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Abstract: Fires are a pervasive feature of the terrestrial biosphere and contribute large carbon
emissions within the earth system. Humans are responsible for the majority of fire ignitions. Physical
and empirical models are used to estimate the future effects of fires on vegetation dynamics and
the Earth’s system. However, there is no consensus on how human-caused fire ignitions should be
represented in such models. This study aimed to identify which globally available predictors of
human activity explain global fire ignitions as observed by satellites. We applied a random forest
machine learning framework to state-of-the-art global climate, vegetation, and land cover datasets
to establish a baseline against which influences of socioeconomic data (cropland fraction, gross
domestic product (GDP), road density, livestock density, grazed lands) on fire ignition occurrence
were evaluated. Our results showed that a baseline random forest without human predictors captured
the spatial patterns of fire ignitions globally, with hotspots over Sub-Saharan Africa and South East
Asia. Adding single human predictors to the baseline model revealed that human variables vary
in their effects on fire ignitions and that of the variables considered GDP is the most vital driver
of fire ignitions. A combined model with all human predictors showed that the human variables
improve the ignition predictions in most regions of the world, with some regions exhibiting worse
predictions than the baseline model. We concluded that an ensemble of human predictors can add
value to physical and empirical models. There are complex relationships between the variables, as
evidenced by the improvement in bias in the combined model compared to the individual models.
Furthermore, the variables tested have complex relationships that random forests may struggle to
disentangle. Further work is required to detangle the complex regional relationships between these
variables. These variables, e.g., population density, are well documented to have substantial effects
on fire at local and regional scales; we determined that these variables may provide more insight at
more continental scales.

Keywords: fire; machine learning; socioeconomic drivers

1. Introduction

Fire has critical effects on the Earth’s system, including land surface processes through
vegetation dynamics, the carbon cycle, and local climate through bio-geophysical feed-
back [1]. Large fires in tropical and boreal forests have the ability to release terrestrial
carbon stores, which can amplify climate change. Fire emissions also increase atmospheric
aerosols, affecting the radiation budget and albedo through atmospheric scattering and
increasing the cloud condensation nuclei, changing cloud cover and precipitation. The
impact of fires on carbon cycling, atmospheric chemistry, and human respiratory health
cannot be underestimated, regardless of their origin, including cropland burning or other
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land management practices. These fires lead to the release of substantial amounts of carbon
dioxide, which further exacerbates climate change. Moreover, releasing toxic gases and
particulate matter from fires severely affects human health, particularly respiratory diseases.
Additionally, these pollutants adversely affect atmospheric chemistry, forming ozone and
other air pollutants that can affect human health and contribute to climate change. As such,
it is crucial to understand the complex interactions between fires, carbon cycling, human
health, and atmospheric chemistry to manage and mitigate these events’ impacts effectively.

Naturally occurring fires are most frequently caused by lightning [2]. Depending on
the circumstance, there are also volcanic, meteor, and coal seam fires. Lightning-caused
fires are more likely to burn over larger areas and at hotter temperatures in hotter and drier
conditions [3]. Forests degraded by disease and fragmented by deforestation are also more
susceptible to fire [4].

While fire activity over millennial time scales is mainly driven by climate, evidence
from archaeological, historical, and contemporary sources suggest that human societies
have likely modified fire regimes since the Holocene [5]. Human behaviors that alter
ignition frequency and seasonal timing or change landscape flammability can modulate the
strength and amplitude of the relationship between a fire regime and weather conditions.
Humans can alter various aspects of fire, including ignition occurrence (through starting
fires), speed of propagation (through landscape management), size, spread, burned area,
and duration (through controlling fuel loads, fragmentation, and fire-fighting). Since the
late 18th century, anthropogenic influences on fire activity have increased, reflecting the
impact of human industrialization and population growth on the environment [6]. Such
anthropogenic impacts on fires are related to economic circumstances [7].

Knowing the source of ignition is crucial to understanding fire dynamics due to its
initial position within the development of a fire. Understanding the physical and non-
physical states that may lead to ignition events is critical in reducing fire occurrence and
damage potential. Furthermore, refs. [8,9] it is fire ignition occurrence at different temporal
and spatial scales, as these effects are not well understood, let alone quantified [8,9].

Fire modeling has been developed as part of the evolution of vegetation and Earth
system modeling efforts [10,11], but these physics-based/empirical simulators heavily rely
on complex parametrization [12]. They typically render low accuracies of fire variables, e.g.,
burned area, ignition density, rate of fire spread, and fire size [1,13–15], and have prediction
bias when compared to observations.

Data mining and machine learning (ML) techniques have become essential aids in
shedding light on the underlying relationships that influence fire within the Earth’s system.
Linear regression models were the first empirical fire ignition models [16] and were used to
model the number of natural and human-caused fires together. In the 1980s, generalized
logistic models were introduced to model the human-caused fires, binary and Poisson
logistic regression models were used for predicting the number of human-caused fires [17].
These methods are easy to use and to interpret [18]. Unlike traditional physics-based
and regression models, ML algorithms directly learn mappings between parametric rules
from the data. They do not require physical parameterization [19], which is particularly
beneficial when the number of considered variables is extensive. Random forest (RF) ML
models are highly suitable for investigating emergent fire relationships, mainly because of
their ability to evaluate non-linear relationships [7,20–23].

