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Abstract: Accurate representation of fire emissions and smoke transport is crucial for current and
future wildfire-smoke projections. We present a flexible modeling framework for emissions sourced
from the First Street Foundation Wildfire Model (FSF-WFM) to provide a national map for near-surface
smoke conditions exceeding the threshold for unhealthy concentrations of particulate matter at or
less than 2.5 µm, or PM2.5. Smoke yield from simulated fires is converted to emissions transported by
the National Oceanic and Atmospheric Administration’s HYSPLIT model. We present a strategy for
sampling from a simulation of ~65 million individual fires, to depict the occurrence of “unhealthy
smoke days” defined as 24-h average PM2.5 concentration greater than 35.4 µg/m3 from HYSPLIT. The
comparison with historical smoke simulations finds reasonable agreement using only a small subset
of simulated fires. The total amount of PM2.5 mass-released threshold of 1015 µg was found to be
effective for simulating the occurrence of unhealthy days without significant computational burden.

Keywords: fire behavior model; smoke transport model; dispersion; air quality; particulate matter;
fire emissions

1. Introduction

Wildfires are a significant contributor (15–30%) to atmospheric fine particulate matter
(PM2.5) pollution in the United States [1] with projected increases in the future under
climatic changes that are favorable for wildfire activity [2,3]. In recent years, wildfire smoke
has been a dominant contributor to adverse air quality events, particularly in the western
US where large fires burning for extended periods of time have placed millions of people
under hazardous air quality levels [4]. Particle emissions from wildfires are also known
to travel long distances as evidenced by the fact that wildfires originating in the western
US and southern Canada can drastically elevate PM2.5 levels in the northeastern US [5,6].
Globally, death estimates from particulate matter have been reported to be 3–4 million [7].
Increasing levels of wildfire smoke are expected to reach emission levels comparable to
or greater than the improvements made in decades of anthropogenic emission reductions
in the United States [8,9], which also carries significant health impacts. Exposure to fine
particulate matter negatively impacts both the cardiovascular and respiratory systems,
including causal associations with mortality (both short- and long-term), ER visits, and
hospital admissions, among others [10–12]. In an analysis of six U.S. cities, a reduction
in the concentration of 10 µg/m3, on the order of concentration difference between cities,
could result in about 36,000 fewer deaths per year [12]. Improved tools for the better
characterization of wildfire smoke emissions, now and under future climate conditions,
can aid in serving communities worldwide and is, therefore, a critical area of research.
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Existing studies on wildfire smoke response under climate change projections for
the 21st century are generally consistent in showing increased PM2.5 or its constituent
components (e.g., surface organic carbon) on the order of ~50% [13–16]. However, stan-
dard climate-scenario output from global climate models relies on fire emissions that do
not adequately represent shifts in wildfire activity due to changes in climate and may
consequently underestimate PM2.5 concentrations into the future [8,13,17]. Alternative
approaches to modeling current and or future wildfire smoke activity include fire-process
models, statistical regressions, or offline chemical transport models, potentially coupled to
historical or climate-projected meteorological fields. These approaches find largely similar
trends of increasing wildfire smoke but have more limited representations of dynamic
climate feedback and anthropogenic influences. Combining an accurate representation of
fire emissions and smoke transport with a climate-sensitive wildfire behavior model is an
active area of research (see examples in [18]).

Treating wildfires as emission sources with their distinctive heat- and mass-release
variability is an important step for modeling the transport of smoke pollutants. To this end,
NOAA’s HYSPLIT model [19–21] is commonly used to model the transport and dispersion
of particulate matter from wildfire smoke because it captures both particle trajectories and
changes in pollutant concentrations. A widely available version of the software [22] can be
used via the READY website https://www.ready.noaa.gov/HYSPLIT_traj.php (accessed
on 30 May 2023) for trajectory calculations. HYSPLIT has proven to achieve good estimates
of wildfire smoke transport, given appropriate input emission data sets, meteorological
input data, and plume-rise and mixing layer parameterizations [23]. As is the case with
HYSPLIT and other long-range transport models, simulating dispersion from wildfire
emissions is sensitive to a variety of factors including (1) the source emission rates, (2) the
smoke plume rise due to the energetics of the fire, (3) the transport of smoke by the mean
wind, (4) and chemical interactions with the atmosphere after emission [24]. Although
the last item is possible within HYSPLIT using linear mass conversion formulations, it is
most useful for ozone studies [24], and therefore, not a component explored in this study.
Throughout its development cycle, HYSPLIT has made significant improvements toward
better representation of the plume-rise schemes [24–26].

Methods for estimating the emission rates from fires range from statistical
methods [15,16,27] to process-based methods [28–30]. The ELMFIRE fire behavior model [31] is
an open-source process-based type and can be adapted for either climate change impact
studies [17] or for operational use [32], as seen in https://pyrecast.org (accessed on 30 May
2023). The advantages of using a process-based approach rather than a statistical approach
include the ability to estimate impacts under a changing climate that is producing new
environmental conditions for which we have no historical observations; it allows proba-
bilistic estimates of future conditions to be built that can incorporate geographically and
temporally variable wildfire suppression activities and fire ignition locations and enables
statistical comparisons of future conditions with historical wildfire events and associated
losses. Purely statistical estimates of future risks from wildfire and smoke may not be
able to capture the changes in either the natural or the built environment at a resolution
and fidelity that is adequate for informed decision-making. Additionally, using models in
tandem with each other in a “modelling chain” [33,34] is a common tool where the strengths
of multiple models can be combined in a computationally efficient approach. Towards this
goal, we propose a modeling framework that integrates the outputs from the First Street
Foundation Wildfire model (FSF-WFM) with deterministic smoke transport modeling via
HYSPLIT transport and dispersion to estimate probabilistic smoke concentrations across
the continental United States (CONUS).

