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Abstract: Efforts to delineate the influence of atmospheric variability on regional wildfire activity
have previously been complicated by the stochastic occurrence of ignition and large fire events,
particularly for Southern California, where anthropogenic modulation of the fire regime is extensive.
Traditional metrics of wildfire activity inherently contain this stochasticity, likely weakening regional
fire–climate relationships. To resolve this complication, we first develop a new method of quantifying
regional wildfire activity that aims to more clearly capture the atmospheric fire regime component by
aggregating four metrics of fire activity into an annual index value, the Annual Fire Severity Index
(AFSI), for the 27-year period of 1992–2018. We then decompose the AFSI into trend and oscillatory
components using singular spectrum analysis (SSA) and relate each component to a set of five climate
predictors known to modulate macroscale fire activity in Southern California. These include the
Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), El Niño–Southern Oscil-
lation (ENSO), and Santa Ana wind (SAW) events, and marine layer frequency. The results indicate
that SSA effectively isolates the individual influence of each predictor on AFSI quantified by generally
moderate fire–climate correlations, |r| > 0.4, over the full study period, and |r| > 0.5 over select
13–15-year periods. A transition between weaker and stronger fire–climate relationships for each of
the oscillatory PC–predictor pairs is centered around the mid-2000s, suggesting a significant shift in
fire–climate variability at this time. Our approach of aggregating and decomposing a fire activity
index yields a straightforward methodology to identify the individual influence of climatic predictors
on macroscale fire activity even in fire regimes heavily modified by anthropogenic influence.

Keywords: wildfire; fire–climate relationships; climate; weather; Southern California; human influence;
singular spectrum analysis

1. Introduction

In Southern California, where it is estimated that ~95% of all wildfire ignitions are
human caused [1], trends in fire activity are often decoupled from the climate and weather
patterns that shape the regional fire regime. The stochastic nature of ignition and large fire
events complicate efforts to elucidate these “fire–climate relationships” [2]. Non-climatic
factors, including resource availability, suppression strategy, and incident prioritization,
can influence the size of individual fires, particularly when suppression resources are
overwhelmed in periods of widespread fire activity [3]. Therefore, the metrics typically
used to quantify fire activity, including the number of ignitions and the number of acres
burned may not yield clear relationships with regional climate drivers. To improve model
forecasts of regional fire activity, supplementary metrics are needed that correlate more
strongly to regionally important climate patterns.

Fire activity can be understood fundamentally as enabled and driven by climate and
weather, respectively [3]. Climate patterns have a strong yet complex influence on fire
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occurrence and extent because they control fuel production, composition, and moisture [4,5].
Southern California’s Mediterranean climate consists of strong seasonal variations in
precipitation and temperature wherein the large majority of annual precipitation occurs
in the cool season (roughly October–March), regularly leading to 6 or more months of
very dry conditions during the warm season (April–September). Abundant cool season
precipitation enhances fine fuel production, whereas the advance of the following warm
season increases the available fuel load due to continually declining fuel moisture and
increasing fuel flammability [6].

These annual climate patterns are modulated by several synoptic-scale ocean/atmosphere
teleconnections that are known to modify the fuel production and moisture cycles of South-
ern California. Sea surface temperature (SST) anomalies in both the Atlantic and Pacific
basins drive atmospheric responses that influence patterns of precipitation, drought, and
wildfire activity in Southern California. The Atlantic Multidecadal Oscillation (AMO) is
an index that represents one of these modes of Southern California climatic variability in
the northern Atlantic Ocean [7,8], whereas the Pacific Decadal Oscillation (PDO) and El
Niño–Southern Oscillation (ENSO) represent these modes of regional climate variability
in the Pacific Ocean [5–7,9–14]. Warm/positive AMO phases are linked to widespread
drought and synchronous fire activity across the Western US, including Southern California,
whereas cool/negative PDO and ENSO are linked to increased drought and wildfire ten-
dencies in Southern California (though the physical mechanism by which these respective
oscillations influence climate patterns differ). The respective oscillations further influence
regional fire activity via the constructive or destructive influence of the attendant atmo-
spheric responses from each oscillation [6,7,9,10,13]. For example, extended droughts have
been found during concurrent positive AMO, negative PDO, and negative ENSO phases,
leading to extended periods of abnormally low fuel moistures [7,8], and thus favorable
conditions for widespread fire activity.