Human activities and their associated environmental influence on global fire ignitions
can be represented through various indicators, e.g., infrastructure and agricultural land
use. These variables may represent aspects of human behavior that can produce multiple,
and even conflicting, effects on fire ressential to understand how the human dimension
affects egimes, while different human indicators can have conflicting influences depending
on the region. Selecting human indicators for model development is challenging due
to correlations between available socioeconomic indicators. Since most fires are human-
caused, it is imperative to understand which human dimensions have the most considerable
effect on fire ignition [24]. Such information can help us to construct more accurate process
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representations in physics-based models and, hence, to build better models to predict future
climatic feedback mechanisms.

This study aimed to determine which indicators might help improve the modeling of
human ignitions on a global scale. Ref. [21] introduced a novel machine learning approach
to explain functional relationships between predictors and burned area. In this study, we
adopted and applied this method to model the ignition occurrence of available global
observational datasets, focusing on all fire starts, including agricultural burning. Based
on this approach, we identified the most significant socioeconomic variables that explain
human-fire ignition relations for the present day and how the effects of these variables
vary regionally.

We first describe the observational datasets and the derived variables to develop RF
models, and we describe the modeling approach (Section 2). In Section 3, we present
our RF models’ global performance (Section 3.1) and how the selected socioeconomic
predictor variables contribute to model performance (Sections 3.2–3.8). Next, we discuss
the interpretation of our results (Section 4) and the importance of certain predictor variables
for global ignition occurrence modeling. In Section 5, we conclude the study and offer
directions for further research.

2. Materials and Methods

We used global monthly ignition occurrences from the Global Fire Atlas (GFA) [25] as
our response variable and several datasets on vegetation states, climate, land cover, soil
moisture, and socioeconomic variables as predictor variables in the model development
(Table 1).

Table 1. Full inventory of datasets used in the study.

Dataset Derived Variables Description Native Spatial
Resolution Period Temporal

Resolution

Global Fire Atlas [25]

Ignition occurrence
Fire ignition
occurrences per pixel
and month

500 m January 2003–December 2016 monthly

Predictor variables

Land cover

ESA land cover_cci version 2.0.7, http:
//maps.elie.ucl.ac.be/CCI/viewer/index.php
(accessed on 5 August 2020) Land cover classes
were translated to fractional coverages of plant
functional types (PFTs) in 0.25◦ grid cells [26]

300 m January 1992–December 2015 annual

Climate and soil moisture

CRU CRU TS4.04 climate data [27]

Tmx (degrees
Celsius)

Max temperature
(degrees Celsius) 0.50◦ January 1901–December 2019 monthly

Dtr Diurnal temperature
range (degrees Celsius) 0.50◦ January 1901–December 2019 monthly

Wet (days) Number of wet days 0.50◦ January 1901–December 2019 monthly

Pet (mm)
Potential
evapotranspiration
(millimeters)

0.50◦ January 1901–December 2019 monthly

GPCC Global Precipitation Climatology Centre (GPCC) [28]

Precip (mm/month) Daily precipitation
(mm/month) 0.25◦ January 1891–December 2019 monthly

Soil Moisture ESA soil moisture_cci version 6.1, http://cci.esa.int/data (accessed on 18 July 2022)

sm (m3 m−3)
Mean monthly
soil moisture 0.25◦ January 1978–December 2020 monthly

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://cci.esa.int/data
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Table 1. Cont.

Dataset Derived Variables Description Native Spatial
Resolution Period Temporal

Resolution

Vegetation state

FAPAR/LAI [29]

FPAR (unitless)
Fraction of absorbed
Photosynthetic
Active Radiation

500 m January 2000–December 2019 8-day
average

LAI (m3 m−3) Leaf Area Index 0.25◦ January 2000–December 2019 8-day
average

VOD The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA) [30]

VOD_K lag (unitless)
Ku-band anomalies
in Vegetation
Optical Depth

0.25◦ July 1987–July 2017 monthly

Biomass ESA Biomass Climate Change Initiative: Global datasets of forest above-ground biomass for the year 2017, v1 [31]

agb (Mg ha−1) Above Ground Biomass 0.25◦ 2017–2017 static

Socioeconomics

Population density Anthropogenic land-use estimates for the Holocene–HYDE 3.2 [32]

Popdens Number of heads per
square km 0.083333◦ 2000–2017 annual

Road density Global Roads Inventory Project (GRIP) [33]

road_density
(m/km2)

Global patterns of
current and future
road infrastructure

n/a static static

GDP [34] Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015

GDP_PPP (constant
2011 international
US dollar)

Gross Domestic
Product Purchasing
Power Parity

Country level 1990–2015 annual

Livestock density Global Livestock
distribution

Livestock distribution
per pixel; [35] 5 min 2010 static

Grazed land
fraction Pasture fraction Area fraction of

managed pasture; [36] 0.83333◦ 850–2015 annual

2.1. Ignition Density

Global ignition density data from the GFA [25] provide a satellite-derived estimate of
monthly global ignition density for the period 2003–2016. GFA provides ignition density
aggregated to a global grid with a cell size of 0.25◦. The methodology and validation
are presented in [25], while details on the underlying 500 m resolution daily burned area
product (MCD64A1 collection 6) are described in [37].