2. Materials and Methods

We present a flexible framework for evaluating present and future air quality condi-
tions from wildfire emissions across CONUS. The chemical transport framework brings
together two main components, (1) a wildfire behavior model that is described in detail

https://www.ready.noaa.gov/HYSPLIT_traj.php
https://pyrecast.org
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in [17], and (2) deterministic air dispersion modeling via HYSPLIT that estimates smoke
transport and mixing for individual fires. In the following sections, we step through the
development of the framework, discuss how emissions from the FSF-WFM are simulated,
and how the emissions output is configured as input for the HYSPLIT air dispersion model.
We then discuss how we sample from the FSF-WFM to estimate the number of days that
have the potential to have adverse air quality conditions from the HYSPLIT outputs.

2.1. First Street Foundation Wildfire Model

In this research, we use a probabilistic estimate of current wildfire risk across the
contiguous United States that was produced by the First Street Foundation and the Pyre-
gence Consortium [17]. The property-specific and climate-resolving wildfire risk model
was created at 30 m horizontal resolution using open government data such as the USFS’
LANDFIRE fuels database and NOAA weather records to drive the ELMFIRE fire behavior
model [31] in a series of Monte Carlo simulations. Over 100,000,000 simulations were con-
ducted for each target year, based on historical ignition locations, to create a probabilistic
estimate of the likelihood of wildfire, the mean and maximum expected flame lengths,
and the likely exposure to flying embers for each 30 m across the landscape. Fuel types
within the Wildland Urban Interface were approximated using 500 historical wildfires to
allow the simulations to also provide risk estimates to properties within those inhabited
areas. Of the 100 million fires that were ignited in the FSF-WFM, only 65 million fires
reached the minimum fire-size threshold of 0.04 km2 (10 acres) and were thus used to
derive fire probability. From these fires, 20,000 randomly chosen fires became the starting
point for the consideration of the impact of combustion and emission processes on air
quality in CONUS.

2.2. Wildfire Smoke Emissions Output from FSF-WFM

We start with the underlying continuity balance for the combustion process simulated
by the FSF-WFM wildfires. The relation between the generation rate of combustible gases
(

.
m, kg/s, often referred to as “mass loss rate”) and heat release (

.
Q, W) is

.
Q =

.
m ∆Hc, (1)

where ∆Hc (J/kg) is the effective heat of combustion of biomass. In a bomb calorimeter
which uses pure oxygen and high pressure to ensure complete combustion, the ∆Hc for
biomass is approximately 18 MJ/kg, but for combustion of biomass in air, this value is
closer to 12 MJ/kg.

The emission rate of major and minor species is usually estimated using a species
yield. Smoke (or soot) yield is the fraction of a fire’s mass loss rate that is converted to
carbonaceous soot, and CO yield is the fraction of its mass loss rate that is converted to
carbon monoxide. The negative health impacts of particulate matter, both fine (≤ 2.5 µm)
and coarse (≤ 10 µm) are well-known in the literature, and in this study, we focus on the
transport of fine particulate matter (PM2.5) from wildfire smoke. The methods shown here
can be applied to any constituent of wildfire smoke given that the appropriate (1) yield
characteristics for the fire model are given and (2) the constituent characteristics are also
captured in the HYSPLIT configurations (discussed later). The release rate of PM2.5 (ṁs) is
a function of PM2.5 smoke yield (Ys) which is estimated from [35] by fuel type, as shown in
Table 1, and defined as

.
ms = Ys

.
m = Ys

.
Q

∆HC
. (2)

It is seen that the smoke generation rate is a function of Ys/∆Hc and heat release rate,
with the latter calculated by the fire spread model as described in [17].
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Table 1. PM2.5 yield from the total smoke yield for different fuel types. Values from [35].

Fuel Type PM2.5 Yield (Ys)

Grass 0.54%
Grass/shrub 0.93%

Shrub 0.93%
Timber understory 1.3%

Timber litter 1.3%
Slash/blowdown 1.3%

Canopy 1.3%

In the fire-spread model, the 30 m × 30 m pixel’s time of ignition (tig) is determined
by the spread model. For smoke generation purposes, each pixel burns for a duration tburn,
estimated as a pixel’s edge length ∆x divided by the fire’s spread rate as it traverses that
pixel (V, also calculated by the fire spread model) is

tburn ≈ ∆x/V. (3)

We note that tburn models the progressive heat release of a pixel, which should not
be confused with the residence time of a fire, or how long a point location is covered by
the fire front. A pixel burns and releases heat for times greater than tig and times less than

tig + tburn. A burning pixel’s heat release rate per unit area (
.

Q
′′

, W/m2) is estimated from
fireline intensity (w/m, calculated by the fire spread model) which includes a contribution
from surface fuels (Is) and canopy fuels (Ic) defined as,

.
Q
′′
≈ Is + Ic

∆x
. (4)

Equation (4) captures the increase in heat (and therefore, smoke) production for rapidly
spreading fires or for fires burning through areas of heavy fuel loading because fireline
intensity increases with fuel loading and spread rate.

With
.

Q
′′

determined for each burning pixel, a fire’s total heat release rate is calculated
by summing the heat release rate per unit area over all burning pixels and multiplying
by the (fixed) area of each pixel. However, since smoke generation is typically output at
hourly intervals but pixels generally burn only for seconds or minutes; the heat release rate
is weighted by the fraction of the preceding hourly interval during which each pixel was
burning. Therefore, each smoke generation rate represents the average over the preceding
hour (or more generally, the smoke output interval). Note, that the preceding approach
does not account for smoldering or post-frontal combustion; only emissions from the flame
front are considered.