At shorter timescales, two prominent weather patterns are critical in modulating fuel
moisture and thus fire activity in Southern California: first, the hot, dry foehn winds known
locally as Santa Ana winds (SAWs), which occur frequently in the cool season and can
drive extreme fire weather conditions [11,15–17]; and second, the frequent warm season
occurrence of coastal stratus clouds that form within the cool, humid marine boundary
layer [18]. Though the influence of these phenomena is predominantly confined to a
narrow area between the coast and nearby mountain ranges, these areas contain much of
the regional fire activity due to the abundance of available fuels, expansive wildland–urban
interface (WUI), and abundant human-caused ignition potential [1,17,19,20].

The inherently unpredictable nature of when and where anthropogenic ignitions occur
is one of the primary drivers of the Southern California fire regime [1,21]. Though weather-
and climate-scale drought regularly desiccate fuels, fire impacts as they are traditionally
defined (ignitions and acres burned) are not realized unless a stochastic ignition occurs.
More specifically, these traditional metrics quantify only physical impacts that are observed,
without accounting for potential physical impacts. Hypothetically, by representing annual
fire severity as an aggregation of multiple indices, each of which quantify both observed
and potential fire activity, the stochastic nature of ignitions and large fire events will not
dominate fire–climate relationships.

This research first introduces our Annual Fire Severity Index (AFSI), a novel method
of quantifying observed annual fire activity that aggregates into a single index value
the two standard indices of severity (ignitions, acres burned) plus two measures of the
potential for fire suppression resources to be strained, which we believe are captured
by the magnitude of the energy release component (ERC) and the fire season length.
ERC is an output of the National Fire Danger Rating System (NFDRS) [22,23] employed
by fire managers countrywide that quantifies potential heat release at a fire’s head by
considering the cumulative drying effect of weather in the previous days to weeks through
the incorporation of live and dead fuel moisture. ERC is closely related to large fire
occurrence and extreme fire behavior [2]. Fire season length quantifies the time period



Fire 2023, 6, 302 3 of 19

wherein regional fuel conditions are conducive for significant wildfire activity and thus
the potential strain on fire suppression resources given the occurrence of an ignition. A
longer fire season is more likely to strain financial resources, fire suppression crews, and
the overall effectiveness of fire containment.

The second goal of this research is to develop a methodology for correlating this AFSI
with a set of atmospheric predictors that serve to succinctly, but comprehensively, represent
the major atmospheric elements of the fire regime. We hypothesize that the annual fire
activity time series can be modeled as the sum of individual time series that each isolate the
influence of one climatic feature on fire activity. This allows us to identify components of
the fire regime that oscillate at varying frequencies and magnitudes, incorporating indices
of weather- and climate-scale phenomena collectively. To do so, we employ a time-series
decomposition technique, singular spectrum analysis (SSA). Our novel approach in re-
defining and quantifying regional fire–climate relationships serves to advance modeling of
macroscale fire–climate relationships.

2. Study Area

This analysis focuses on the Geographic Area (GA) boundaries defined for Southern
California (Figure 1), referred to herein as the Southern California Geographic Area (SCGA)
for simplicity. GA boundaries are designated by intergovernmental wildland fire protection
agencies for “planning, coordination, and operations leadership for effective utilization
of emergency management resources within their area [24].” There are ten such GAs
throughout the United States. GA boundary shapefile data were collected from the National
Wildfire Coordinating Group (NWCG).
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Figure 1. The Southern California Geographic Area (SCGA), with notable geographic features labeled.

