
fall within a fixed range [41] (Figure 3).
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There are two operating modes in Pathfinder software: SFPE and Steering. Steering
mode includes complex behavioral aspects of evacuation process, such as collision avoid-
ance and route selection, which can accurately simulate the evacuation process of people by
setting characteristic parameters (height, gender, shoulder width) and motion parameters
(walking speed) [5]. The formula for the motion scenario is shown in detail as follows [10]:

1. The speed of evacuating people decelerates when passing through obstructions
such as stairs, with a certain acceleration maintained in areas with low density of
passenger flow:

v0 =

{
vmax

k
1.4 (D < 0 .55)

vmax
k−0.266kD

1.19 (D ≥ 0 .55)
(4)

amax =
vmax

t
(5)

where v0 is the evacuees’ starting velocity (m/s), vmax is the evacuees’ maximum
velocity (m/s), k is the impact factor, D is the density of evacuees’, (per/m2), amax is
the maximum acceleration (m/s2), and t is the acceleration time (s).

2. Directional selection weights during evacuation:

ω =
θ

2π
(6)

whereω represents the significance of the chosen evacuation direction, and θ repre-
sents the angle between all possible evacuation directions and the curve tangent of
the software-planned path.

3. The speed and acceleration vectors in the direction of evacuation with the least
probability of path selection: ∣∣∣⇀v ∣∣∣ = {0 (l max ≤ lstop

)
v (l max> lstop

) (7)

⇀
v min =

∣∣∣⇀v ∣∣∣ ∗⇀l min (8)

⇀
a min =

⇀
v min −

⇀
v∣∣∣⇀v min −
⇀
v
∣∣∣amax (9)

where
⇀
v is the speed of vector in the present evacuation direction (m/s), lmax is the

longest forward distance in the present evacuation direction (m), lstop is the smallest

acceleration-affected distance in the present evacuation direction (m),
⇀
l min is the

least important evacuation direction,
⇀
v min is the least valued velocity vector in the

evacuation direction (m/s), and
⇀
a min is the least influenced acceleration vector in the

evacuation direction (m/s2).

4. The speed and place of evacuees travelling to the next location:

⇀
v next=

⇀
v min+

⇀
a min∆t (10)

⇀
Pnext=

⇀
P +

⇀
v min∆t (11)

where
⇀
v next is the speed of the evacuees when they reach the next location,

⇀
Pnext is

the next location,
⇀
P is the present location, and ∆t is the duration.
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2.3. Determination of Main Independent Variables

With regard to the literature currently in print, the primary variables for the evacuation
process are stair width [5], corridor width [34,35], and door width [55]. In this paper, by
classifying the process routes of evacuation, we synthesized the aforementioned variables
and list five pertinent factors: RDW and CW play a role in the horizontal evacuation
process, while SDW, SFW, and LDSF play a role in the vertical evacuation process, where
“LDSF” is treated as a dummy variable with a value of 0 or 1 (0 for no, 1 for yes). The
minimum value of the remaining variables is determined in accordance with the relevant
clauses in International Building Code 2021 (IBC 2021) [56], NFPA (National fire protection
association) [40], and China’s Code for fire protection design of buildings [57] as the
benchmark, while the maximum value of the variables is determined by increasing three
streams of flow per stream of 0.55 m. The range of values for each variable is shown in
Table 6.
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2.4. Data Deployment and Preference of Machine Learning Algorithms
2.4.1. Preferential Selection of Algorithms

The evacuation procedure was simulated using the Pathfinder program. In each
experiment, only a single variable was changed to acquire a total of 220 single-factor
evacuation time sample data. The sample data were then split into a training set and a
test set in a 9:1 ratio, and the training set data were used to create regression models using
12 widely used machine learning algorithms [11,13,29] (Table 4). R2, MSE (Mean Square
Error), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and MAPE (Mean
Absolute Percentage Error) are used as assessment indices for the accuracy of the algorithm
to predict the test set data. The formula is shown in Equations (11)–(15) [58]:

R2 = 1− ∑N
i=1 (x i−yi)

2

∑N
i=1(xi − x)2 (12)

MSE =
1
N ∑N

i=1 (x i−yi)
2 (13)

RMSE =

√
1
N ∑N

i=1 (x i−yi)
2 (14)

MAE =
1
N ∑N

i=1|xi−yi| (15)

MAPE = 100· 1
N ∑N

i=1
|xi−yi|

xi
(16)

where xI refers to the ith expected output, I refers to the ith predicted output, X is the
average of all expected outputs, N refers to the number of samples in the identification set,
MSE is the expected value of the square of the disparity between the predicted and actual
values, RMSE is the square root of MSE, MAE reflects the real condition of the error of the
predicted value, and MAPE is the deformation of MAE. The closer R2 is to 1, the smaller
the MSE, RMSE, MAE, and MAPE are, the more accurate the model is.