2.3. HYSPLIT Runtime Configurations

To model smoke dispersion, we use the NOAA ARL HYSPLIT model version 5.2.0
with input meteorological data spanning 2011–2020 over CONUS. From the list of pub-
licly available meteorological input models in the NOAA ARL archive, the 12-km North
American Mesoscale model (NAM) was chosen due to having the highest resolution in
the archive for the period. The start dates of the 20,000 fires were selected from a much
longer list of over 150 million ignitions that were created as part of the full-fire Monte Carlo
simulation that was described in [17]. The 20,000 subset of fires used for smoke analysis
were randomly taken from a subset of the 150 million possible fires that both achieved
ignition in the model and also produced a fire size that was above a threshold value. For
those 20,000 selected fires, the start dates were noted and the corresponding NAM time
series beginning on those dates were used to drive the HYSPLIT model for the smoke
simulation. This was conducted to ensure that the same fire weather that successfully drove
the fire behavior simulation (using NOAA RMTA surface weather records) is also driving
the smoke simulation (using the NAM multi-level weather records).
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The HYSPLIT configuration details common to each fire emission event modeled are
summarized in Table 2. The output concentration grid resolution was set to a 0.1◦ × 0.1◦

grid centered at 38◦ N 97◦ W (approximately the center of CONUS), with a latitude extent
of 40◦ and a longitude extent of 80◦. Although not all fires will emit enough to cover
all of CONUS, this setting ensures that all the individual output grids can be combined.
Moreover, although the grid setting is large, HYSPLIT output is only saved for non-zero
concentration levels, therefore, making the storage needs per fire low. The near-surface
concentration layer that is analyzed is restricted to the 0–500 m above-ground-level (agl) so
that concentrations are calculated on 0.1◦ × 0.1◦ × 500-m cells across CONUS. This region
encompasses the full spectrum of heights where people in CONUS reside and where fine
particles are known to be mostly uniformly distributed [36].

Table 2. HYSPLIT runtime configurations for all fires.

Details/Options Title 3

Emission dataset ELMFIRE Fire emissions; FINN emissions
factors [35]

Plume rise scheme Briggs [25]
Meteorology Inputs NAM (12 km)

Mixing layer depth options Met. model mixing layer height
Vertical Motion options Met. model vertical velocity

Particle release mode Full 3D vertical and horizontal
Number of Particles per cycle 10,000
Maximum number of particles 1,000,000

Horizontal resolution 0.1◦

Surface concentration layer 0–500 m
Domain lat. center/extent, long. center/extent 38◦ N/40◦, 97◦ W/80◦

Model top 10 km (agl)
Average diameter and density of the particles 0.8 mm and 2 g/cm

Minimum mixing layer depth 150 m

HYSPLIT also contains options for different particle/puff release modes. Here, we
use a full 3-D particle release mode, with a maximum allowable number of particles,
MAXPAR, set at 1,000,000 which is large enough so that all particles being released are
tracked throughout the life of the emission. The number of particles released in each cycle,
NUMPAR, must also be chosen for each fire, and the final choice also directly impacts
the computational cost (along with the resolution of the concentration domain. Figure 1
shows the 35 µg/m3 (concentration for orange+ days) contour at a single time-step when
NUMPAR values of 1000, 2500, 5000, and 10,000 are chosen. The patterns are similar
across all four settings. The lower the number of particles the more mass each particle has,
and therefore, the final concentration calculation may look noisier. As the NUMPAR is
increased, the mass fraction per particle decreases and a smoother shape begins to appear.
The particle characteristics of diameter and density are set the same as those used in [23],
which are 0.8 mm and 2 g/cm, respectively, for PM2,5. The chosen NUMPAR value was set
at 10,000 for every HYSPLIT run.
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Figure 1. Example showing 35 µg/m3 contour from a HYSPLIT run. Shown here is a time step from
a single fire event estimated at NUMPAR values of (a) 1000, (b) 2500, (c) 5000, and (d) 10,000.
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2.4. HYSPLIT Emissions Input

The ELMFIRE output for each individual fire is a time-series of the emissions from the
flame front. As the flame front moves, the emission characteristics change accordingly. As
mentioned in Section 2.2, even though the focus of this study is on the transport of PM2.5,
appropriate changes to the configuration in Table 2 to the average diameter and density of
the particles can adapt the application of this methodology to any constituent of wildfire
smoke. The emission characteristics saved are the center latitude and longitude, the fire size
in square meters, the rate of mass release in µg/h, and the rate of heat release in Watts. For
the HYSPLIT input files, each fire characteristic is aggregated into an emission cycle. Here,
an emission cycle is defined as a period of continuous emissions from the wildfire. In any
given fire there are periods where the fire is still active but not emitting any smoke. These
breaks in emissions occur when the fire spread rate is temporarily reduced due to increases
in fine fuel moisture or during overnight hours when the use of a burn period precludes
spread. These breaks are thus used to create the emissions cycle for each individual fire.
Each emission cycle will, at most, be 12 h for a dry, daytime period. The lifetime of any fire
was set to not exceed 7 days, the HYSPLIT runs were configured to continue 5 more days
after the last emission release, for a max total model simulation time of 12 days.

The emission characteristics for each cycle in a single HYSPLIT run are defined using
statistical summaries of the fire characteristics for that given cycle. For each emission cycle
the location, area, mass released, and heat released is given, respectively, as the initial
location of the cycle, the max area of the cycle, the mean of the mass-released (µg/h) and
the mean of the heat-released (W). The total duration of the HYSPLIT runs is set as the
maximum duration of the fire (including when not emitting) and an additional 5 days
to track the particle movements after the final emission cycle. Throughout the life of the
fire (from burn start to the extinguishing of the flames) HYSPLIT tracks all the particles
released since the start of the simulation.

2.5. Metrics and Sampling Methods

Ideally, HYSPLIT would be run on every single fire produced by FSF-WFM, but the
computational expense of running HYSPLIT millions of times prohibits this. With the
goal of reproducing an accurate distribution of smoke concentrations that is stable across
our metric(s) of interest, we evaluated a subsampling methodology on randomly chosen
fires. For this study, our target metric is PM2.5 concentrations that reach an “unhealthy for
sensitive groups” or above categorizations on the US EPA Air Quality Index (AQI), or a
daily average PM2.5 concentration greater than 35.4 µg/m3 [37]. This level is designated
the color “Orange” on the AQI color scale. We use the term “orange+ days” to refer to
when our model predicts daily conditions in which the daily PM2.5 concentration is greater
than 35.4 µg/m3. The AQI provides overall guidance on whether action is needed to curtail
adverse conditions. The Air Quality Index (AQI) is also required to be reported daily in
metropolitan areas that have a population of more than 350,000.