We justify focusing our analysis on the GA scale for two primary reasons. First, under-
standing fire–climate relationships at the spatial level of a GA corresponds to the scales at
which climate information is digested and interpreted by fire management operations for
seasonal planning, resource allocation, and suppression efforts [25,26]. Second, correlations
of fire–climate relationships have generally been found to increase with a growing area
of study. It has been hypothesized that the variability of fire and climate data becomes
attenuated as the level of aggregation increases, thus allowing the fire–climate relationships
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to emerge more clearly [3,27]. This methodology allows for another layer of aggregation
from which a clearer understanding of macroscale fire–climate relationships can be derived.
The term “macroscale” is used here to differentiate from the small scale, on-the-ground
influences of factors including heat and moisture fluxes on fire activity that are not the
focus of this research. Our research focuses on macroscale effects of climate patterns on fire
activity across broad fire regimes, relationships which are much more readily established at
large geographic scales.

3. Data and Methods
3.1. Development of Annual Fire Severity Index
3.1.1. Wildfire Data

The first two components of the AFSI, wildfire ignition counts and acres burned,
were derived from the Fire Program Analysis fire-occurrence database (FPA FOD), 5th
edition [28]. The FPA FOD includes all fires across the United States from 1992 to 2018
and integrates fire records from federal, state, and local fire organizations. Two filters were
applied to the dataset: First, all fires < 1 acre were excluded to remove noise from the
overall signal of fire activity. Second, fires ignited on days with low fire energy intensity,
represented by ERC < 50, e.g., [29] were also excluded. This threshold eliminates roughly
the bottom 5% of all fires ≥ 1 acre. For all fires ≥ 1 acre ignited when daily ERC < 50, only
about 3.6% and 0.5% exceeded final sizes of 100 and 1000 acres, respectively, and thus are
very unlikely to contribute significantly to annual fire activity. The final dataset included
roughly 42,000 fires.

3.1.2. ERC Data

The remaining two AFSI components, yearly ERC magnitude and fire season length,
were both calculated from a daily ERC time series gathered from the web-based cloud-
computing application Climate Engine [30]. A time series of daily ERC values spatially
averaged over the SCGA was downloaded. These ERC data were derived from the Univer-
sity of Idaho’s Gridded Surface Meteorological Dataset (gridMET, [31]). Although the ERC
magnitude component and the fire season length component were derived from the same
ERC time series, these two metrics are not strongly correlated and were thus both included
in the AFSI calculation.

3.1.3. AFSI Calculation Methodology

Our AFSI comprises annual values of each of the four components, two derived from
the FPA FOD (acres burned, ignition counts) and two derived from the ERC database
(ERC magnitude, fire season length). These four components were preliminarily selected
based on their perceived ability to quantify different but equally important modes of
annual wildfire severity related to observed fire activity (which contain an element of
anthropogenically-derived stochasticity) and potential fire activity (which are related only
to atmospheric conditions and the attendant impacts on fuel flammability). Each of the
four metrics were established throughout the fire science community and can be easily
attained and interpreted.

An exploratory analysis was conducted on each of the components’ empirical distri-
butions to identify their most appropriate quantification, keeping in mind that we aim to
comprehensively represent the different modes of annual fire activity and their potential
impact on fire suppression efforts. The first component, acres burned, was calculated as
the annual number of fires exceeding the climatological (1992–2018) 97th percentile fire
size. This focuses on the annual fire activity contribution by very large fires, which can
require a disproportionate suppression resource response compared to smaller fires. The
second component, annual ignition count, was left unaltered because it directly represents
the potential for many concurrent fires to strain fire suppression resources. Third, we
determined that the ERC magnitude component was best represented by the yearly 90th
percentile ERC value. Daily ERC values, which ranged from about 10 to 95 throughout the



Fire 2023, 6, 302 5 of 19

study period, displayed a right-skewed distribution, indicating that high daily ERC values
were more frequent. The 90th percentile value was less prone to sampling variation than a
lower percentile, such as the median, because of this right skew.