Each indicator’s value corresponds to the Random Forest algorithm were the most
optimal, with R2 = 0.971, the closest to 1, and the lowest values of MSE, RMSE, MAE, and
MAPE (Table 7), making this regression model the most accurate. As a consequence, this
algorithm was the preferred one for predicting the outcomes of multi-factor combinatorial
optimization (Figure 4).
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Table 7. Accuracy analysis of algorithms.

Serial Number Algorithms MSE RMSE MAE R2 MAPE

1 Decision tree 96.009 9.798 7.466 0.942 1.704
2 Random Forest 46.665 6.831 5.824 0.971 1.409
3 Adaboost 108.014 10.393 7.709 0.934 1.775

4 Gradient Boosting Decision Tree
(GBDT) 85.019 9.220 7.461 0.948 1.759

5 Extra Trees 64.128 8.008 6.583 0.961 1.541
6 CatBoost 99.568 9.978 7.887 0.939 1.815
7 K-Nearest Neighbor (KNN) 67.905 8.240 6.643 0.959 1.557

8 Back-Propagation (BP) neural
network 771.358 27.773 19.346 0.534 4.625

9 Support Vector Machine (SVR) 1364.423 36.938 33.006 0.177 7.960
10 XGBoost 84.082 9.169 8.035 0.949 1.887

11 Light Gradient Boosting Machine
(LightGBM) 649.480 25.484 14.749 0.608 3.379

12 Linear Regression (Gradient
Descent) 775.047 27.839 19.234 0.532 4.641
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2.4.2. Parameter Combinations and Results Prediction

The goal of Monte Carlo (MC) simulation, an analytical technique for complicated
systems, is to acquire predicted values through repeated random sampling of numerous
random input parameters that follow a normal distribution [59]. In the physical world,
there are two highly common and significant forms of stochastic processes: Bernoulli
and Poisson processes, and the contrary, which states that future events will depend on
previous events and can, to some extent, predict the future. There are two types of state
transformation processes with time: discrete-time Markov chains and continuous-time
Markov chains. The formula is as follows:

P(X0 = i0, X1 = i1, . . . , Xn = in) = P(X0 = i0)pi0i1
pi1i2

. . . pi0n−1in (17)

where X0, X1, . . . Xn is a random sequence of variables, i0, i1 . . . in is a sequence of state.
After determining the value of P(X0 = i0), the probability of the complete path can be
estimated.

In this paper, we conducted Monte Carlo simulation using the MATLAB software to
create 4000 multifactor parameter combinations by picking variable values at random from
each of the four variable sampling ranges, and merging them with the dummy variable.
The generated data were then imported into the filtered Random Forest regression model
to forecast evacuation times in the context of multi-factor interactions.
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2.5. Statistical Method

By computing the fitted linear equation, multiple linear regression (MLR) illustrates
how the dependent variable varies with the independent variable [60]. The formula is as
follows [61]:

yi= δ0+δ1x1+ . . .+δnxn + γ (18)

where yi is the expected value of the dependent variable, δ0 is the intercept of the y-axis, δ1
(δn) is the regression coefficient of the independent variable x1 (xn), and γ is the regression
model’s error value.

In order to conduct multiple regression analysis on the sampling data, we made use
of IBM SPSS Statistics 27 software. The p-value in the software serves as an evaluation
indicator of the significance of the component. If it is less than 0.05, it suggests a significant
correlation between the independent and dependent variables, and vice versa.

In terms of the combination effect, the parameter combinations were screened by
whether the safe evacuation conditions were met, after which the variable taking features
were compared. The combination of safety evacuation criteria that achieved the shortest
TET was further chosen, and the optimal set of solutions for each variable parameter was
examined. After that, the effect on TET was analyzed for sensitive factors when they took
higher and lower values.