2.2. Landcover

Land cover data were taken from the ESA CCI land cover CCI v 2.0.7 product, which
provides annual global land cover maps at 300 m spatial resolution, covering the epoch
1992–2015. We translated the land cover classes into plant functional types (PFTs) to be
comparable with the classification used in global vegetation models [38]. The following nine
PFTs were derived: broadleaved evergreen tree and shrub (TreeBE, ShrubBE), broadleaved
deciduous tree and shrub (TreeBD, ShrubBD), needle-leaved evergreen tree and shrub
(TreeNE, ShrubNE), needle-leaved deciduous tree (TreeND), natural grass or herbaceous
vegetation (Herb), and managed grasslands or crops (Crop). The land cover maps provide
vegetation types and were spatially aggregated and expressed as the fractional coverage of
PFTs within a 0.25◦ grid cell. The fractional coverage was further used to determine the 30%
threshold of all PFTs combined, below which pixels were excluded from model analyses;
this was to define a proxy by which we could determine if a pixel would have sufficient
fuel to sustain a large fire enough to be detected in the Global Fire Atlas algorithm.
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2.3. Climate

We used monthly data of maximum air temperature, diurnal temperature range
(DTR), and the monthly number of wet days from the Climate Research Unit (CRU)
TS4.04 dataset [27]. DTR has long been used to predict fire weather conditions because it is
sensitive to stable weather conditions usually associated with low humidity and supportive
of fire activity [39,40]. These datasets provide monthly climate time series at a resolution of
0.5◦ based on spatially interpolated weather station observations. Precipitation data were
acquired from the Global Precipitation Climatology Centre (GPCC) version 7 dataset [28]
at the native spatial and monthly temporal resolution of 0.5◦. These variables were used to
represent the various climate states in the models.

2.4. Soil Moisture

Surface soil moisture was taken from the ESA CCI soil moisture dataset (version
6.1 COMBINED), which is based on merging soil moisture products from various active
and passive satellite sensors [41,42]. The dataset represents moisture conditions in the
upper soil layer (∼2 cm) and is available at a spatial resolution of 0.25◦, and it shows the
daily time step for 1979–2020. Winter gaps in the dataset were forward and backfilled
using linear interpolation. These filling approaches assume that once the soil is frozen,
water content within the soil does not change until the next measurement; therefore, no
combustion occurs until warmer temperatures remove the water content in the soil.

2.5. Vegetation State

To account for the influence of fuel availability on fire ignitions, we used the MOD15A2H
version 6 Moderate Resolution Imagine Spectroradiometer (MODIS) combined Leaf Area
Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), an 8-day
composite dataset with a 500 m resolution. LAI is defined as the one-sided green leaf area
per unit ground area in broadleaf canopies and one-half the total needle surface area per
unit ground area in coniferous canopies [43] and adds foliage information to the RF models.
FAPAR is the fraction of incident photosynthetically active radiation between 400 and 700 nm,
absorbed by the green elements of a vegetation canopy.

Vegetation optical depth (VOD) accounts for the attenuation of microwaves through
vegetation as a function of water content and vegetation structure, and thus, it can be
used as an indicator of fuel moisture condition. We included the Ku-band of VOD from
the Vegetation Optical Depth Climate Archive (VODCA) dataset [30], which combines
multiple VOD datasets derived from various sensors (SSM/I, TMI, AMSR-E, Windsat, and
AMSR-2), retrieved using the Land Parameter Retrieval Model (LPRM) [44]. We computed
the anomaly by deducting the long-term climatology from each instance to describe climate
variability accurately.

Above-ground biomass (AGB; Mg ha−1) was acquired from the ESA CCI BIOMASS v1
dataset [45]. Biomass is the amount of living biomass organic matter stored in vegetation
above the soil and was used here as another indicator of fuel availability. It is available as a
static dataset for the year 2017.

2.6. Socio-Economic Variables
2.6.1. Population Density

Population density was taken from the Historical Database of the Global Environment
(HYDE version 3.2) [32], a combination of gridded historical population and land-use
estimates. Historical records were used to model population density at the provincial and
national levels. Algorithms were then used to spatially distribute the total population and
land-use areas to a spatial resolution of 0.083333◦.

2.6.2. Gross Domestic Product

The GDP (per capita) used in this study is described by [34]. The data represent
the average GDP of each grid cell and are given in 2011 international US dollars. The
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information is derived from GDP per capita multiplied by gridded population data from
Global Human Settlement (GHS) [46]. The GHS processing framework uses assorted data,
including global archives of fine-scale satellite imagery, census data, and volunteered
geographic information. The GDP product has a global extent at a resolution of 0.083333◦

for annual time steps from 1990 to 2015.

2.6.3. Road Density

We used the Global Roads Intercomparison Project (GRIP) [33] dataset to represent
road access as a potential cause of ignitions. The GRIP dataset consists of global and regional
vector datasets in ESRI file geodatabase and shapefile format and global raster datasets of
road density at a five arcminutes resolution (~8 × 8 km2). The effect of road density was
tested to assess the influence of landscape fragmentation on ignition occurrence predictions.