The calculation of the fourth AFSI component, fire season length, was necessarily
more subjective due to the complex nature of ERC time series and the fuel conditions they
represent. Highly variable winter rainfall interspersed with frequent SAW events across
Southern California commonly result in fuel moisture values that fluctuate greatly from
day to day in the cool season. We chose to emphasize the assumed strain on suppression
resources of many consecutive days with elevated fire potential. The daily ERC time series
was smoothed with a Savitzky–Golay (SG, [32]) filter of window length l = 49 days and
polynomial order p = 2 (Figure 2). This filter is advantageous in its ability to preserve
narrow time-series peaks better than many other smoothing filters with Gaussian convolu-
tion [33]. We then calculated the annual number of consecutive days where ERC ≥ 50, an
empirical threshold under which we determined that significant fire activity was unlikely.
However, it is common for multi-day periods to exceed this empirical threshold outside of
the primary fire season; therefore, these sub-periods were included in the respective year’s
fire season count if they remained within 15 days of the beginning or end of the primary
fire season. Fire season tallies were cut off on 31 December of each year.
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Figure 2. Energy Release Component (ERC) time series for calendar year 2018 over the Southern
California Geographic Area (SCGA), including daily values (thin green line), Savitzky–Golay filtered
values (ERCSG; thick blue line), and the beginning and end of the “fire season,” as determined by the
consecutive period where ERCSG ≥ 50.

In considering how each of the AFSI components operate together, it is useful to note
that the respective variance of each component is maximized during a different portion
of the calendar year. This characteristic allows each component to represent intra-annual
modes of fire activity that may occur in the absence of another and therefore may be missed
when considering only ignitions and acres burned. For example, the monthly distribution
of ERC magnitude compared to ignition frequency shows that both components were
maximized in the summer when SCGA weather conditions were consistently hot and dry
(Figure 3). Yet within these summer months, interannual ignition frequencies varied widely,
whereas ERC values were consistently elevated; oppositely, the winter months exhibited a
consistently low ignition frequency, whereas ERC magnitude varied drastically because
of the complex interference between variable winter rainfall and SAW events. Each AFSI
component is hypothetically capable of capturing very different behaviors that can each
lead to significant fire activity given a stochastic ignition.

Once the AFSI components were selected, the index time series was calculated using
the following method. Each of the four components were assigned a yearly “score” from
1 to 10, determined by the yearly components’ decile value with respect to its 27-year
climatology. A yearly score of 1 was assigned if the yearly component value fell within the
bottom decile of the component distribution, whereas a yearly score of 10 was assigned
if the yearly component value fell within the top decile of the component distribution,
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and so on. This calculation was applied to each of the four AFSI components and the
yearly component values were summed. The result was a time series of 27 annual values
(“scores”) ranging from 4 to 40, where a score of 4 indicates the least severe fire season
possible and a score of 40 indicates an exceptionally severe fire season.
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Figure 3. Box-and-whisker plots of SCGA monthly (a) fire ignitions and (b) ERC magnitude, two of
the components used in the Annual Fire Severity Index (AFSI) calculation, for the study period 1992–
2018. Boxes indicate the 25th, 50th, and 75th percentiles of the distribution, whereas the whiskers
extend to the 5th and 95th percentiles. Black dots indicate outlier values.

The final AFSI time series for the 27-year period, 1992–2018, is displayed in Figure 4,
and a diagram depicting the AFSI development workflow is displayed in Figure 5. Examin-
ing the AFSI time series, the range in annual score sum spanned from a minimum value of
7 in 1998 to a maximum of 37 in 2007. The index score distribution was roughly normal
with median = 22 and mean = 21.85. Second, the time series could be divided into separate
periods of generally elevated or suppressed AFSI values. From 1992–2004, scores generally
remained at or below the median, particularly from 1998 to 2001, where three of four years
were well below the median. A period of elevated scores then prevailed from 2005 to 2018,
beginning with three years of scores increasing 8, 8, and 5 points, respectively, from 2005
to 2007.