3. Results and Discussion
3.1. Results of the Simulation
3.1.1. Determining ASET: Simulating Fire Scenarios with Pyrosim

Due to the frequent opening and closing of the staircase doors, smoke is more likely
to enter a stairway when someone is moving about inside of it [62]. The high smoke
concentrations tend to make it more challenging to escape, which in turn negatively affects
evacuation. Hence, the critical danger time presented by the detectors installed in each of
the four stairwells was utilized as the basis for calculating ASET. At the same time, slices
were set up parallel (S1) and perpendicular (S2) to the horizontal plane, respectively, to
visualize changes in temperature, CO concentration, and visibility during the fire. The
following equation is used to determine the S1 and the four detector heights in relation to
the smoke layer height [4,43]:

Hs ≥ Hc= Hp+0.1Hb (19)

where Hs is the clear height (m), Hc is the danger critical height (m), Hp is the average
height of staff (m), and Hb is the internal height of the building (m). Hp is assumed to be
1.6 m, Hb is taken as 3.9 m, and the height of the smoke layer is calculated as 2 m.

Therefore, the S1 and 4 detector heights were set to 2 m, i.e., Z = 4.2 + 2 = 6.2 m (at
a height of 2 m on the second floor). In order to explore the temperature change in the
hallway during the fire, a temperature slice (S2) was also set up in the center of the corridor
next to the fire chamber.

1. Temperature analysis

As can be seen from the S1, the temperature in the fire chamber rose quickly through-
out the simulation, hitting a maximum of 60 ◦C in 75.4 s and continuing to rise to 170 ◦C
(Figure 5a,b). All other rooms, with the exception of the one next to the substation room,
were at a safe temperature (Figure 5b). According to the profile of the detector, the temper-
ature change trends in the four stairwells were quite similar, showing a gradual change in
temperature for the first 200 s before a rapid rise. However, none of them rose above 60 ◦C
(Figure 5c). The highest temperature during the 600 s simulation was approximately 57 ◦C
in staircase 4, 36 ◦C in stairwells 1 and 2, and approximately 53 ◦C in stairwell 3. Due to the
obstruction of the floor slab, the temperature effect range in the vertical direction was tiny
from S2 placed in the center of the corridor, and the temperature progressively dropped
along the horizontal direction (Figure 5d). With a floor space of 1707 m2, the electrical
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substation room is situated in the northwest quadrant of the floor plan. It has a high
fire resistance and is removed from other principal usage rooms and the four stairwells.
As a result, other areas, with the exception of the fire room and the nearby region, were
not significantly affected by the temperature. The key element influencing evacuation is
not temperature.
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2. CO concentration analysis

According to the S1, the fire room’s critical CO concentration was attained at 131.8 s,
and the concentration thereafter rose to 2500 ppm (Figure 6a,b). As shown by the detector’s
curve, the CO concentration in the four stairwells remained largely steady over a longer
period of time (Figure 6c). Due to its distance from the fire room, stairwell 1’s CO content did
not begin to increase until roughly 350 s had passed. At around 320 s, the CO concentration
in stairwell 2 began to rise toward that of stairwell 1. Closer to the fire, stairwells 3 and
4 experienced an increase in CO concentration starting at 220 and 200 s, respectively.
During the rise in CO concentration, the rate of CO growth in the four stairwells was
approximately the same. Among them, staircase 1’s CO concentration did not approach
the critical level during the simulation duration, leaving it open for personnel evacuation.
However, stairwells 2, 3, and 4 did, at around 590 s, 570 s, and 450 s, respectively, reaching
the hazardous critical concentration. The findings indicated that evacuation is somewhat
influenced by the CO content.
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3. Visibility analysis

As observed in S1, the visibility in the fire room quickly decreased, hitting a critical
value at 43.5 s, and then gradually dropping to 0 m (Figure 7a,b). The detector’s visibility
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change curve demonstrates that the visibility of the four staircases did not diminish for a
while before abruptly decreasing at one point (Figure 7c). Close to the fire room, stairwells
3 and 4 saw a severe decline in visibility after 200 s and were the first to reach a critical
level of risk at 250 s. At the latest at 388.6 s, stairwell 1, which is far from the burning room,
reached the hazard level.
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As can be seen from Figure 7c, the visibility inside stairwell 4 dropped to 1 m at about
300 s which was chosen as the critical time for visibility [53].

Overall, 300 s was chosen as the ASET after combining analysis of temperature (>600 s),
CO concentration (>600 s), and visibility (300 s).

3.1.2. Determining RSET: Simulating Fire Emergency Evacuation with Pathfinder

The software’s criteria for setting the age and gender distribution ratios and movement
patterns of the people in the teaching building were defined based on the field research
(Table 8) [39,43]. To approximate the daily utilization of the building, the average number
of students was determined based on the course schedules for each classroom over the
whole academic year.
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Table 8. People parameters setting.

