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Abstract: Modern societies and industrial sectors are serviced through storage and distribution
centres (SDCs) such as supermarkets, malls, warehouses, etc. Large quantities of supplies are stocked
here, e.g., food grains, clothes, shoes, pharmaceuticals, electronics, plastics, edible oils, electrical
wires/equipment, petroleum products, painting materials, etc. Fires due to the burning of these
materials are categorized into six classes, viz., Class A, Class B, Class C, Class D, Class K, and Class F.
A fire is extinguished better when the right type of fire retardant is used. A thumb rule on firefighting
also says, “never fight a fire if you do not know what is burning”. In this paper, we have proposed
an Intelligent Decision Support System (ID2S4FH) to generate a real-time ‘fire-map’ of such SDCs
during a fire hazard. We have interfaced six tin-oxide-based gas sensor elements, a temperature and
humidity sensor, and a particulate matter (PM) sensor with microcontrollers to capture the real-time
signature patterns of the ambient air. We burned sixteen different types of materials belonging
to six classes of fire and created a dataset consisting of 2400 samples. The sensor array responses
were then pre-processed and analysed using various classifiers trained in different analysis space
domains. Among the classifiers, four classifiers achieved ‘all correct’ identification of the fire classes
of 80 unknown test samples, and the lowest mean squared error (MSE) achieved was 2.81 × 10−3.
During a fire hazard, our proposed ID2S4FH can generate real-time fire maps of SDCs and help
firefighters to extinguish the fire using the appropriate fire retardant.

Keywords: fire detection; PM 10; PM 2.5; particulate matter; Arduino UNO; Intelligent Gas Sensor
System (IGSS); fire extinguisher

1. Introduction

Fire hazards have been the most challenging event to handle. They affect the environ-
ment significantly and put human life at risk. Early-stage identification and diagnosis of the
fire’s high-risk factors can help us reduce the losses and save lives. It requires well-timed
notifications to those near the fire, which may help people to vacate the burning area
and help the appropriate care unit to efficiently extinguish the fire. The International Fire
Service Training Association (IFSTA) characterizes fire events in four phases, viz., incipient
(ignition), growth, fully developed, and decay, and each stage is influenced by the amount
of heat, oxygen, and fuel sources [1]. Four primary fire-detecting effects exist: heat, gas,
flame, and smoke. Fire generates smoke, a mixture of airborne gases, liquid particulates,
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and solid particles. In other words, smoke is an undesirable air contaminant. It arises from
the burning of materials and degrades the air quality in the surroundings by the release
of volatile organic compounds (VOCs), gases/odours, and particulate matter (PMs) [2].
Further, gas sensing for fire detection has been considered a promising technique. Fire
detection based on chemical sensing provides faster alert signals when VOCs, gases, and
odours are emitted before smoke particles. At the same time, PM can be sensed using
laser-based PM-sensing phenomena when a fire gives rise to steep PM concentrations [3].
While the primary fire indicators are ambient heat, flame, air quality, smoke, and air track,
sensors and actuator technology have seen a lot of activity recently and have become a key
component of real-time assessment [4].

Four primary components, i.e., fuel, heat, oxygen, and a chemical chain reaction, are
required to keep a fire burning. The flow of one or more of these elements is interrupted
by fire extinguishers. The fire triangle must be maintained with proper lighting and fire
maintenance. If one of these components is missing, the fire will diminish and finally go
out independently. Similarly, the approach will fail if one of the components is missing
while attempting to create a fire. The fire triangle tetrahedron is shown in Figure 1.
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Figure 1. The fire triangle tetrahedron (fuel, oxygen, and heat).

Without flammable material, a fire cannot start. Oxygen is necessary for the com-
bustion process to take place and for heat to be generated. Fire can quickly burn almost
everything and depletes the oxygen in the air, which causes casualties from suffocation,
shortage of oxygen, and smoke inhalation. Therefore, it is necessary to sense the fire at its
early stages and then activate suitable extinguishers to extinguish it and minimise the loss
of life and property [4].

Based on the kind of material being burned and as per the National Fire Protection
Association (NFPA) standards, fire has been categorized into six classes, viz., Class A
(combustible solids—paper, cloth, wood, etc.), Class B (flammable liquids—paints, kerosene,
diesel, etc.), Class C (electrical components—PVC, rubber, electrical wires, etc.), Class D
(fats and cooking oils—refined oil, mustard oil, coconut oil, etc.), Class K (combustible
metals—magnesium), and Class F (flammable gases—LPG, CNG, etc.) [5]. Accordingly,
various fire extinguishing agents have also been recommended for use over different classes
of fires, as shown in Table 1.