Concentration outputs were saved for each of the fires and the Python package MON-
ETIO [38] was used to aggregate the hourly concentration (µg/m3) data into 24-h mean
concentrations to match the thresholds in the AQI formulation mentioned above. The start
of the 24-h period begins at the first emission hour and ends 23 h later. For each individual
simulation, the 24-h mean concentration is converted to an AQI value. All simulations
are then aggregated to create the annualized expected number of days, at or above AQI
“orange” levels, or “orange+ days” conditions.

Let P (i.e., A “point” or “pixel” in the HYSPLIT domain) be a location of interest;
the quantity we aim to estimate is the Average Expected Oran ge+ Days (in days/year)
defined as

AEODP :=
1
S ∑N

i=1 aPi =
N
S

1
N ∑N

i=1 aPi, (5)

where S is the number of simulated years, N is the number of simulated fires, i is an index
that spans the set of simulated fires, and aPi is the number of orange+ days caused by fire
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i at the location of interest (most often aPi = 0). For the results presented in this article,
S ≈ 1.136 × 106 yr (1/S ≈ 8.8 × 10−7). We see from Equation (5) that computing AEODP
reduces to computing the average

Ap :=
1
N ∑N

i=1 aPi. (6)

Computing AP exactly would require running HYSPLIT on millions of fires, which
would be prohibitively expensive. Instead, we estimate AP using random subsampling as

AP ≈ A′P :=
1
n ∑n

k=1 aPik (7)

where n is the sub-sample size, and ik is the index of the fire which was randomly selected
as the k-th element of the sub-sample. Because the sub-sampling is random and treats all
fires as exchangeable, basic probability theory tells us that A′P can be viewed as a random
variable, with an expected value equal to AP and variance equal to vP/n, where vP is the
variance of aPi when randomly choosing i. In particular, the variance of A′P tends to zero as
n is made large, justifying the approximation. The benefit of this is that we need to only run
n fires through HYSPLIT instead of N. In this study, we demonstrate this approach with
n = 20, 000 fires or smaller. For computational convenience, the results shown in this study
were derived only from fires simulated in the months (March, April, July, and August)
which presents a bias; there would be no major difficulty in applying the computation to all
12 months, thus making the sub-sample truly representative. As shown later, these values
of n were also empirically justified by observing the convergence of A′P for increasingly
large n.

Finally, we apply one last computation-saving approximation: thresholding. That is,
we choose a predictor variable xi which tends to correlate strongly with aPi, and estimate
aPi ≈ 0 when xi is below a well-chosen threshold tx, yielding

A′P ≈ A′′P :=
1
n ∑

{
apik

∣∣ xik > tx, k = 1 . . . n
}

. (8)

This means that we will be able to run HYSPLIT on a number of fires that is much
smaller than n. As will be explained in the detailed analysis later, we found that the total
mass-released

.
msum (from the sum of every hourly rate of emission,

.
m, for each fire) to be a

suitable predictor variable xi, by observing the correlation of various candidate metrics xi
to the total count of orange+ days.

3. Results

Within the preliminary sample of 20,000 fires simulated in HYSPLIT, we first identified
that the total mass released throughout the fire had the highest correlation (0.95) with the
number of orange+ days over CONUS, as shown in Figure 2. We find that fires with a
total mass-released less than 1015 µg do not substantially contribute to producing orange+
days throughout CONUS. As seen in Figure 3, approximately 75.8% of fires fell below this
total mass-released threshold, with the remaining fires producing 92% of the pixels that
produced orange+ days conditions. This suggests that the smoke that impacts AEOD across
CONUS is driven primarily by larger fires that release more mass. We then examined how
the AEOD changed as a function of the number of samples chosen, n. Figure 4 shows the
distribution of AEOD(n) at two different locations to show how AEOD at any location of
interest converges as the sample size is increased. In order to show the spread of AEOD for
a fixed sample size, AEOD was calculated ten times for each sample size, n. Additionally,
Figure 4 compares the convergence between a random selection of n fires to the fires that
have the highest (green points) and lowest (orange points) values for AEOD. From the total
number of 20,000 fires that were simulated, we find the variance of AEOD(n) stabilizes
quickly as n increases, indicating that the final sample size can be less than the total number
of fires and keep the error acceptably low, as will be shown next.
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Figure 4. Two representative distributions of AEOD(n) show the convergence of AEOD(n) as sample
size increases, where (a) reaches convergence quicker than (b). The points in blue are estimations of
AEOD where a fixed n is randomly sampled ten times to show the spread of values at each n. The
green and orange points are the values of AEOD when n is chosen from the highest and lowest values
of AEOD from the set of all HYSPLIT simulations ranked by the number of orange+ days generated
at that location. The map in (a) shows the location of the pixel for (a,b).

To evaluate the impacts of different sub-samples across CONUS, we first applied
the 1015 µg total mass-released threshold to the full set of 20,000 fires simulated in HYS-
PLIT, leaving approximately 4000 fires. We then drew two additional samples based on
a representative sampling calculation indicating that 3220 fires are representative of the
larger population of fires based on highly restrictive parameters of an acceptable margin
of error of 1% with a 99% confidence level of that margin of error [39], and 351 fires are
representative under a 5% margin of error and a 95% confidence interval. The resulting
maps of modeled AEOD for the 4000, 3220, and 351 number of fires and the differences
between the 4000-count and 3220-count, and the 4000-count and 351-count are shown in
Figure 5. We find that both sub-samples strongly reflect the distribution derived from the
total number that meets the mass-threshold requirement. In general, the spatial patterns of
Figure 5a are maintained in the results of the other representative samples in Figure 5b,c.
The differences in the results shown in Figure 5d,e show the worsening of the errors when
the sample size is decreased, as is to be expected. The northeast region is the least to show
any occurrence of orange+ days conditions, and therefore, the difference plots in this region
have very similar magnitudes. The largest absolute difference in performance between
these two samples is regionally similar across sample sizes. On the lower end, the regions
that show at least 1 day of orange-days seem to extend further with the more stringent
sample-size selection criteria. Given the vastly smaller number of fires, there is also the
potential for local maxima to appear more in the final output. The differences among the
absolute maximum of these different options are very minor, with values of 11.8, 11.9, and
10.8 days for the total number of significant fires, the sample selected from the 99% CI, and
95% CI, respectively.