2.6.4. Gridded Livestock

The gridded livestock of the world (GLW v3) is a peer-reviewed spatial dataset on
livestock distribution for the reference year. GLW version 3 was compiled from the datasets
presented in Table 1 representing the following species: cattle, sheep, goats, buffaloes, and
horses. These data were normalized to livestock units to represent the gridded livestock
density. The individual species datasets are available at the global extent and 5 min of arc
resolution. Livestock was included to test the influence of land-use management across
different regions on fire occurrence.

2.6.5. Grazed Lands

Land Use Harmonization (LUH2) [36] contains historical reconstructions of land-use
and land-use transitions, including managed pastures and rangelands; we combined these
two to create a “grazed lands” variable, which more accurately describes the land that is
grazed by domestic and wild herbivores. Similar to the baseline historical scenario, datasets
include annual gridded fractions of land-use states, all transitions between those states, and
associated management layers for the period 850–2015. The “high” and “low” scenarios
are based on tentative high and low data-driven land-use reconstructions from HYDE
and accompanying wood harvest and were aggregated to produce an average state of the
grazed lands variable.

2.7. Data Preparation

A significant limitation of ignition occurrence data from the GFA is that the algorithm
can only detect fires over 21 ha [25]. All other datasets used in this study are aggregated
to monthly averages to predict these ignition occurrence data. Next, all datasets were
rasterized (where necessary) and resampled to a 0.25◦ grid using conservative remapping,
described in [47], to avoid smoothing anomalies through alternative approaches, such as
bilinear interpolation [21]. The values of annual datasets were repeated 12 times each year,
and static datasets were replicated to match the total number of months corresponding to
the ignitions target. Socioeconomic variables tend to be annual or static because economic
development does not change quickly, but the vegetation and climate variables need to be
monthly to capture seasonal changes.

2.8. Random Forest Model Setup

We use RF regression to model the relationships between ignition occurrence and
the potential drivers (predictors). RF is an ensemble learning approach in which multiple
decision trees are built using a randomly sampled subset of the training observations [48].
The final model constitutes the average result of the decision trees. In averaging, RF also
mitigates (though it does not entirely resolve) the overfitting problem inherent in decision
tree modeling [49]. We used scikit-learn version 24.1 [50] to determine hyperparameter
settings of the baseline model using Grid Search to create a parameter grid based on the
results of a random search. Grid search is a model hyperparameter optimization technique,



Fire 2023, 6, 197 7 of 19

and in Python, it is provided in the GridSearchCV class. GridSearchCV was combined with
k-fold cross-validation (k = 5) to construct and evaluate one model for each combination of
parameters. From the Grid Search, we determined the following parameters: the number
of estimators (n_estimators = 500) determines the number of trees whose predictions
are averaged; the maximum depth (max_depth = 7) limits the number of split levels;
setting min_samples_leaf = 3 requires that all final splits contain at least three samples;
Max_features = 8 refers to the number of features to be considered when looking for the
best split; and the minimum number of samples to perform a split (min_samples_split = 2).

2.9. Variable Selection

To detect multicollinearity in the climate and vegetation variables, we used the Vari-
ance Inflation Factor (VIF) [51]. VIF is calculated by regressing a predictor against a model
with all other predictors. This results in R2 values that can be used to compute:

VIF =
1

1− R2
i

(1)

where R2
i is the unadjusted coefficient of determination of regressing each variable on the

remaining variables, and these remaining variables may contribute little or no additional
information to the model [52]. VIF ranges from 1 upwards; the VIF decimal form tells what
percentage variance is inflated for each coefficient, e.g., a VIF of 1.5 means the variance of a
particular coefficient is 50% larger than expected if there were no correlation with other
predictors. We employed VIF to iteratively filter heavily correlated variables to identify and
eliminate them from model evaluation. We used a threshold of <10 for the VIF to consider
variables to use for our experiments. The following variables were found to be heavily
correlated with other features and were thus removed due to the VIF process: LAI, dtr,
and tmx.

Table 2 shows the variables we used in our baseline model and the VIF, each before
and after iteratively removing heavily correlated features.

Table 2. Baseline model features after filtering and VIF pre- and post-filtering.

Variable Pre-VIF Post-VIF

agb 1.38 1.31

sm 5.01 4.85

pftTreeBE 81.69 2.44

pftHerb 102.36 4.05

pftShrubBD 48.86 3.43

pftShrubNE 15.59 3.25

pftTreeBD 57.88 2.12

pftTreeNE 15.17 1.46

fAPAR 212.55 9.03

vod_K_anomalies 8.92 1.03

pet 22.66 5.45

wet 4.10 3.90

precip 2.68 2.54

pftTreeND 6.47 1.13

tmx 27.90 -

dtr 16.14 -

LAI 4052.46 -
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2.10. Model Training Iterations

We trained several RF models to test hypotheses about the influence of human-related
drivers on global fire ignitions. The baseline model without human predictors was used to
establish a reference for improving the model, which only includes the climate, vegetation,
and land cover variables shown in Table 2. We selected this approach because it enables us
to assess the model’s ability to predict spatial patterns over individual months. We split the
combined dataset with all the climate, vegetation, land cover, and human variables into
training (2003–2011) and testing (2012–2016), where each of the subsets of the original data
contains global monthly values, thereby ensuring that no information from the test data
subset is included in the model training.