Extinguishing agents the fire triangle tetrahedron; foam-based agents eliminate the
oxygen component, while water-based agents cool the fire’s heat component, and CO2-
based agents deprive the fire of the oxygen component and reduce the flames. The dry
chemicals prevent a fire’s chemical reaction. Wet chemicals provide a barrier between the
fuel and oxygen during a fire and create a blanket-like cover over the fuel. Dry powder
removes the fire’s heat and deprives it of oxygen [5].
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Table 1. Recommended extinguishing agents for various classes of fire.

Fire
Class/Extinguishers Water Water Mist Foam ABC Dry

Powder CO2
Wet

Chemical
Specialist
Powder

Class A
√ √ √ √

Class B
√ √ √ √ √

Class C
√ √

Class D
√

Class K
√ √ √

Class F
√

In addition to having massive fire suppression capabilities for various fire types, fire
extinguishing systems must not generate excessive harmful gases during operation. We
must determine the types of burning materials to choose the best extinguisher to put out
the fire [5]. Accordingly, we need to identify a distinguishing “feature” that might enable
us to recognize various fire sources in a real-world fire hazard situation. Moreover, each fire
source belonging to a particular class of materials will have a consistent “fire smoke pattern”,
which may be used to identify the respective sources of fire and their subcategories.

As a response, an Intelligent Decision Support System (ID2S4FH) can detect the class
of a fire from the smoke present in the ambient air and generate a real-time infographic map
for the firefighters. An indicative illustration of the concept of real-time fire map generation
is shown in Figure 2.
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Figure 2. (a,b) Illustration of an ID2S4FH for real-time fire class map generation. (1: Grains store;
2: clothes store; 3: edible oil; 4: electronics appliances; 5: stationary; 6: oil and liquids).

The ID2S4FH consists of a pattern recognition (PR) system to detect various VOCs,
gases, and odours released due to the burning of various materials during a fire. It consists
of a gas sensor array with a PM sensor and a temperature and humidity sensor to detect
and identify various classes of fire from the smoke using pattern recognition techniques. A
basic block schematic of an ID2S4FH for fire class detection is presented in Figure 3.

In the ID2S4FH, multiple sensors are used to capture and analyse the fire-linked
signature patterns using various pattern recognition methods, sometimes by mimicking the
human olfactory system, which are essentially an extended version of popular electronic
noses (e-noses) [6]. E-noses have been popularly used for detection of the presence and
types of explosives, food and beverage quality assurance, process monitoring, cosmetics
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and fragrance testing, medical diagnostics and health monitoring, and automotive and
aerospace applications.
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In the recent literature, semiconductor, catalytic bead, photoionization, infrared, elec-
trochemical, optical, acoustic, gas chromatograph, calorimetric sensors, etc., have been
reported as some of the popular gas sensors [7]. Among these, semiconductor metal oxide
gas sensors are high-sensitivity, low-cost, and have a longer operational lifetime [7–9]. Vari-
ous researchers have used various commercially available instruments and processed the
data using machine learning methods such as Bayesian classification, Convolutional Neu-
ral Networks (CNN), Random Forest (RF), Support Vector Machine (SVM), and Artificial
Neural Networks (ANN)-based classifiers for the identification of VOCs, gases, and odours
released during a fire. Wang et al. developed an ANN model to train their classification
model. Three different ANN models, including backpropagation, RBF, and PNN, were
used to train the fire classification model to detect the presence of a fire every time. The
ANN models stated above can analyse multivariate data. However, they cannot categorise
temporal patterns in sensor inputs [10]. D. Guttmacher et al. performed experiments
on fires of burning wood, cotton, foam, and alcohol under standardized (EN54) test fire
scenarios and found that MOS sensors have a faster response time [8]. Adib et al. proposed
an electronic nose as a fire detector. Linear Discriminant Analysis (LDA) was employed
on a 16-element sensor array for the detection of cotton, beech, and printed circuit boards
(PCBs) from their burning smells [11]. Wu et al. created an e-nose for the qualitative and
quantitative monitoring of five volatile, highly flammable liquids (ethanol, tetrahydro-
furan, turpentine, lacquer thinner, and gasoline) using a 14-element Figaro metal-oxide
sensor-based array with one digital temperature and humidity sensor interfaced with a
microcontroller and used principal component analysis (PCA) and ANNs for identification
of the fire materials [12]. Tam et al. developed a system for the prevention of cooktop
ignition using 14 sensors and used SVM, RF, and Decision Tree (DT) for the fires obtained
by burning oils from canola, maize, olive, sunflower, and soy, achieving 96.9% accuracy
when using SVM to predict the pre-ignition situations [13].