Type Gender Ratio (%) Shoulder
Width (cm) Height (m) Walking

Speed (m/s)

Youths
Man 53 40 1.7 1.55

Woman 37 37 1.6 1.5

Middle-aged
Man 5 41 1.7 1.52

Woman 5 38 1.6 1.4

The building evacuation design parameters were established in accordance with the
real circumstances of the teaching building (Table 9). After that, the RSET of the teaching
building was determined to be 426.8 s by Pathfinder 2021 software (Figure 8).

Table 9. Establishment of baseline model parameters.

Type Parameter Setting

RDW (mm) 1000

CW (mm) 2160

SDW (mm)
1#2# staircases 1500

3#4# staircases 1300

SFW (mm)
1#2# staircases 1530

3#4# staircases 1480

LDSF Away from stairwell doors

Fire 2023, 6, x FOR PEER REVIEW 15 of 25 
 

 

  

  
(c) 

Figure 7. Visibility analysis: (a) slice of room visibility at 43.5 s; (b) slice of room visibility at 600 s; 
(c) curves of visibility change in four stairwells. 

Overall, 300 s was chosen as the ASET after combining analysis of temperature (>600 
s), CO concentration (>600 s), and visibility (300 s). 

3.1.2. Determining RSET: Simulating Fire Emergency Evacuation with Pathfinder 
The software’s criteria for setting the age and gender distribution ratios and 

movement patterns of the people in the teaching building were defined based on the field 
research (Table 8) [39,43]. To approximate the daily utilization of the building, the average 
number of students was determined based on the course schedules for each classroom 
over the whole academic year. 

The building evacuation design parameters were established in accordance with the 
real circumstances of the teaching building (Table 9). After that, the RSET of the teaching 
building was determined to be 426.8 s by Pathfinder 2021 software (Figure 8). 

  
(a) (b) 

Figure 8. Baseline model built by Pathfinder: (a) Overall 3D model; (b) evacuation process map. Figure 8. Baseline model built by Pathfinder: (a) Overall 3D model; (b) evacuation process map.

3.1.3. Comparison Results of ASET and RSET

According to the results of Pyrosim and Pathfinder simulations, ASET (300 s) < RSET
(426.8 s), meaning that the building does not meet the standards for safe evacuation in a
fire event, and would result in a 26.5% death rate (Figure 9).

3.2. Effect of Design Parameters on Death Rate

The key to evacuation is getting more people out in ASET, so it is imperative to first
investigate how design variables affect the death rate within 300 s (ASET) [63]. Modifi-
cations to the four design parameters almost invariably result in a lower death rate than
the current situation (26.5%), as depicted in Figure 10. SFW is the primary factor affecting
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mortality, and increasing SFW can cause a sharp decline in death rates, with the lowest
rate being 7.68% right after as SFW is 2300 mm. When the other three variables, with the
exception of SFW, are altered, the death rate essentially varies above and below a particular
level with a reasonably smooth pattern. Of those, SDW can contribute to an average death
rate of 20.85%. Although RDW and CW have similar mortality effects, RDW is slightly
superior to CW.
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Figure 10. Comparison of design parameters’ effect on death rate.

In other words, if only the single-factor-adjusted scenario is considered, the maximum
number of people that can be accommodated in this building should not exceed 2499,
otherwise fire safety evacuation cannot be achieved.

3.3. Data Analysis and Egress System Optimization
3.3.1. Monofactor Analysis

As indicated in Figure 11, 4000 TET data points passed the normality verification,
establishing the groundwork for further data analysis.
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The above 4000 projected data points were subjected to multiple regression analysis
using the IBM SPSS Statistics 27 software. The regression model’s corrected R2 = 0.499
suggested that it fitted the data quite well and can partially explain the relationship between
the independent and dependent variables. As shown in Table 10, the average value of
the residuals is close to 0 and the standard deviation is close to 1, indicating that the
data are basically normally distributed. The VIF values for each factor are between 0 and
10 (Table 11), meaning that there is no covariance in this regression model, namely, the
variables are independent of one another. Moreover, Table 11 illustrates the sensitivity and
magnitude of the factors’ contributions to the effect of evacuation.

Table 10. Model residual statistics.