Next, we added a single socioeconomic variable to the baseline model and trained the
model to predict ignitions over the testing period. We replaced the socioeconomic variable
with another for the third model before training the RF model again. We repeated this
process for all subsequent variables, as shown in Table 3. Finally, we trained a model with
all human variables added to the baseline model.

Table 3. Performance of models against the Global Fire Atlas testing subset. MAE and NMSE are
provided monthly.

Predictor Variables R2 MAE NMSE

Baseline model (BL):
WET + Precip + PET + SM + fPAR + VOD_K′ + Herb + TreeBD + ShrubBD +
TreeBE + ShrubBE + TreeNE + ShrubNE + TreeND

0.53 0.33 0.04

BL + pftCrop (CF) 0.54 0.28 0.04

BL + Livestock density (LD) 0.56 0.32 0.03

BL + Grazed lands fraction (GLF) 0.55 0.30 0.04

BL +GDP 0.52 0.32 0.05

BL + Road density (RD) 0.53 0.33 0.04

BL + Population density (PD) 0.57 0.31 0.03

Full model: (FM):
BL + pftCrop + GDP + grazed lands fraction + livestock density + road density 0.63 0.81 0.03

With monthly predictions and observations of ignition occurrence per pixel, we as-
sessed the change for each model pixel induced by adding each human predictor to the
baseline model using:

Delta = V − B (2)

V is the temporal mean of the predicted ignitions from the model with a single added
human variable, and B is the temporal mean of predicted ignitions from the baseline model.
We also computed model improvement for the full model, defined as:

Improvement = |F − O| − |B − O| (3)

where F is the mean ignitions from the full model, B is the mean baseline predictions, and
O is the temporal mean of the observed dataset (GFA).

Next, we computed, for each iteration, the mean absolute error (MAE) and normalized
mean square error (NMSE), two commonly used evaluation metrics for a random forest
model. MAE measures the average magnitude of the errors in a set of predictions without
considering their direction. It is calculated as the sum of the absolute differences between
the actual and predicted values, divided by the number of predictions. On the other hand,
NMSE is a variant of mean square error (MSE) normalized by the variance of the actual
values. It is calculated as the MSE divided by the variance of the actual values. Both MAE
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and NMSE can be useful for evaluating the results of a random forest model, but MAE is
generally preferred when there are outliers in the data since it is less sensitive to them.

Lastly, we used accumulated local effects (ALEs) to examine the coupled relationships
fitted by the RF models. ALE is a robust alternative to partial dependence plots (PDPs)
or individual conditional expectation (ICE) [53]. To compute the effect of a feature on
prediction, the ALE technique uses all instances of the variable with about the same value
as the first instance and obtains the model predictions. This gives the pure feature effect of
the variable without considering the effect of the correlated features. The instances of each
feature are first divided into intervals. For the data points in each interval, the difference
between the predictions for each instance within the interval is replaced with the interval
limits. These differences are later accumulated and centered, resulting in the ALE curve. We
assessed the impact of each predictor variable on ignition occurrence in isolation using 1D
ALEs, taking into account the effect of all other predictor variables. ALEs were computed
both for the individual human predictor model runs and for the full model including all
human predictors.

2.11. Data Sampling

Since fire ignitions do not occur in large areas of space and time, this presents the
need to balance the ignition occurrence data better; a lower ratio of fires to non-fire con-
ditions results in lower predictive capability. In addition, using all available data points
is not practical, as many of them will never meet the threshold necessary for combustion.
Therefore, we oversampled our data to boost ignition representation. We filtered all data
into two subsets: one where ignitions are recorded and another where no ignitions are
recorded. We oversampled ignitions by randomly selecting the same number of data points
from the non-ignition data subset and by combining it with the ignition-only data, thus
raising ignition representation from approximately 5% to 50%. Finally, we intermixed
the oversampled dataset. This was performed for the time series of each pixel. These
intermixed data were split into training and testing sets.

3. Results
3.1. Performance of the Climate/Vegetation Baseline Model

The baseline model (BL) captured the general ignition patterns of GFA, particularly
in the high ignition regions (Figure 1a,b). However, it consistently overpredicted the
average number of monthly ignition occurrences and overpredicted fire ignitions across
most regions (Figure 1c), a limitation previously identified in regression models [54,55]. The
areas with largest overpredictions were Central America, Northeastern Brazil, sub-Saharan
Africa, Eastern Europe, India, East and Southeast Asia, and the coastal regions of Australia.
Underpredictions notably occurred in Angola, Sierra Leone, and Cambodia.