Furthermore, Rajput et al. (2010) demonstrated high sensor array responses in more ef-
ficient analysis spaces. They used standardized PCA (SPCA) with simpler ANNs to achieve
100% accurate classification and quantify the considered hazardous gases/odours [9]. Jaffe
et al. studied wildfires through the spread of PM 2.5 and PM 10.0, which show a steep rise
in their concentrations during the spread of fire [14]. Findlay et al. used a single CO sensor
and a PM sensor to identify wildfires before they started [15]. Sahal et al. presented a dy-
namic mechanism to recommend the optimal window size and type based on the dynamic
context of the Internet of Forest Things (IoFT) application [16]. Kanak et al. developed a
LoRa (long-range)-based airborne pollution hazard detection [17]. Saif et al. developed a
disaster management system using multi-UAV and SAR collaboration [18]. Alsamhi et al.
investigated the potential of a tethered balloon network architecture deployed as part of
public safety networks and emergency communications [19]. Alsamhi et al. developed
a system for using drones and the internet for public safety in smart cities [20]. A table
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highlighting the major contributions of our work with the previously published literature
is shown in Table 2.

Table 2. Comparative study of the proposed contributions with respect to the published literature.

Ref. Contributions and Limitations of the Reference Contributions to Our Proposed Work

[8]
Used EN54 commercially available e-nose and

classified four materials, wood, cotton, foam, and
alcohol, without identifying the respective fire class.

We have developed our e-nose prototype with 06 gas
sensor elements and have classified 16 different types

of smoke belonging to six classes of fire.

[9]
Used SPCA transformation ANN for only four gases,

classified them accurately, and developed suitable
real-time applications.

We have used SPCA-transformed MLP for all six
classes of fire and classified them accurately

in real time.

[10]

Used commercially available smoke sensor devices
and developed three ANN models for smoke

detection during fire hazards. They did not attempt to
classify various classes of fire.

We have developed our gas sensor array-based system,
used three MLP models, and classified all six classes of

fire for real-time applications.

[11]
Used e-nose to detect and classify cotton, beech, and

printed circuit boards (PCBs) from their burning
smells using the LDA method.

Our e-nose system detects all six types of fire classes
using PCA and SPCA for pre-processing the dataset.
In comparison, we designed and tested 08 different

types of classifiers to achieve
high-performance classification.

[12]

Used 14-MOX Figaro sensors and one temperature
and humidity sensor to detect five volatile, highly

flammable liquids (ethanol, tetrahydrofuran,
turpentine, lacquer thinner, and gasoline).

We have used six low-cost tin-oxide-based MOX
sensors, one PM Sensor, and one DHT-22 for

temperature and humidity sensors to detect all VOCs,
gases, odours, and other releases from fire smoke.

[13]

Observed cooktop igniting using 14 sensors and SVM,
RF, and DT for the fire smokes obtained by burning
oils from canola, maize, olive, sunflower, and soy,

achieving 96.9% accuracy using SVM.

We have achieved 100% accuracy using
SPCA-transformed MLP for identifying 16 types of

smoke-releasing materials belonging to 06 fire classes.

[14] Classified wildfires by using PM 2.5 and
PM 10.0 sensor data.

We have detected all kinds of fires using a PM sensor
(PM 2.5 and PM 10), a six-element gas sensor array,
and a temperature and humidity sensor to achieve

100% accuracy over all the test samples.

[15] Used a single CO sensor and a PM sensor to
identify wildfires.

We have detected all kinds of fires using a PM sensor
(PM 2.5 and PM 10), a six-element gas sensor array,
and a temperature and humidity sensor to achieve

100% accuracy over all the test samples.

In this paper, we have developed an ID2S4FH by using six-element tin-oxide-based
gas sensor elements, with one digital temperature and humidity sensor and one PM sensor
for particulate matter (PM 2.5 and PM 10) for the detection of all the six types of fire classes,
and by considering sixteen different types of burning materials belonging to each class of
fire. The basic block schematic of the proposed ID2S4FH is presented in Figure 4.