Minimum Maximum Average Standard
Deviation

Number of
Cases

Predicted
value 297.295 402.385 363.161 17.873 4000

Residuals −51.149 87.345 0.000 17.888 4000
Standard
predicted

values
−3.685 2.195 0.000 1.000 4000

Standard
residuals −2.858 4.880 0.000 0.999 4000

Table 11. Analysis of the variables’ significance and model covariance.

Serial Number Variables Beta p VIF

1 SFW −0.560 0.000 1.052
2 SDW −0.444 <0.001 1.017
3 CW −0.030 0.007 1.008
4 RDW 0.005 0.674 1.046
5 LDSF −0.089 <0.001 1.030

1. The sensitivity factors for TET are SFW, SDW, and LDSF, all of which are design
parameters of evacuation stairwells. As illustrated in Figure 12a, the stairwells are
more likely to get congested than the others because they are at the end of the evac-
uation procedure for each level. This is in line with what the literature [55,64,65]
analysis revealed.
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2. Additionally, the results indicates that CW and RDW are not sensitive to TET, which is
inconsistent with the findings of earlier investigations [66,67]. This discrepancy results
from the characteristics of building planar evacuation. The layout of the building, a
series of rooms clustered around an atrium, is identical to how the rooms are arranged
on the side facing the outer walkway. Furthermore, the atrium does not extend all the
way to the top floor, creating a bigger area to accommodate the flow of passengers
on the 6th, 8th, and 9th floors, resulting in relatively mild crowding in the corridors
during the evacuation process (Figure 12b). Since there is no other crowd overlay
and the evacuation burden is not particularly intense, RDW primarily affects the
effectiveness of early personnel evacuation from the classroom to the corridor. As a
result, its impact on TET is minimal (Figure 12c).

3. SFW is the major contributor to TET (Beta = −0.560), which is due to the staircase
being the final stage of evacuation and having the most people capacity. A bigger
flow of people may pass through at once when the SFW is increased, which allows for
a greater TET reduction [5,9,68,69].

4. SDW (Beta = −0.444) has more of an impact on TET than LDSF (Beta = −0.089).
People enter the staircase by the SD and descend via the stairs. If the downstairs flight
is positioned distant from the side of the stairwell door, it extends the evacuation
distance for those on this floor. At the same time, they converge with the people on
the upper floor. The merging behavior of the stairwell entry buffer would cut down
the descending speed [38]. Meanwhile, the intensity of the behavior can be somewhat
controlled by SDW, which also regulates the flow of individuals.

As shown in Figure 13, among the evacuation design factors, SFW has the greatest
impact on TET. When other variables stay constant, the SFW could cut TET by 12.1%,
followed by SDW, which could reduce TET by 10.1%. The reductions in TET caused by
three other variables, namely SW, RDW, and LDSF, have proved steadier and more minor,
with respective reductions of 5.3%, 5.6%, and 1.2%. The findings generally consistent with
the results of the regression analysis shown in Table 11.

Even while no one factor alone can lower TET below ASET, SFW has the most potential.
According to Figure 13a, increasing the SFW greatly reduces the TET, although there is no
linear relationship between them. The trend becomes smoother after the SFW approaches
1.9 m, which indicates that there is a saturation point in the setting of SFW. When the width
of the SFW reaches 3–4 streams wide (about 1.9 m), the average flow rate of people on the
stairway section is up to the maximum. If the SFW is allowed to keep growing on this basis,
it would lead to too many people on the stairway flight and local congestion, which would
instead lengthen the TET, and even result in secondary calamities such as trampling.
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3.3.2. Muti-Factor Combination Effect Analysis

The first thing to observe is that, out of the 4000 combined scenarios, 3993 of them
have a TET smaller than original REST (426.8 s), despite the fact that none of them have
a TET smaller than ASET (300 s). The maximum improvement among all of these better-
than-baseline scenarios is 29.5%, with an average optimization rate of 15.5%. For the
single-factor adjusted approaches, these two numbers are 12.1% and 5.1%, respectively,
indicating that the multi-factor combination is more advantageous for enhancing the
evacuation performance of buildings than the single-factor solutions. The comparative
data between the two are detailed in Figure 14.
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Figure 14. Comparison of monofactor and multi-factor optimization schemes.

For greater visualization of the parameter filtering and comparison, a parallel co-
ordinate plot of the parameter combinations was drawn by Design Explorer software
(Figure 15). Among them, the parameter combinations when TET is safe for evacuation are
displayed in Figure 15a, and the comprehensive analysis screened by the values of SFW,
SDW, and LDSF variables are shown in Figure 15b–g.