If the impact of anthropogenic activity (human ignitions, fire suppression resource
management/placement, etc.) on the AFSI had been effectively diluted, we would expect
that the annual scores and overall time series behavior were largely driven by SCGA
weather and climate features. Hypothetically, we can presume that (1) the AFSI time series
represents the purely climatic signal of SCGA fire activity; (2) that we can decompose
the time series into components representing trend, oscillatory behavior, and noise; and
(3) that these time-series components can be related to the set of weather and climate
patterns we have identified as significant in modulating SCGA fire activity. The following
section details the statistical analysis methods used to relate climate predictors to the AFSI
component predictands.
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Figure 4. The calculated AFSI time series for study period 1992–2018. Each of the four AFSI
components are indicated by different colors (ERC, blue; acres burned, orange; ignitions count, green;
and fire season length, red). Yearly component scores are stacked to indicate the yearly sum score.
The 27-year mean value, 21.85, is displayed as the horizontal dashed line.
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Figure 5. A schematic depicting the 5-step AFSI development workflow from the initial dataset
to the final time series as described throughout Section 3.1. First, the Fire Program Analysis fire
occurrence database (FPA FOD) dataset is collected and two filters are applied. The acres burned and
ignitions components are then calculated as indicated and collectively serve to represent “observed”
fire activity. Next, the unfiltered daily ERC time series is used to calculate the ERC magnitude and
fire season length components as indicated, where ERCSG represents the Savitzky–Golay filtered
ERC values (Figure 2). These two components represent “potential” fire activity. Then, each annual
component value is assigned a score from 1 to 10, the respective component values are summed, and
the final AFSI time series is plotted.

3.2. Statistical Analysis of AFSI Fire–Climate Relationships
3.2.1. Atmospheric Predictor Data

A set of five atmospheric predictors was selected as collectively responsible for a large
portion of the interannual variability in SCGA fire activity, encompassing the primary
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drivers of large-scale fuel moisture content in space and/or time. Comprising this set of
atmospheric predictors are three modes of large-scale climatic variability in the AMO, PDO,
and ENSO ocean–atmosphere teleconnections, plus two weather phenomena that are less
widespread in spatial influence but important in modulating fuel moistures within the
most fire-prone regions of the SCGA, represented by marine layer and SAW frequency.

AMO Index data (unsmoothed, detrended) for the period 1948–2022 were downloaded
from the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences
Laboratory (PSL; [34]). This index is calculated from the Kaplan SST dataset, Version 2,
and represents SST anomalies in the North Atlantic. PDO Index data were downloaded
from the National Centers for Environmental Information (NCEI) and are based on the
NOAA’s extended reconstruction of the Extended Reconstruction SST (ERSST Version 5)
and represent SST anomalies in the northeast and tropical Pacific Ocean [35]. The SG filter
was again applied to the AMO and PDO time series with window length l = 61 months and
polynomial order p = 3. The window lengths were chosen to reduce short-term variability
while maintaining the integrity of the overall phases and phase transitions. Annual AMO
and PDO values were then calculated as the median monthly value of each year. ENSO
conditions were quantified herein by the Oceanic Niño Index (ONI), the NOAA’s primary
indicator for the monitoring of ENSO conditions, and were collected from the NOAA
Climate Prediction Center’s (CPC) ONI database [36]. This index represents the 3-month
running average of ERSST Version 5 in the Niño 3.4 region. ENSO teleconnections with
weather/climate in the Western US are typically strongest in the winter months [37], and so
December–February mean ONI values were calculated to represent the annual ONI state,
e.g., [10].

It is important to quantify SAWs and their ability to rapidly dry fuels and drive extreme
fire activity separately from climate timescale moisture anomalies, which are related to
atmospheric forcing by AMO, PDO, and ENSO. We believe that the most representative
method to quantify high-frequency variations in fire potential due to fuel drying, such as
those related to SAW events, is the Evaporative Demand Drought Index (EDDI; [38,39]).
EDDI considers only evaporative demand (E0) anomalies with respect to the climatological
median over a range of time windows from 1 week to 12 months. At the shorter end of the
spectrum, EDDI at 2-week and 1-month time scales closely corresponds to documented
heat waves and extreme fire weather in California [39] and therefore can serve as a proxy
for SAW events that are likely to rapidly reduce fuel moistures and increase fire potential.
Following these observations, our EDDI parameter was calculated as the number of times
per year where the 2-week EDDI > 1 as averaged over SCGA. Although we also tested an
annual SAW occurrence time series [15] to identify the direct influence of SAW frequency
on fire activity, fire–climate correlations were generally weaker than those with our EDDI
time series.