A comparison of the AEOD values estimated by our model against the historical data
of wildfire smoke-only days from [40] is shown in Figure 6. The maximum number of days
that can be expected to be experienced anywhere in CONUS is similar between the models
9 and 11 days for the historical (Figure 6b) and modeled (Figure 6a) data, respectively.
The historical aggregate shows three different hotspots of orange+ days, one of which is
not well-represented in our model. Spatially, the modeled AEOD against the year-to-year
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variation in the Midwest region is comparable given that this region is always represented
with at least some orange+ days conditions every year of the [40] dataset. The signal from
the Idaho and Montana regions are consistent in both the model and the historical data. The
feature in the northwest in Figure 6b is not captured by the model as seen in Figure 6a. This
is due to the lack of representation of fires from outside of the CONUS region. This region
is known for being heavily affected by smoke originating from fires outside of CONUS.
In a climatology study of PM2.5 distributions over CONUS, Ref. [13] found that at least
50% of all PM2.5 may be attributed to fires outside of CONUS. The wide band of AEOD
values greater than 5 days in the historical data is also consistent with the results from [13]
regarding the effect of non-CONUS fires. The southeast region is a region where there is
significantly less overlap between the historical and modeled data. The region has a small
but still notable number of orange+ days in 2011, 2012 and 2016. The historical occurrences
of orange+ days in the center region CONUS [41] may not always correspond with the
modeled AEOD. However, both results, those in Figure 1 from [41] and from Figure 5a
here, show a coherent picture of negative air quality impacts from wildfire smoke.
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Figure 5. AEOD calculated from (a) the fires remaining after applying the threshold on the total
mass-released, and from a random sample selection using a (b) 99% confidence interval (~3000 fires),
and a (c) 95% confidence interval (~350). The difference between the (a,b) is shown in (d), and the
difference between (a,c) is shown (e). (a–c) have maximum values of 11.81, 11.90, and 10.79 days,
respectively. The distributions shown (d,e) range from ô0.64 to 0.64 and −4.35 and 3.55, respectively.
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Figure 6. Comparison of the number of orange days estimated by the ELMFIRE-HYSPLIT model
and historical data from [40]. (a) is the modeled AEOD (same values as Figure 5a), (b) average yearly
number of days averaged over 2011–2020 period from [40], (c–l) are the individual years of the [40]
data. The maximum number of days for each of the panels is (a) 11, (b) 9, (c) 17, (d) 57, (e) 25, (f) 43,
(g) 36, (h) 33, (i) 48, (j) 53, (k) 10, (l) 63 days.

4. Conclusions

From a technical perspective, we have presented the methodology and preliminary
results from ELMFIRE-HYSPLIT integration and from a practical perspective, this report
introduces a novel conceptual approach to understanding the differential ways in which
air quality will change in the future. Currently, the state-of-the-art in understanding
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the observed risk of smoke pollution is to use PM2.5 metrics and systematically remove
the influence of non-smoke contributors (similar to [40]) to then estimate past exposure
and model future exposure. While this approach is certainly useful it relies on statistical
modeling. In addition to what we can glean from the statistical analysis, the model produces
a dynamically derived set of smoke results which are tied directly to a dynamically modeled
set of wildfire exposure. In combination, the dynamic and statistical models give us an
understanding of what we have been exposed to in the past and how that may change in
the future. This is important for both individual and community level responses to poor air
quality days, today and into the future.

Regarding the models produced in the current report, the coupling between the current
FSF-WFM [17] and HYSPLIT allows for a probabilistic fire emissions product that can be
used to quantify the risk of adverse air quality conditions anywhere in CONUS, flexible
to a given climate scenario. The integration between ELMFIRE and HYSPLIT reflects the
advantages of modularity seen in the implementation of the BlueSky framework [42] for
operational use. It is the attempt of this paper to take that same idea of modularity and
flexibility to tackle challenges for estimating the probability of smoke conditions that can
affect the CONUS region from all possible scenarios of fire occurrence. Adverse conditions
defined using the AQI values also give context to the impact of smoke concentration levels
produced by wildfire smoke. In this research, “orange+ days” conditions, where the AQI
value represents an exceedance of a daily average concentration of 35.4 µg/m3, is the first
level at which behavior change is recommended due to the impact of the concentrations of
particulate matter.

The evaluation of model results focused on the comparison to the data provided from
the study conducted by [40]. While a wide network of PM2.5 observations is available, an
attribution problem occurs as the source of the PM2.5 is difficult to distinguish. The efforts
conducted in [40], therefore, create a dataset of the PM2.5 concentrations due only to wildfire
smoke and thus became key to our evaluation of the ELMFIRE+HYSPLIT integration. As
better methods for source attribution of PM2.5 station data develop, future efforts can
improve the evaluation methods of this and similar smoke dispersion models.

ELMFIRE’s deterministic approach to fire spread rate is currently being applied to help
provide guidance on the impact of climate change on fire probability and how individual
properties may be affected in the contiguous United States [17]; here we present the
extension of those capabilities to smoke dispersion. Efficient use of available computing
systems also revealed that focusing exclusively on the larger fires (i.e., total PM2.5 mass-
released of 1015 is about 20–25% of all potential fires produced by ELMFIRE) can yield
magnitudes of overall AEOD that are comparable to the historical period. The implications
of this are that the sampled fires provide a generalizable set of data for inferring the
relationship between fire incidence and smoke exposure. Furthermore, the reliance on
statistically derived samples of the data allows for the structuring of future analyses in an
environment in which constraints on time and compute resources may be present.