Table 3 shows the predictive skill for all configurations tested. The baseline model
achieved an out-of-bag R2 of 0.95 for the training dataset and 0.53 for the test dataset.
Differences in MAE between the individual models were minimal but are likely significant
due to the large sample sizes used. Only the full model (FM) showed substantially deviating
skill from the baseline model and from the baseline model in combination with any single
socioeconomic predictor. The results of the different models are discussed in the following.
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Figure 1. (a) The average number of observed ignitions per year from the Global Fire Atlas dataset,
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3.2. Effect of GDP

The impact of adding GDP to the baseline model varied across regions (Figure 2a,b);
regions where adding GDP increased the number of predicted ignitions mostly had lower
GDP, whereas regions where it reduced the number of ignitions were predominantly
represented by higher-income countries. Across North, Central, and much of South Amer-
ica, Europe, and Australia, GDP influenced the model to suppress fires. In Africa, the
model showed two patterns in ignition predictions, decreases in west and southern Africa
(e.g., in Angola, Botswana, South Africa) and an increase in fire ignitions in East Africa
(e.g., in Kenya, Tanzania, Somalia). The other regions where GDP acted to increase fires are
northeastern Brazil, Ukraine, Southern and Central India, Central Asia, and most of China.
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3.3. Effect of Grazed Land Fraction (GLF) and Livestock Density (LD)

While spatial distributions of GLF and LD diverged (Figure 2c,e), they had very similar
impact patterns on fire ignition (Figure 2d,f). Adding them to the model globally reduced
ignition occurrence; although, changes were relatively small. Only in South Asia did it
substantially reduce the number of ignitions. This region has a very high livestock density
but a low fraction of grazed lands, which suggests that livestock is held on farms and not
on pastures. Most regions with a high grazed-land fraction are extensively managed barren
lands with little livestock and hence have little effect on ignition occurrence (e.g., central
Asia and the Arabian peninsula).

3.4. Effect of Population Density (PD)

The effect of population depends upon the region and socioeconomic development
(Figure 2g,h). In developing and newly industrialized countries (e.g., India and East China),
we observed a decrease in ignitions across regions with high PD, while less-populated
areas in these regions showed increased ignitions, e.g., much of Sub-Saharan Africa (with
the exception of Botswana), Mexico, and Peru. On the contrary, PD model predictions
in regions with high economic development and low PD were generally lower than the
baseline, e.g., in the interior of Australia outside of the large metropolitan areas, southern
Chile, most of Canada, and Spain.

3.5. Effect of Cropland Fraction (CF)

Generally, an increase in ignitions was observed in regions with a high cropland
fraction, most evidently in Argentina, Northern India, and Eastern China (Figure 2i,j).
This is in line with the expectation that CF tends to increase ignitions due to the burning
of cropland residue following the growing season. However, the observed impacts are
relatively weak.

3.6. Effect of Road Density (RD)

There is a clear relationship between road density and fire ignition predictions. In
regions with higher RD, e.g., western Europe, India, the Eastern United States, and Mexico,
predictions were generally lower than the baseline, while regions with low RD had the
opposite effect (Figure 2k,l).

3.7. Combined Effect of All Human Variables

The full model (FM; Figure 1e) generally showed prediction improvements, i.e., a
decrease of the positive bias of the baseline model (Figure 1b) with respect to the GFA
reference (Figure 1a), even in regions where some of the individual human variable models
showed a poorer performance than the baseline model. Areas with the most notable
improvement when adding the ensemble of human predictors were India, southern Africa,
Western Europe, the Australian east and southwest coasts, and across the Americas. The
most notable regions where the FM model performed worse than the baseline, i.e., an
increase of predictions with respect to the baseline model, were Eastern Brazil, Angola,
and Ukraine.

3.8. Accumulated Local Effect Analysis

The ALE curves of the individual human predictor models and of the FM with all
human predictors gave very similar results, which is a sign of the robustness of the ALE
method. For this reason, in the following, we only show and discuss the ALE diagrams
based on the models with single human predictors.

We found GDP and cropland models to have the most substantial effect on the ability
of our models to predict ignition occurrence (Figure 3). While there are artifacts in the ALE
due to necessarily using country-level data in a gridded analysis, we saw a strong tendency
for ignitions to decrease with increasing GDP. The relationship between GDP and changes
in prediction remained constant beyond approximately USD 7000 per year.
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For cropland fraction, the spatial patterns of the impacts were not as strong as for GDP.
Its ALE plot (Figure 3b) showed that it even more strongly affected the average prediction,
increasing up to six ignitions per year. This can in part be attributed to substantial effects in
regions with high cropland fractions, e.g., Northern India. A similar pattern, but with a
lower magnitude, was observed for grazed lands.

For RD, there was a reduction of fire ignitions in regions where the road density was
less than 200 m/km2, followed by an increase in ignition predictions up till ~500 m/km2,
beyond which there was no impact (Figure 3f). For PD and LD, there was only some
response for very low values.

4. Discussion
4.1. Overall Performance

The difference in performance of the baseline model between the training and testing
data (R2 of 0.95 vs. 0.53, respectively) suggests that the model struggles to generalize the
results due to overfitting. Hence, some caution is needed when interpreting the addition of
socioeconomic predictors to the baseline model, which was shown to have limited global
impact for most variables (Table 3, Figure 3). This could be due to the seasonality in
the multiple correlated features from the baseline model, which can result in the models
weighing more on the correlated than the static or annual socioeconomic features. Hence,
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the effects of the different variables tested in this study should be interpreted as a general
indication of the spatial variation in predictor effects on ignition occurrence rather than in
absolute terms.

We noted that the substantial increase in R2 (from 0.53 to 0.63) from the baseline
model to the full model concurred with an increase in MAE (Table 3). This, at first sight
contradictory, result can occur when data have a lot of outliers or extreme values, to which
the MAE is more sensitive than the R2 value. In general, R2 indicates the proportion of
the variance in the dependent variable explained by the model, while the MAE measures
the average magnitude of the error in the predictions made by the model. Thus, a model
with a high R2 (good average skill) may still have a high MAE if it is not making accurate
predictions for the outliers.