Finally, we calculated an index of annual marine layer frequency over the study period
to determine relationships with fire activity, following the methodology employed by [18].
However, no significant correlations were detected.

3.2.2. Singular Spectrum Analysis

To decompose the AFSI time series, we employed singular spectrum analysis (SSA;
[40–44]), a technique that has been used extensively on geophysical and climate data. SSA
decomposes a time series into its underlying components (trend, oscillatory modes, noise)
and is especially useful for decomposition of short, noisy time series. As a non-parametric
spectral estimation method, SSA makes no assumptions about the parametric form of the
time series. SSA uses data-adaptive basis functions and therefore can separate potentially
irregular oscillatory behaviors with varying periodicities [45]. This is advantageous because
the atmospheric features that control SCGA weather and climate vary irregularly and may
not be clearly identified by decomposition methods that assume sinusoidal behavior. SSA
is essentially principal component analysis (PCA) on a time series, identifying the primary
modes of temporal variability from within the data. The main result is a set of orthogonal
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reconstructed components (RCs), herein referred to as principal components (PCs), which
together sum to the original time series.

SSA is also practical and easy to employ because it requires only one variable, the
“window length,” or the number of consecutive time series observations n upon which a
delay window is applied, and determines the longest periodicity captured by SSA. Given a
window length of L, SSA produces L principal components. Larger values of L provide more
refined decomposition into elementary components and therefore better separability [46].
To sufficiently extract the underlying trend of the AFSI, a window length of L = 12 was
chosen. Therefore, the window length consisted of about 44% of the overall study period
length. The SSA code implemented herein was adapted from a Python script by D’Arcy [47].

We hypothesize that it is possible to isolate the forcing signals of the atmospheric
predictors from within the AFSI using SSA. By examining the periodicities and relative
contributions of each SSA component to the overall time series and relating these behaviors
to those of a weather/climate predictor, it may be feasible to identify a physical PC–
predictor connection. In presenting the AFSI statistical analysis results, the discussion
begins with the SSA decomposition and the apparent behaviors of each PC. Then, each PC
is identified by its relationship to the set of weather and climate predictors. Time series
of each predictor and PC are first plotted to observe patterns within the data, and the
relationships are then quantified using the Pearson correlation coefficient (r). A thorough
examination of potential lagged fire–climate relationships, contingent relationships of
weather/climate features with each other, and other complications that may have weakened
the results follow.

4. Results
4.1. SSA Decomposition

The SSA decomposition of the 27-year AFSI time series using a window length of
L = 12 produced 12 PCs, referred to herein as Components 0–11 (Comp0–11). Though
some signal may have been contained in Comp7–11, their respective variance contribution
was very small and showed insignificant correlations with our predictors. Accordingly,
Comp7–11 were excluded from this analysis. Cross-component correlations guided our
subjective determination to group Comp1 with Comp2 (Comp12), Comp3 with Comp4
(Comp34), and Comp5 with Comp 6 (Comp56). Figure 6 displays the resulting PCs over the
study period and Table 1 provides statistics of the grouped temporal PCs. Comp0 exhibited
a strongly linear behavior throughout the study period, whereas each of the remaining
components exhibited oscillatory behavior largely centered around mean = 0. Therefore,
SSA effectively isolated the trend and oscillatory components with our choice of L.