Both models in this integration have several sensitivities that can be addressed with
further development. Fire behavior models can be largely impacted by the length of the
fire-burn, the representation of geographically variable suppression, and calibration per
pyrome. These things influence large fires such as the ones we see having the most impact
on smoke [17]. Smoke dispersion models are very sensitive to input meteorological data
and the plume-rise scheme which can have a large impact on the vertical distribution of the
smoke. All HYSPLIT simulations used the 12-km NAM model results for the horizontal and
vertical distributions of the mean wind fields. However, in this work, there was a careful
effort to match the specific weather conditions between the surface fire-weather data used
to drive ELMFIRE and the smoke dispersion meteorological data used to drive HYSPLIT.

Wildfires are increasing across the world in areas that are impacted by increasing tem-
peratures, drying environments, and other conditions conducive to the onset of wildfires.
With forecasts indicating that wildfire smoke will continue to be a major contributor to haz-
ardous air quality levels across the United States, this work contributes to the larger body
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of research [13,18,40,43–45] aimed at developing accurate probabilistic estimates of smoke
conditions. Furthermore, the modeling framework presented here also fully supports
smoke estimation under climate change scenarios that include effects on wildfire behavior.
The ELMFIRE-HYSPLIT integration aids in the exploration of model uncertainties and
as new ideas and experiments continue to be developed to improve current forecasting
and decision-making support. A similar framework is possible outside the US if a model
such as ELMFIRE with comparable inputs to those of FSF-WFM in Appendix A of [17]
can be found, in addition to the details outlined here for the smoke dispersion model. The
modeling framework presented here can also take advantage of the advancements to come
in the future [46,47].

Author Contributions: D.M.-V.—conceptualization, methodology, air dispersion coding, validation, vi-
sualization, supervision, writing—original draft, writing—review and editing; C.L.—conceptualization,
methodology, fire behavior model coding, validation, writing—original draft, writing—review and
editing; H.H.—air dispersion coding, methodology, validation, visualization, writing—original draft,
writing—review and editing; M.A.—methodology, validation, visualization, writing—original draft,
writing—review and editing; J.R.P.—methodology, validation, writing—original draft, writing—review
and editing; B.W.—validation, writing—original draft, writing—review and editing; M.P.—validation,
writing—original draft, writing—review and editing; E.S.—validation, writing—original draft,
writing—review and editing; V.W.—validation, writing—original draft, writing—review and editing,
E.J.K.—conceptualization, methodology, validation, visualization, writing—original draft, writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Software used for the fire behavior is called ELMFIRE, developed
by Chris Lautenberger (lautenberger@reaxengineering.com). Source code is publicly available at
https://github.com/lautenberger/elmfire/ and carries an EPLv2 license. Software used for smoke
dispersion of fire emissions is called HYSPLIT and the license used is custom by agreement. HYSPLIT
is available via https://www.ready.noaa.gov/HYSPLIT_linux.php. HYSPLIT meteorological input
datasets are available via the portals via https://www.ready.noaa.gov/archives.php. ELMFIRE input
dataset details can be found in Appendix A of [17]. The resulting particulate matter hazard layers
will be freely and publicly available for noncommercial use at https://riskfactor.com, (accessed
on 3 May 2023). The public availability of this climate information is meant to inform the public,
enable new research efforts on air quality impacts from wildfire smoke, level the playing field with
private commercial interests that already have access to this kind of information, and help address
the privatization of climate impact information.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Urbanski, S.P.; Hao, W.M.; Nordgren, B. The Wildland Fire Emission Inventory: Western United States Emission Estimates and an

Evaluation of Uncertainty. Atmos. Chem. Phys. 2011, 11, 12973–13000. [CrossRef]
2. Brown, T.J.; Hall, B.L.; Westerling, A.L. The Impact of Twenty-First Century Climate Change on Wildland Fire Danger in the

Western United States: An Applications Perspective. Clim. Chang. 2004, 62, 365–388. [CrossRef]
3. Westerling, A.L.; Bryant, B.P. Climate Change and Wildfire in California. Clim. Chang. 2008, 87, 231–249. [CrossRef]
4. Xie, Y.; Lin, M.; Horowitz, L.W. Summer PM 2.5 Pollution Extremes Caused by Wildfires over the Western United States during

2017–2018. Geophys. Res. Lett. 2020, 47, e2020GL089429. [CrossRef]
5. Dreessen, J.; Sullivan, J.; Delgado, R. Observations and Impacts of Transported Canadian Wildfire Smoke on Ozone and Aerosol

Air Quality in the Maryland Region on June 9–12, 2015. J. Air Waste Manag. Assoc. 2016, 66, 842–862. [CrossRef]
6. Shrestha, B.; Brotzge, J.A.; Wang, J. Observations and Impacts of Long-Range Transported Wildfire Smoke on Air Quality Across

New York State During July 2021. Geophys. Res. Lett. 2022, 49, e2022GL100216. [CrossRef]
7. Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.;

Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [CrossRef]
8. Jacob, D.J.; Winner, D.A. Effect of Climate Change on Air Quality. Atmos. Environ. 2009, 43, 51–63. [CrossRef]

https://github.com/lautenberger/elmfire/
https://www.ready.noaa.gov/HYSPLIT_linux.php
https://www.ready.noaa.gov/archives.php
https://riskfactor.com
https://doi.org/10.5194/acp-11-12973-2011
https://doi.org/10.1023/B:CLIM.0000013680.07783.de
https://doi.org/10.1007/s10584-007-9363-z
https://doi.org/10.1029/2020GL089429
https://doi.org/10.1080/10962247.2016.1161674
https://doi.org/10.1029/2022GL100216
https://doi.org/10.1016/S0140-6736(17)32345-0
https://doi.org/10.1016/j.atmosenv.2008.09.051