4.2. GDP

GDP was shown to influence the most robust patterns in ignition changes with respect
to the baseline model; however, interpreting the effect of GDP was not straightforward
because GDP is a proxy for economic development, which entails a broad spectrum of
activities. Ref. [56] expressed concern at the assumption that GDP is a measure of progress
and that increasing GDP is positively correlated with increasing quality of life. They argued
that increasing GDP may indeed be indicative of increasing societal inequality. In this
context, a GDP increase may indicate societal imbalance, making the overall argument
linking higher GDP in more developed countries difficult to explain, as GDP may be high
in regions where the majority of the population is poor. However, GDP has been used as
an index of the cultural influences on the use of fire [40] and remains a pivotal index for
evaluating the influence of human activity on fire.

Across the densely populated regions of Australia, western Europe, and the northeast-
ern United States, GDP was shown to decrease modeled ignition occurrences. GDP in these
regions was approximately between USD 45,000–USD 60,000. GDP in such high-income
nations is usually not directly tied to environmental degradation, as the main economic
sectors (e.g., the service industry) do not rely on the environmental extraction of resources.
The model with GDP also captured the unique effects of Ethiopia’s topography, as it re-
flected land-use practices. The topography of arid flatlands to the east and mountainous,
precipitation-rich regions to the west resulted in significant differences in land-use prac-
tices. Ref. [57] described Ethiopia’s complex ecosystems’ micro and macro-ecological states;
the country heavily relies on strict land-use practices to maximize GDP output. Ref. [58]
found an increased frequency of fires in recent decades attributed to expanding human
populations in the southwestern regions and national parks; we showed similar trends in
GDP across the country, not just in the regions they specified. Across China, where GDP
was relatively low, GDP influence on fire ignitions was positive This is consistent with [59],
who identified a positive relationship between GDP and fire occurrence in Southeast China.

4.3. Grazed Lands and Livestock

Figure 3c shows that adding GLF to the baseline model caused the most change
in fire ignition predictions at very low and high grazed land fractions but little change
elsewhere. Ref. [60] found that coupling fire and grazing reduced fuel accumulation and,
hence, ignition potential on rangelands across all weather patterns. This is in line with
the sharp decrease in ignition occurrence at low grazed lands fractional cover (Figure 3c),
owing to low fuel availability, which was followed by a gradual increase in fire occurrence
when GLF, and hence fuel availability, increased. Livestock density (Figure 3e) showed a
sharp decrease in ignitions caused by shallow livestock density ranges (up to 1000 heads);
this suppression stabilized at this value and did not change as livestock density increased.
This is because livestock continually removes fuel from the landscape, which reduces the
chances of ignitions and increases landscape fragmentation, leading to smaller patches
of fuel, which may not easily ignite, or if ignition occurs, the fires remain too small to be
detected by the MODIS.
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4.4. Cropland

Figure 3b shows that the impact of cropland fraction on ignitions is strongly positive.
The model likely learned this behavior from the regions in Africa, India, China, and
Argentina, where the annual crop residues are burnt after harvesting. Maize, rice, and
cotton are major crops in India [61]. Maize, rice, and wheat account for 90% of China’s total
food production [62], maize is a major crop in Sub-Saharan countries, and soybean is a
major crop in Argentina [63]. Despite the absence of many large-scale farmlands, cropland
as a variable primarily acted to increase ignitions in Africa. Botswana, Namibia, and the
eastern half of South Africa showed a sizeable increase in ignition occurrence despite
low fractional cropland cover. Furthermore, these patterns are visible in the Delta map
of the FM (Figure 1e). The ALE plot for cropland (Figure 3b) showed a robust positive
relationship between cropland cover and model predictive performance over the entire
cropland fraction domain, including the lower ranges. Thus, the spatial prediction patterns
met our expectations over this region.

4.5. Road and Population Density

Road density in the United States (Figure 2i) is much higher across the eastern than
in the western half. Correspondingly, we found that high road density leads to decreased
ignitions over the eastern regions of the United States, while leading to slightly increased
fire occurrences over the western regions. More roads should mean more people access
the landscape and start fires; however, regions with high road density also tend to be more
urbanized (cf. Figure 2k); therefore, there are mechanisms in place preventing fires in order
to protect infrastructure. Thus, in the event of a fire, swift action is often taken to suppress
the fire. Road density suppresses fires mainly in economically active regions, e.g., western
Europe, eastern China, and much of India. The relationship between RD and the other
BL variables is complex. However, low RD (under 200 m/km2) leads to a slight decrease
in fires (Figure 3f); this may be a consequence of sparsely populated and vegetated areas,
which could indicate low fuel availability because they are located in desert regions. As
mentioned earlier, we also noted that the effects of road density and livestock density on
ignitions are the lowest according to the ALE plots because they are static datasets. A key
consideration with these two datasets is that the road density will remain mostly constant,
but livestock density will change over periods.