Fire 2023, 6, 190 21 of 25Fire 2023, 6, x FOR PEER REVIEW 21 of 25 
 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 15. Combination effect analysis: (a) TET < ASET; (b) larger SFW; (c) smaller SFW; (d) larger 
SDW; (e) smaller SDW; (f) LDSF near stairwell door; (g) LDSF far from stairwell door. (Highlighted 
with orange square) 

Figure 15. Combination effect analysis: (a) TET < ASET; (b) larger SFW; (c) smaller SFW; (d) larger
SDW; (e) smaller SDW; (f) LDSF near stairwell door; (g) LDSF far from stairwell door. (Highlighted
with orange square).
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The combination of the shortest TET was then chosen to determine the properties of
each factor. As can be seen in Figure 15a, SFW is concentrated in the range [2100, 2200],
SDW is predominately distributed in the range [2000, 2200], CW distribution is slightly
expanded in the range [1800, 2400], while RDW values do not clearly demonstrate the data
aggregation phenomenon, distributing uniformly throughout the entire range of values.
LDSF is almost exclusively found close to the SD side. The relevant factor’s value should
be the optimal set of solutions for reducing TET.

Additionally, for SFW, SDW, and LDSF, the parameter combinations corresponding to
the extreme values at the two ends of the range of values were selected. It is apparent from
the comparison of Figure 15b,c that raising the SFW can result in a wide distribution of TETs
in the range of lower values. Regarding SDW (Figure 15d,e), widening it greatly lowers the
likelihood of data occurrence in the interval of 50–70% of TET and significantly increases
the density of data distribution in the interval of 0–50%. Compared to SFW and SDW, LDSF
near SD lower TET less dramatically (Figure 15f,g). It agrees with the conclusion drawn
from the one-way analysis above regarding the three individuals’ relative contributions
to TET.

If a safe evacuation by fire is to be accomplished, the maximum occupancy of this
teaching building should be decreased from the existing 2707 to 2703, according to the opti-
mal strategy in the multi-factor combination. In contrast, if the best single-factor solution is
applied, the maximum number of users should be decreased to 2499. Undoubtedly, the
former is more effective.

4. Conclusions

Fire accidents cause great damage to human beings. High-rise teaching buildings
are more likely to cause casualties in the event of a fire due to the dense population
inside. However, the interaction of the various components of the building egress system is
not well understood, despite the fact that there are numerous articles on fire evacuation.
Lack of analytical data is one of the main contributors to this issue. Therefore, after
Pyrosim and Pathfinder were employed to simulate the evacuation process in a high-rise-
teaching-building fire scenario, the preferred machine learning technique was utilized to
increase the sample data size, and the sensitivity and contribution of the variables were
examined to evaluate the combined effects of them. Through comparison studies, we found
that the multi-factor optimized solutions have better compromised building evacuation
performances. The main conclusions reached are as follows:

1. Three evaluation factors—temperature, CO concentration, and visibility—are typically
used to determine the ASET. The ASET in this paper was assessed through calculations
and analysis to be the moment when visibility achieved its limited value in stairwell 4.

2. The three variables relating to stairwells (SFW, SDW, LDSF) are all sensitive factors
for TET, with SFW contributing the most to TET and SDW the second most. These
three variables should be prioritized in the architectural program.

3. Although neither could reach ASET, the multi-factor combinations with a maximum
reduction in TET by 29.5%, outperforms the single-factor approach in terms of enhanc-
ing evacuation performance, and TET drops to the lowest when SFW [2100, 2200],
SDW [2000, 2200], CW [1800, 2400], with LDSF being close to staircase door.

The findings of this paper can be applied as a design strategy for high-rise teach-
ing buildings to mitigate fire evacuation issues, as well as to improve comprehensive
plans for educational buildings that comply with fire safety design techniques, which
provide certain support for improving the building egress system in both technical and
theoretical investigations.

The multi-factor combination effect provides a fresh concept for future evacuation
optimization design. However, there are still some limitations: the complexity of factors
was not well considered in our simulated fire evacuation scenarios, and the multiplicity of
actual building plan layouts was not taken into account either. These points will be covered
in more detail in subsequent studies that fall outside the purview of our work.
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Nomenclature

SFW Stair Flight Width
SDW Stairwell Door Width
CW Corridor Width
RDW Room Door Width
LDSF Location of the Downward Stair Flight
TET Total Evacuation Time
ASET Available Safe Evacuation Time
RSET Required Safe Evacuation Time
S1 Slice 1
S2 Slice 2
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