Fire 2023, 6, 220 14 of 15

9. Pienkosz, B.D.; Saari, R.K.; Monier, E.; Garcia-Menendez, F. Natural Variability in Projections of Climate Change Impacts on Fine
Particulate Matter Pollution. Earth’s Future 2019, 7, 762–770. [CrossRef]

10. Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al.
Short-Term Health Effects from Outdoor Exposure to Biomass Burning Emissions: A Review. Sci. Total Environ. 2021, 781, 146739.
[CrossRef]

11. Reid, C.E.; Maestas, M.M. Wildfire Smoke Exposure under Climate Change: Impact on Respiratory Health of Affected Communi-
ties. Curr. Opin. Pulm. Med. 2019, 25, 179–187. [CrossRef] [PubMed]

12. Schwartz, J.; Laden, F.; Zanobetti, A. The Concentration-Response Relation between PM(2.5) and Daily Deaths. Environ. Health
Perspect. 2002, 110, 1025–1029. [CrossRef] [PubMed]

13. Ford, B.; Val Martin, M.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future Fire Impacts on Smoke
Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2, 229–247. [CrossRef]

14. Liu, Y.; Liu, Y.; Fu, J.; Yang, C.-E.; Dong, X.; Tian, H.; Tao, B.; Yang, J.; Wang, Y.; Zou, Y.; et al. Projection of Future Wildfire
Emissions in Western USA under Climate Change: Contributions from Changes in Wildfire, Fuel Loading and Fuel Moisture. Int.
J. Wildland Fire 2021, 31, 1–13. [CrossRef]

15. Spracklen, D.V.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of Climate Change
from 2000 to 2050 on Wildfire Activity and Carbonaceous Aerosol Concentrations in the Western United States. J. Geophys. Res.
2009, 114, D20301. [CrossRef]

16. Yue, X.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble Projections of Wildfire Activity and Carbonaceous Aerosol Concentrations
over the Western United States in the Mid-21st Century. Atmos. Environ. 2013, 77, 767–780. [CrossRef] [PubMed]

17. Kearns, E.J.; Saah, D.; Levine, C.R.; Lautenberger, C.; Doherty, O.M.; Porter, J.R.; Amodeo, M.; Rudeen, C.; Woodward, K.D.;
Johnson, G.W.; et al. The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous
United States. Fire 2022, 5, 117. [CrossRef]

18. Johnson, M.M.; Garcia-Menendez, F. Uncertainty in Health Impact Assessments of Smoke From a Wildfire Event. GeoHealth 2022,
6, e2021GH000526. [CrossRef]

19. Draxler, R. HYSPLIT4 User’s Guide; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997.
20. Draxler, R.R.; Hess, G.D. An Overview of the HYSPLIT_4 Modeling System for Trajectories, Dispersion, and Deposition. Aust.

Meteor. Mag. 1998, 47, 295–308.
21. Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and

Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [CrossRef]
22. Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017,

95, 210–228. [CrossRef]
23. Li, Y.; Tong, D.Q.; Ngan, F.; Cohen, M.D.; Stein, A.F.; Kondragunta, S.; Zhang, X.; Ichoku, C.; Hyer, E.J.; Kahn, R.A. Ensemble

PM 2.5 Forecasting During the 2018 Camp Fire Event Using the HYSPLIT Transport and Dispersion Model. J. Geophys. Res. Atmos.
2020, 125, e2020JD032768. [CrossRef]

24. Goodrick, S.L.; Achtemeier, G.L.; Larkin, N.K.; Liu, Y.; Strand, T.M. Modelling Smoke Transport from Wildland Fires: A Review.
Int. J. Wildland Fire 2012, 22, 83. [CrossRef]

25. Briggs, G.A. Plume Rise: A Critical Survey; Air Resources Atmospheric Turbulence and Diffusion Lab.: Oak Ridge, TN, USA, 1969;
p. 81 TID–25075, 4743102.

26. Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J. Global Mapping of Maximum Emission Heights and Resulting Vertical
Profiles of Wildfire Emissions. Atmos. Chem. Phys. 2013, 13, 7039–7052. [CrossRef]

27. Val Martin, M.; Heald, C.L.; Lamarque, J.-F.; Tilmes, S.; Emmons, L.K.; Schichtel, B.A. How Emissions, Climate, and Land Use
Change Will Impact Mid-Century Air Quality over the United States: A Focus on Effects at National Parks. Atmos. Chem. Phys.
2015, 15, 2805–2823. [CrossRef]

28. Knorr, W.; Dentener, F.; Lamarque, J.-F.; Jiang, L.; Arneth, A. Wildfire Air Pollution Hazard during the 21st Century. Atmos. Chem.
Phys. 2017, 17, 9223–9236. [CrossRef]

29. Pierce, J.R.; Val Martin, M.; Heald, C. Estimating the Effects of Changing Climate on Fires and Consequences for U.S. Air Quality,
Using a Set of Global and Regional Climate Models; Joint Fire Science Project 13-1-01-4; Colorado State University: Fort Collins, CO,
USA, 2017.

30. Thonicke, K.; Spessa, A.; Prentice, I.C.; Harrison, S.P.; Dong, L.; Carmona-Moreno, C. The Influence of Vegetation, Fire Spread
and Fire Behaviour on Biomass Burning and Trace Gas Emissions: Results from a Process-Based Model. Biogeosciences 2010, 7,
1991–2011. [CrossRef]

31. Lautenberger, C. Mapping Areas at Elevated Risk of Large-Scale Structure Loss Using Monte Carlo Simulation and Wildland Fire
Modeling. Fire Saf. J. 2017, 91, 768–775. [CrossRef]

32. Lautenberger, C. Wildland Fire Modeling with an Eulerian Level Set Method and Automated Calibration. Fire Saf. J. 2013, 62,
289–298. [CrossRef]