We captured the gas sensor array and PM sensor responses in real-time in an interfaced
computer while burning the 16 considered types of materials. Later, we transformed the
data into various analysis space transformations, viz., kernel PCA (KPCA), LDA, PCA,
and SPCA. In these transformation domains, the data are very well-segregated and show
well-organized clusters [10–12,21]. Furthermore, K-Nearest Neighbour (KNN), Naïve Bayes
(NB), Logistic Regression (LR), Stochastic Gradient Descent (SGD), Decision Tree (DT), and
Support Vector Machine (SVM) analyses were used with different kernels and multilayer
perceptron (MLP)-based classifiers for achieving superior classification performance over
the considered dataset of sixteen types of fire smoke [13,22–24]. The MLP-based classifier,
trained using 2320 training data samples in the SPCA transformed analysis space domain,
outperformed all the other transformation spaces considered and achieved ‘all correct’
classification accuracy of the 80 test samples belonging to the six classes of fire. The
proposed ID2S4FH aims at being portable, easy to use, and affordable.
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The structure of this paper is as follows: In the first section, we discuss the introduction
and main purposes of the studies that were conducted. Section 2 describes the materials and
methods, including the sample preparation, the building of the proposed ID2S4FH device,
the measurement process, the processing of the measured data, and the development of
a machine-learning model. The results and discussions are included in Section 3. We
conclude the work in Section 4

2. Materials and Methods

We tested our proposed hypothesis by designing and fabricating the proposed intelli-
gent decision support system (ID2S4FH), as shown in Figure 4. Further details are given
under various subsections as follows:

2.1. The Design Concept and Principles

In this proposed work, we implemented the ID2S4FH using a two-stage approach.
In the first stage, we generated the ambient air’s signature patterns using a six-element
tin-oxide metal-oxide (MOX)-based gas sensor array, a temperature and humidity sensor,
and a particulate matter (PM) sensor. Tin-oxide MOX-based gas sensor elements are
naturally nonselective and respond to various VOCs, gases, and odours with different
sensitivities [25]. When an array of such gas sensor elements is used, it generates unique
signature patterns for different VOCs, gases, and odours. By using pattern recognition
techniques, the respective VOCs, gases, and odours can be clearly identified [25]. In
the second stage, we processed this surveillance data in its raw form and the analysis
space domain using certain pre-processing transformation methods and training certain
classifiers. Details of the considered sensors, their detection ranges and target VOCs, gases,
and odours, and the pins to which they were interfaced with the microcontroller are given
in Table 3.

When both of these stages operate in a cascade, we can identify the fire class from the
signature patterns of the smoke present in the ambient air in real-time. These ID2S4FH
nodes can be deployed at different locations in storage and distribution centres (SDCs)
such as supermarkets, malls, warehouses, etc. During a fire hazard, the data received from
these ID2S4FH nodes can be presented as a fire map for further use by the firefighters. An
illustration of an ID2S4FH for real-time fire-class map generation is also given in Figure 2.

The proposed approach of using ID2S4FH-based fire-map generation is a non-
destructive and non-invasive approach, and various signature patterns belong to the
considered VOCs, gases, and odours. We can crisply correlate the patterns with the respec-
tive burning materials. The unique signature patterns of smoke generated by burning the
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considered 16 types of materials are first labelled for the respective fire classes. The raw
sensor array responses are analysed in the analysis space transformation domain by ap-
plying popular transformations where the data shows distinct and well-separated clusters.

Table 3. Details of the sensors used for the fabrication of ID2S4FH [26–30].

S. No Sensor Name I/O Pin Target Gas/Odour/PM Detection Ranges (PPM)

S1 PMS5003 (TX, RX) RX, TX PM 2.5 and PM 10 1 micron–10 microns

S2 DHT22 25 Temperature and Humidity −40–125 (◦C)

S3 MQ3 32 Alcohol, Ethanol, Smoke 25–500

S4 MQ4 33 Methane, CNG 300–10,000

S5 MQ5 34 Natural Gas, LPG 300–10,000

S6 MQ7 35 CO 10–500

S7 MQ8 36 Hydrogen 100–10,000

S8 MQ135 39 Air Quality 10–1000

2.2. The Prototype

The prototype includes a six-element tin-oxide metal-oxide (MOX)-based gas sensor
array, a DHT22 sensor, and a PM sensor which generates real-time signature patterns of the
smoke present in the ambient air. The proposed e-nose design’s major component is a glass
gas chamber. The airflow diagram in the gas chamber is shown in Figure 5.
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Inside this gas chamber, all the sensors are fitted on the sensor board, and wire
connections are made with the microcontrollers. The ratings of the various sensors and
devices used in this ID2S4FH are shown in Table 4.