4.6. Full Model

In general, the differences between the FM and BL models (Figure 1e) are broadly
dominated by GDP (Figure 2b), as illustrated by the similarities between these maps. Across
much of North, Central, and South America, ignition patterns in the FM were very similar
to those in the GDP model; although, in most of South America, the FM predicted slightly
fewer ignitions than GDP. This is likely a translated effect from grazed lands, population
density, cropland fraction, and road density, which were shown earlier to reduce ignitions
with respect to the BL model. This is in line with [64], who found reduced fire occurrences
in Brazilian-managed pasture lands compared to grasslands when studying fire regimes.

Across East to West Sub-Saharan Africa, FM predicted higher ignitions. This mainly
followed the spatial patterns of GDP, but FM predicted more fires over West Africa’s
shrubland, forest, and herbaceous vegetation. FM predictions over South and East Asia
were primarily driven by grazed lands, livestock, population density, and road density.
These variables showed FM predicting lower ignitions than BL, overpowering the effect of
cropland and GDP in the region, which as individual predictors increase the number of
ignitions. In the Middle East, combining all human variables in FM reduced ignitions with
respect to BL, driven mainly by cropland fraction. Over Western Europe, both road density
and GDP drove FM model predictions, overriding the effects of population density, grazed
lands, and cropland fraction.

Regarding the ability of FM to reduce the model bias compared to the GFA reference
dataset, the largest bias reduction was over the northeastern United States, Northeastern
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Brazil, Sub-Saharan Africa, South Asia, the Australian coasts, and western Europe. For
the latter, there was a clear contrast with the former Soviet Union countries, where adding
socio-economic predictors increased the bias with respect to the observed ignitions.

4.7. Data and Model Limitations

All baseline model variables were based on climate or climate-driven vegetation
states; thus, they were heavily correlated. While highly correlated values do not cause
multicollinearity issues in RF models per se, most of these variables have monthly temporal
resolution, while the land cover and human variables are available only on an annual basis
or even static. This makes the RF models biased towards the climate-driven variables,
especially because ignition occurrences also have seasonal patterns. Another limitation
is that country-aggregated GDP, while it is the strongest indicator of human-induced
fire occurrence, is challenging to understand fully. There can be significant variation in
GDP within a country’s borders, and with countries such as the United States, Brazil, and
Australia, the changes in economic output can be tied to variations in climate, vegetation
types, local regulations, and land cover regimes. A single value for a country’s GDP
dilutes the subtle nuances in the data across various regions within a country’s borders.
Furthermore, oil-rich countries skew the country-level GDP data (e.g., Russia), leading
to high GDP, which is not representative of the prosperity of the average population. We
also noted that the random forests used in this study could be better optimized to reduce
overfitting and improve predictions. More sophisticated (deep learning) methods could
also be employed to gain more insight into the relationships between fire occurrence and
human activity.

The ESA-CCI Landcover classes we used induced discrepancies in fire prediction over
Central and Eastern Brazil. The classification scheme of the ESA CCI Landcover classes is a
potential limitation for predicting fires at regional scales. The ESA CCI Landcover classes
use a general classification scheme that may not accurately represent the unique landcover
types and management practices in specific regions.

For example, in Brazil, the classification scheme may not adequately capture the
distinction between different types of savanna vegetation, such as cerrado and campo limpo,
which have different fire regimes and responses to fire. Similarly, the classification scheme
may not capture the distinction between different types of forest, such as rainforest and
seasonal forest, which also have different fire regimes and responses to fire. Furthermore,
the classification scheme may not capture the influence of human activities on landcover
and fire regimes. For instance, the classification scheme may not differentiate between
different types of agricultural land use, such as soybean and sugarcane plantations, which
have different fire management practices and fire risks.

These limitations can result in inaccurate predictions of fire and can lead to mis-
understandings in regional interpretations of the results. To overcome this limitation,
alternative landcover datasets that incorporate more-detailed and region-specific classifica-
tion schemes could be used. These datasets could be derived from ground-based surveys
or higher resolution satellite imagery that can capture more nuanced landcover features
and management practices.

5. Conclusions

We identified GDP as the most significant socioeconomic parameter that explains
human-fire ignition relations for the present day. The effects of population density, grazing
land fraction, and livestock density improved the model performance in regions such
as India. This indicates that the presence of people and animals affects the likelihood of
ignitions occurring, but the simulated relationships are not monotonic, implying that further
research is needed to understand the impact of these variables in conjunction with the
variability of other human, climate, and land cover variables. For example, increasing the
cropland fraction can increase detected fire ignitions (due to people entering the landscape
and setting fires) or decrease them (due to fragmentation and suppression measures),
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but our models cannot show these relationships. We also noted that some fires start in
agricultural land, but then can (both intentionally and accidentally) burn into natural
vegetation. Higher road density can increase access to the landscape, allowing for more
fires to start, but it can also introduce fragmentation, resulting in smaller fires that remain
undetected by the satellite; we are unable to show this from our model results, suggesting
that the models have some room for improvement in showing these nuances clearly. In
addition, higher road densities not only amplify fragmentation, reducing the likelihood of
detecting small fires, but they also increase the potential for the improved reporting and
control of fires before they increase in size. However, our results highlight that a unique
global response of fire ignitions to socioeconomic variables does not exist and that human
effects on fire ignitions vary regionally. This implies the need to explore regional drivers of
fire ignitions and to build hybrid models by representing the complex effects of humans on
fire ignitions with, e.g., machine learning models in global process-oriented fire and Earth
system models.
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