33. Bates, J.T.; Pennington, A.F.; Zhai, X.; Friberg, M.D.; Metcalf, F.; Darrow, L.; Strickland, M.; Mulholland, J.; Russell, A. Application
and Evaluation of Two Model Fusion Approaches to Obtain Ambient Air Pollutant Concentrations at a Fine Spatial Resolution
(250m) in Atlanta. Environ. Model. Softw. 2018, 109, 182–190. [CrossRef]

https://doi.org/10.1029/2019EF001195
https://doi.org/10.1016/j.scitotenv.2021.146739
https://doi.org/10.1097/MCP.0000000000000552
https://www.ncbi.nlm.nih.gov/pubmed/30461534
https://doi.org/10.1289/ehp.021101025
https://www.ncbi.nlm.nih.gov/pubmed/12361928
https://doi.org/10.1029/2018GH000144
https://doi.org/10.1071/WF20190
https://doi.org/10.1029/2008JD010966
https://doi.org/10.1016/j.atmosenv.2013.06.003
https://www.ncbi.nlm.nih.gov/pubmed/24015109
https://doi.org/10.3390/fire5040117
https://doi.org/10.1029/2021GH000526
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1016/j.envsoft.2017.06.025
https://doi.org/10.1029/2020JD032768
https://doi.org/10.1071/WF11116
https://doi.org/10.5194/acp-13-7039-2013
https://doi.org/10.5194/acp-15-2805-2015
https://doi.org/10.5194/acp-17-9223-2017
https://doi.org/10.5194/bg-7-1991-2010
https://doi.org/10.1016/j.firesaf.2017.04.014
https://doi.org/10.1016/j.firesaf.2013.08.014
https://doi.org/10.1016/j.envsoft.2018.06.008


Fire 2023, 6, 220 15 of 15

34. Fallah Shorshani, M.; André, M.; Bonhomme, C.; Seigneur, C. Modelling Chain for the Effect of Road Traffic on Air and Water
Quality: Techniques, Current Status and Future Prospects. Environ. Model. Softw. 2015, 64, 102–123. [CrossRef]

35. Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR
(FINN): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geosci. Model Dev. 2011, 4, 625–641.
[CrossRef]

36. Deng, X.; Li, F.; Li, Y.; Li, J.; Huang, H.; Liu, X. Vertical Distribution Characteristics of PM in the Surface Layer of Guangzhou.
Particuology 2015, 20, 3–9. [CrossRef]

37. U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. EPA 454/B-18-007; Technical Assistance
Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); U.S. Environmental Protection Agency:
Washington, DC, USA, 2018.

38. Baker, B.; Pan, L. Overview of the Model and Observation Evaluation Toolkit (MONET) Version 1.0 for Evaluating Atmospheric
Transport Models. Atmosphere 2017, 8, 210. [CrossRef]

39. Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [CrossRef]
40. Childs, M.L.; Li, J.; Wen, J.; Heft-Neal, S.; Driscoll, A.; Wang, S.; Gould, C.F.; Qiu, M.; Burney, J.; Burke, M. Daily Local-Level

Estimates of Ambient Wildfire Smoke PM 2.5 for the Contiguous US. Environ. Sci. Technol. 2022, 56, 13607–13621. [CrossRef]
41. Kaulfus, A.S.; Nair, U.; Jaffe, D.; Christopher, S.A.; Goodrick, S. Biomass Burning Smoke Climatology of the United States:

Implications for Particulate Matter Air Quality. Environ. Sci. Technol. 2017, 51, 11731–11741. [CrossRef] [PubMed]
42. Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The

BlueSky Smoke Modeling Framework. Int. J. Wildland Fire 2009, 18, 906. [CrossRef]
43. Brown, T.; Clements, C.; Larkin, N.; Anderson, K.; Butler, B.; Goodrick, S.; Ichoku, C.; Lamb, B.; Mell, R.; Ottmar, R.; et al.

Validating the Next Generation of Wildland Fire and Smoke Models for Operational and Research Use—A National Plan; Joint Fire Science
Program: Boise, ID, USA, 2014; p. 70.

44. Oglesby, R.J.; Marshall, S.; Taylor, J.A. The Climatic Effects of Biomass Burning: Investigations with a Global Climate Model.
Environ. Model. Softw. 1999, 14, 253–259. [CrossRef]

45. Oliveri Conti, G.; Heibati, B.; Kloog, I.; Fiore, M.; Ferrante, M. A Review of AirQ Models and Their Applications for Forecasting
the Air Pollution Health Outcomes. Environ. Sci. Pollut. Res. 2017, 24, 6426–6445. [CrossRef]

46. Liu, Y.; Kochanski, A.; Baker, K.R.; Mell, W.; Linn, R.; Paugam, R.; Mandel, J.; Fournier, A.; Jenkins, M.A.; Goodrick, S.; et al.
Fire Behaviour and Smoke Modelling: Model Improvement and Measurement Needs for next-Generation Smoke Research and
Forecasting Systems. Int. J. Wildland Fire 2019, 28, 570. [CrossRef] [PubMed]

47. Prichard, S.; Larkin, N.; Ottmar, R.; French, N.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al.
The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns. Atmosphere
2019, 10, 66. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envsoft.2014.11.020
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.1016/j.partic.2014.02.009
https://doi.org/10.3390/atmos8110210
https://doi.org/10.1177/001316447003000308
https://doi.org/10.1021/acs.est.2c02934
https://doi.org/10.1021/acs.est.7b03292
https://www.ncbi.nlm.nih.gov/pubmed/28960063
https://doi.org/10.1071/WF07086
https://doi.org/10.1016/S1364-8152(98)00077-2
https://doi.org/10.1007/s11356-016-8180-1
https://doi.org/10.1071/WF18204
https://www.ncbi.nlm.nih.gov/pubmed/32632343
https://doi.org/10.3390/atmos10020066
https://www.ncbi.nlm.nih.gov/pubmed/32704394

	Introduction 
	Materials and Methods 
	First Street Foundation Wildfire Model 
	Wildfire Smoke Emissions Output from FSF-WFM 
	HYSPLIT Runtime Configurations 
	HYSPLIT Emissions Input 
	Metrics and Sampling Methods 

	Results 
	Conclusions 
	References