It comprises an electronic control and computer units for real-time data acquisition
and processing. The electronic module contains two 32-bit microcontrollers, one for the PM
sensor operations while the other interfaces with the rest of the sensors. Using an integrated
development environment (IDE), a basic communication protocol was set up between the
microcontrollers and the computer to send the data generated during the experiment and
to synchronize the beginning and end of the data capturing. The circuit diagram of the
PCB designed for the proposed ID2S4FH is shown in Figure 6.
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Table 4. Ratings of the components as used in the prototype.

Components Input Voltage Power Ratings

PMS 5003 5 V 100 mA

Arduino UNO 5 V 50 mA

Arduino TX/RX pins 3.3 V 40 mA

ESP32 5 V 130 mA

ESP32 GPIO pins 3.3 V 40 mA

DC-DC Buck converter 5 V 2.5 A

DHT22 3–5 V 2.5 mA

MQ sensor 5 V 150 mA
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Post-fabrication, the ID2S4FH prototype has dimensions of 29 cm × 21 cm × 12 cm,
providing a total interior volume of 7.308 L (7308 cm2). Details of the sensors used in
the fabrication of the proposed ID2S4FH are given in Table 3. The physical view of the
fabricated ID2S4FH is shown in Figure 7a–c.

2.3. The Experiment

In this experiment, we considered 16 types of burning materials to generate VOCs/
gases/odours belonging to the six classes of fire types. Details of the experiment are given
in Table 5.

Table 5. Distribution of samples in dataset I and dataset II.

Fire Class Raw
Materials

Dataset I
(Training Set)

Dataset II
(Testing Set)

Total
Samples

Data Collection
Time (mints.)

Class A

Cloth 145 5 150 15

A4 paper 145 5 150 15

Wood 145 5 150 15
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Table 5. Cont.

Fire Class Raw
Materials

Dataset I
(Training Set)

Dataset II
(Testing Set)

Total
Samples

Data Collection
Time (mints.)

Class B

Paints 145 5 150 15

Grease 145 5 150 15

Kerosene 145 5 150 15

Diesel 145 5 150 15

Class C

Rubber 145 5 150 15

PVC 145 5 150 15

Wire 145 5 150 15

Class D

Butter 145 5 150 15

Mustard oil 145 5 150 15

Refined oil 145 5 150 15

Coconut oil 145 5 150 15

Class K Magnesium 145 5 150 15

Class F LPG 145 5 150 15

Total 2320 80 2400 240
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burned 16 types of materials belonging to six classes of fire smoke. It can be observed from 
Table 5 that Class-A types of fire smoke are released by the burning of cloth, paper, and 

Figure 7. (a–c) Hardware description of ID2S4FH for fire smoke detection. 1: Gases/odours inlet;
2: air duct; 3: sensor chamber; 4: power supply (12 V DC); 5: power cable; 6: exhaust fan; 7: laptop
for sensor response capturing into text format; S1: sensor 1, S2: sensor 2, S3: sensor 3, S4: sensor 4,
S5: sensor 5, S6: sensor 6, S7: sensor 7, S8: sensor 8, 8: on–off switch; 9: internal–external wire
connecting point; 10: heat sink; 11: voltage regulator; 12: buck-converter; 13: power distribution
point; 14: ESP 32; 15: UART Cable-I; 16: UART Cable-II; 17: Arduino Uno.

We integrated eight sensors, viz., six tin-oxide-based gas sensor elements, one tem-
perature and humidity sensor, and one PM sensor on the PCB board of the ID2S4FH. We
burned 16 types of materials belonging to six classes of fire smoke. It can be observed from
Table 5 that Class-A types of fire smoke are released by the burning of cloth, paper, and
wood, while Class-B types of fire smoke are released by burning paints, grease, kerosene,
and diesel. The burning of rubber, PVC, and electrical wire releases Class-C fire smoke,
and Class-D fire smoke is released by burning butter, mustard oil, refined oil, and coconut
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oil. Class-K and Class-F types of fire smoke are released by burning magnesium and
LPG, respectively. The following experimental procedure was adopted for collecting the
experimental dataset:

1. For the first 30 min (t = 0–30 min.), the gas chamber is closed, all the sensors are acti-
vated under the prescribed rated operational conditions, and the baseline responses
of the sensors are recorded under the steady-state conditions. It is observed that the
sensor responses become static during the period.