Given the set of weather/climate predictors (AMO, PDO, ENSO, SAW day counts,
and marine layer frequency), our aim was to identify each of the PCs as largely driven
by an individual predictor. This could be accomplished by examining the PC behaviors,
specifically their magnitude, periodicity, and contribution to the AFSI as compared to
observed contributions of the weather/climate parameters toward fire activity within
the literature.

4.1.1. Component 0

Comp0 exhibited a positive trend throughout the study period, rising from a minimum
value of 17 points in 1992 to a maximum value of 27 in 2017 before slightly decreasing
in the final year, 2018 (Figure 6). Comp0 represented a very large portion of the overall
time-series variance at 91.15% (Table 1), likely indicating that it is driven by a fire–climate
component with wide-ranging spatial and temporal influence on the SCGA fire regime.

Comp0 was identified here as strongly correlated to AMO (r = 0.741, p < 0.001). In
a negative (cool) phase through about 1996, AMO then transitioned to a positive (warm)
phase from 1996 through the end of the study period in 2018 (Figure 7). Examining the
full AMO period of record revealed that since reaching its strongest negative phase in the
mid-1970s, index values increased steadily into the 21st century (not shown). Thus, the
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clear positive trend in AFSI values as isolated by Comp0 coincides with the AMO transition
from a prolonged cool to warm phase. AMO’s warm phase is known to synchronize fire
activity at multidecadal time scales across western North America [7], a pattern seemingly
reflected in the AFSI decomposition.
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Figure 6. Each of the 4 grouped temporal Principal Components (PCs; Comp0, Comp12, Comp34,
and Comp56) from the SSA decomposition of AFSI, 1992–2018.

Table 1. Statistics of the 4 grouped temporal PCs from the singular spectrum analysis (SSA) de-
composition of the AFSI and their respective temporal characteristics (i.e., linearity vs. periodicity),
overall AFSI variance contribution, and AFSI non-trend variance (excluding Comp0) to emphasize
the relative contribution of the remaining SSA components.

Principal
Components Characteristic Variance (%) Non-Trend

Variance (%)
Total Variance

(%)

AFSI

0 Trend—linear 91.15 -

99.71
1–2 Periodic (14–15 years) 4.91 55.48
3–4 Periodic (5–6 years) 2.39 27.01
5–6 Irregular periodic (2–3 years) 0.98 11.07

Interestingly, the correlation between AMO and Comp0 further increased when con-
sidering a multi-year lag. This correlation was maximized at r = 0.856 (p < 0.001) with a
10-year lag, where AMO values from 1982 to 2008 and Comp0 values from 1992 to 2018
were related (Figure 8). Although multi-year lags between oscillation phase shifts and
weather/climate teleconnections are documented in the literature, e.g., [48,49]), explicit
support for lagged AMO effects up to 10 years on the Western US climate was not abundant
as best as we can tell. However, given the multi-decadal periodicity of AMO phases and
the large-scale influence of phase shifts on hemispheric teleconnections [50], decadal lag
between AMO and fire activity seems plausible.

Although Comp0 was responsible for 91.15% of the overall reconstructed time-series
variance, it must be stressed that we do not believe that AMO, in turn, directly contributed
to annual fire severity so drastically. Other research which investigated AMO in relation
to drought and/or fire activity across western North America have found AMO to be
responsible for roughly 25–40% of variance [8,51–53]. It remains plausible that AMO
greatly influenced SCGA fire activity over this 27-year study period because of its large-
scale influence on drought and fire activity, effectively setting the “background state” upon
which other climatic oscillations modulate interannual and interdecadal fire activity and
drought [54]. To further evaluate this hypothesis, a fire occurrence dataset long enough to
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capture at least one full AMO cycle would be needed, particularly including a negative
AMO phase. It would be instructive to note how the trend, as isolated by Comp0, behaves
during a negative AMO phase and whether the large variance attributed to Comp0 persists
as well. However, Comp0 may also integrate the warming and drying trend due to climate
change that has persisted across the Southwestern US over the past several decades [55],
therefore driving greater evaporative demand and fuel drying. We did not explicitly
quantify the impact of climate change on AFSI but can reasonably assume that it is a factor.
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Figure 8. Same as Figure 7, but AMO and Comp0 are compared at a 10-year lag, where AMO precedes
Comp0. AMO values from the time period 1982–2008 are thus compared to Comp0 values from 1992
to 2018.