2. For the next 15 min (t = 31–45 min.), one of the 16 materials (as listed in Table 5) is
burned, its smoke is fed into the gas chamber, and sensor array responses are captured
continuously, which start at t = 0 min.

3. For the next 30 min (t = 45–75 min.), the gas chamber is purged with fresh ambient air,
and during this period, the sensors go into recovery mode and the starting baseline
responses are achieved again.

4. The above steps 1, 2, and 3 are repeated again until sensor responses for the fire
smokes of all the considered categories have been covered.

Accordingly, each experimental phase continues for 75 min and raw sensor responses
are captured for one of the 16 materials and repeated for all the 16 types of materi-
als as considered. Therefore, the experiment was carried out for a total of 1200 min
(75 min × 16 materials), covering all six fire smokes classes, per the NFPA standards.
Throughout the experiment, we ensured that the sensor responses returned to the baseline
responses and that no sensor poisoning occurred. Furthermore, sniffing and purging of the
ID2S4FH gas chamber was carried out using an exhaust fan, which maintains a laminar
flow in the gas chamber of the ID2S4FH.

2.4. The Dataset

During the experimental procedure, the total experiment time was 1200 min (20 h);
during this period, 12,000 samples were captured at the sampling rate of 10 samples per
minute. Further details of the dataset and the samples collected are given in Table 5.
Regarding the samples belonging to the six classes of fire smoke, a total of 2400 samples
were captured for the sixteen considered materials. The dataset contained 450 samples
of Class A (cloth, paper, and wood), 600 samples belonging to Class B (paints, grease,
kerosene and diesel), 450 samples belonging to Class C (rubber, PVC, and electrical wire),
600 samples of Class D (butter, mustard oil, refined oil, and coconut oil), 150 samples of
Class K (magnesium), and 150 samples of Class F (LPG). The signature patterns captured
under the considered six classes of fire smoke are shown in Figure 8a–f.
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The captured dataset was then segregated into two sets, i.e., training and testing
datasets. Accordingly, the training dataset consisted of 145× 3 = 435 samples for Class A,
145× 4 = 580 samples for class B, 145× 3 = 435 samples for Class C, 145× 4 = 580 samples
for Class D, and 145 samples each for Class K and Class F, respectively. Furthermore, for
testing purposes, we used 15 samples for Class A, 20 samples for Class B, 15 samples for
Class C, 20 samples for Class D, and five samples each for Class K and Class F, respectively,
called the testing dataset. The sensor responses and respective temperature (◦C) and
humidity (RH, %) of the different classes of fire are shown in Table 6.

Table 6. The sensor responses and respective temperature (◦C) and humidity (RH, %) of different
classes of fire.

MQ 3 MQ 4 MQ 5 MQ 7 MQ 8 MQ 135 Temp, (◦C) Humid, (%) Class

1702 475 3293 1380 3119 993 27.8 62.4

A1759 321 3233 1314 3696 1360 27.7 64.3

1395 267 3231 1173 3927 664 23.6 76.4

1754 208 2336 2302 3709 2480 22.8 75.3

B
1386 242 2364 1373 3257 1226 22.9 65.8

1050 351 3184 1143 3600 2531 24.8 99

1523 256 3229 1184 3765 1018 45.6 33.6

3065 2358 3985 1730 2121 2221 30.2 99

C3137 1340 3963 2235 3987 1958 26.8 99

783 156 3096 1045 3167 807 23 84.3

1007 176 3152 1200 3435 1202 25.1 60.1

D
671 132 3102 1091 2892 992 25.4 51.4

1083 181 3060 1103 3470 1090 21.5 64.6

1506 1837 3719 3495 2928 3791 27.1 99.9

1469 387 1021 495 112 278 25 82.3 K

790 151 3101 1088 3151 843 23 81.1 F

The testing data were separated beforehand and were not used during the training
or validation of the classifiers at any stage. They were considered unknown test samples
and formed the basis of the ID2S4FH performance test to generate a real-time ‘fire-map’.
Figure 8a–f shows the representative sensor responses of the six fire smoke classes.

2.5. Contextual Background of Data Pre-Processing and Classifiers

This work was based on the performance enhancement of the proposed ID2S4FH
by designing the classifier in the analysis space domain approach as proposed by [9]. It
has been observed that a classifier performs better when it is trained in a transformation
space where the data show well-separated clusters with good inter-cluster separation. An
illustrative diagram depicting the transformation process and its performance assessment
is shown in Figure 9a,b. Accordingly, the raw sensor responses were first transformed into
the analysis space domainparticularly in the standardised principal component analysis
(SPCA) domain. SPCA is a very effective method used for feature extraction as well as for
dimensionality reduction [9,12]. For the performance enhancement of the ID2S4FH, we
used SPCA as the method for feature extraction. We utilised all the PCs for training and
testing the classifier used in the ID2S4FH without any information loss. Furthermore, for
the sake of three-dimensional visualisation, we used the first three principal components
for the 3D scatter plot.
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Figure 9. (a,b) An illustrative diagram depicting the transformation process and its performance
assessment.

Once we obtained the SPCA-transformed version of the raw sensor responses, con-
sisting of the 2400 sample vectors with nine element sample vectors, the transformed
dataset was then segregated again into two parts, i.e., the training and testing datasets
consisting of 2320 and 80 samples in the SPCA-transformed domain, respectively. In ad-
dition to SPCA, we also designed classifiers in the principal component analysis (PCA),
kernel principal component analysis (KPCA), and Linear Discriminant Analysis (LDA)
domains for comparison purposes [9,17]. Furthermore, we used many popular classifiers
such as KNN, NB, LR, DT, SVM, and MLP. Further details of these classifiers can be found
in the literature [9,13,21–24]. Among these popular classifiers, the MLP-based classifier
outperforms the other types of classifiers. The model configuration details of the different
classifiers are shown in Table 7. The schematic diagram of the proposed data pre-processing
and the designed classifier are shown in Figure 10a,b.

Table 7. Model configuration details of different classifiers.

Classifiers Parameters

KNN Algorithm: auto, leaf_size: 30, metric = minkowski, n_neighbors: 5, p: 2, weights: uniform, cv:5

LR fit_intercept: True, intercept_scaling: 1, max_iter: 100, multi_class: warn, penalty: l1, random_state: None,
solver: warn, warm_start: False, cv:5

SGD
Loss: hinge, penalty: l2, alpha:0.0001, l1_ratio: 0.15, fit_intercept: True, shuffle: True, verbose:0, epsilon:0.1, n_jobs:
None, random_state: None, learning_rate: optimal, early_stopping: False, n_iter_no_change:5, class_weight: None,
warm_start: False, average: False, cv:5

DT Criterion: gini, splitter: best, min_samples_split: 2, min_samples_leaf:1, random_state: None, max_leaf_nodes:
None, class_weight: None, cv:5
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Table 7. Cont.

Classifiers Parameters

NB Priors: None, var_smoothing: 1 × 10−9 cv:5

SVM C:1, kernel: rbf, degree: 3, cache_size:200, class_weight: None, verbose: False, max_iter: -1,
random_state: None, cv:5

RDA Solver: svd, shrinkage: None, priors: None, store_covariance: False, tol: 0.0001, covariance_estimator: None, cv:5

MLP Hidden layer sizes:11, activation function: Relu, solver: adam, batch size:100, learning rate: adaptive,
max iteration: 100, cv:5
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3. Results and Discussion

The proposed work was carried out using Python 3.10.0 software running on a com-
puter, and the ID2S4FH prototype was interfaced with the computer using an integrated
development environment (IDE).

3.1. VOCs/Gases/Odours Sensor Response Patterns

As shown in Figure 8a–f, fire smokes belonging to different classes of fire have distinct
visible patterns, indicating that MLP classifiers can be used successfully to classify the
respective classes of fire smoke with good performance. Most prior research has used
large-sized gas sensor arrays (e-noses) or PM sensors alone. As discussed in most of the
published literature, their experiments need to be wider to cover all six classes of fire smoke.

In this work, we have considered six types of tin-oxide MOX gas sensor elements
(Table 3), which are sensitive to different VOCs, gases, and odours. Being nonselective
in nature, they have significantly unique responses. Moreover, it has been observed that
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materials belonging to different fire classes release distinct amounts of particulate matter.
Before starting the exposure to specific fire smokes from respective materials, the gas sensor
and the PM sensor attain a baseline value and show steady responses. Once exposure
to specific fire smoke is started, there is a significant change in sensor element responses.
Once we purge the gas chamber to ambient air, it reverts to a steady-state baseline response,
indicating that the sensor elements have not been poisoned or saturated. Class-wise sensor
responses are shown in Figure 11a–f. In each fire class, fire smoke materials in the same
class also form distinct clusters, indicating that the fire smokes within the same subclass
can also be identified successfully.
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3.2. Efficacy of Analysis Space Transformation Approach

In this work, we employed one temperature and humidity sensor (to ensure that
the operating conditions remain the same). In contrast, six tin-oxide MOX-based gas
sensor elements provide unique sensor response patterns corresponding to the 16 types
of materials for releasing six fire smoke classes. The PM sensor was also used, which
generates PM values belonging to PM 2.5 and PM 10 concentrations in the respective types
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of fire smoke. The 3D scatter plot for the raw sensor responses and the respective SPCA-
transformed sensor responses, comprising the responses obtained from the gas sensor array
and the PM sensor, is shown in Figure 12a,b. It can be observed that the clusters belonging
to the six classes of fire smoke, in their raw form, are overlapping and not very clearly
distinguishable. Furthermore, as proposed, the same dataset shows far superior clusters
with good inter-cluster separation in the corresponding SPCA transformation domain.
It is interesting to note that the corresponding scatter plots only consider the gas or PM
sensor responses.
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3.3. Performance of ID2S4FH Classifier for Classifying the Fire Classes

As described in Section 2.5, several performance metrics are considered for multiclass
classification, such as accuracy and MSE. Six types of fire smoke data and their sixteen
subclasses were classified by employing multiple classifiers and regressors, viz., KNN, DT,
NB, SGD, ANN, LR, RDA, and SVM with linear, polynomial, and RBF kernels to evaluate
the selected sensor, as discussed in Table 6. The MLP classifier has been the best-performing
classifier. The differences between the actual and predicted values for the six classes of fire
smoke were evaluated using MSE as the performance parameter, as shown in Figure 13.
Furthermore, the classification performance of the ID2S4FH trained and tested in the SPCA
domain using the responses of the gas and PM sensors jointly, using 80 unknown test
samples, is shown in Figure 14. For the sake of further clarity, the confusion matrix of the
classification performance of the MLP classifier is shown in Figure 15, which shows the ‘all
correct’ classification of the considered 80 unknown samples taken from the testing dataset,
not used for training the classifier models in the SPCA transformation domain. Another
observation is that the MLP classifier’s classification performance when trained and tested
using only the PM sensor response was found to be ineffective, as shown in Figure 16a,b.
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We adopted evaluation indices, including accuracy, used a fivefold cross-validation
during the performance assessment of the MLP classifier. A graph-based comparative
performance of the classification accuracy for various classifiers is shown in Figure 17.
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4. Conclusions and Future Work

In this study, we developed an ID2S4FH to accurately classify the six fire classes
from the smoke released by burning 16 considered materials. We used 80 unknown test
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samples to test the performance of the proposed ID2S4FH for the accurate identification
and classification of fire smoke belonging to six distinct fire classes. We achieved ‘all
correct’ performance results for the considered 80 test samples, which were not used during
the training and validation process of the classifier design process. By considering cross-
sensitive elements in the six-element gas sensor array, in conjunction with the PM sensor
and a temperature and humidity sensor, we have successfully developed an ID2S4FH that
can be used universally to create fire maps in real-time during a fire hazard in storage and
distribution centres (SDCs). The proposed ID2S4FH is very stable and durable due to the
use of tin-oxide MOX-based gas sensor elements and is accurate because the PM sensor and
MLP-based classifiers are included. To the best of the authors’ information, this work is the
most comprehensive and promising development of an IGSS for real-time generation of
maps of ‘Classes of Fire’. The proposed ID2S4FH can be deployed as a disaster management
system to identify and control fire hazards in various SDCs and places. In the future, a
multi-node ID2S4FH network can be designed and deployed across large SDCs to secure
such places for real-time fire hazard monitoring and mitigation.
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ANN Artificial Neural Network
ICA Independent component analysis
KPCA Kernel principal component analysis
MLP Multilayer perceptron
MSE Mean squared error
NFPA National Fire Protection Association
PCA Principal component analysis
QPCA Quadratic principal component analysis
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SVM Support Vector Machine
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