4.1.2. Component 1–2

Comp12 exhibited clear oscillatory behavior with a periodicity of 14–15 years with
values ranging from max = 7 to min = −7 and oscillations roughly centered around
the y-axis (Figure 6). Comp12 is thus an oscillatory component, supporting the SSA
decomposition as having effectively isolated the oscillatory components from the secular
trend. Comp12 represented 4.91% of the overall time series variance but 55.48% of the
non-trend variance (Table 1), indicating the climate signal isolated here is one that imparted
significant influence on the SCGA fire regime.

Comp12 is best related to PDO, which exhibited an irregular periodicity within the
study period (Figure 9). From 1992 to 1998, a weak positive phase was observed, switching
to a prolonged negative phase from 1998 to 2014, though interrupted briefly by a neutral
phase in the early 2000s, and finally entering a brief warm positive phase from 2014 to
2017. Comp12 and PDO were closely aligned throughout the first 12 years from 1992 to
2004, though the linear relationship weakened from 2004 to 2018. Accordingly, Comp12
and PDO shared a weak correlation r = 0.206 (p > 0.05) throughout the study period.
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Figure 9. Yearly Pacific Decadal Oscillation (PDO; SG-filtered, window length l = 61 months and
polynomial order p = 3 ) vs. Comp12 time series for the 27-year study period, 1992–2018.

However, recalling that positive (negative) phases of PDO tend to indicate anoma-
lously cooler, wetter (warmer, drier) conditions across the SCGA, we would expect a
negative correlation between Comp12 and PDO, where positive PDO values are related to
reduced regional fire activity and vice versa. Specifically, PDO and AFSI oscillations should
be lagged at approximately 1/2 wavelength, roughly in anti-phase. This physical intuition
would suggest that a multi-year lag between PDO and Comp12 more accurately represents
the fire–climate relationship here.

Figure 10 displays Comp12 and PDO at a 5-year lag, where PDO values from 1987
to 2013 are overlayed against Comp12 from 1992 to 2018. The plot can be separated
between a period of stronger and weaker PC–predictor relationships: first, from 1992 to
2005 when the two parameters remained closely in anti-phase, and second, the period of
2006–2018, in which the correlation was weaker because the respective phases were offset
by about 1/4 wavelength. Within this second period, PDO oscillations were more irregular
but retained a roughly decadal periodicity, tending toward a prolonged negative phase.
Though the correlation between these parameters over the full 27-year period was weak at
r = −0.099 (p > 0.05), that correlation was strengthened significantly when considering
only the 15 years from 1992 to 2007 with r = −0.557 (p < 0.05).
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from the time period 1987–2013 are thus compared to Comp12 values from 1992 to 2018.

Similar fire–climate lags have been established previously in the Western US—in their
examination of PDO’s influence on fire occurrence in the Pacific Northwest, Hessl et al. [48]
noted that the PDO phase precedes the percentage of fire-scarred trees by 5 years, whereas
Miller et al. [49] noted a lag of 5–7 years between PDO and fire occurrence in the Sierra
Nevada and Southern Cascades. Such a multi-year lag was hypothesized to represent
a long-term influence of multidecadal winter moisture patterns on fine fuel condition
and abundance via variations in foliar moisture and plant productivity. Our observations
support the notion that PDO may primarily modulate the SCGA fire regime through these
same physical mechanisms via longer-term moisture anomalies.
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The periods of stronger and weaker PC–predictor relationships here coincided with
contingent oscillation phases known to modulate PDO’s influence on Western US climate.
Hidalgo [51] noted that during neutral AMO phases, PDO tends to become more dominant
through teleconnections with winter precipitation. Our research found the strongest
Comp12–PDO relationships as AMO entered a multi-year neutral phase through much
of the 1990s, whereas the weakest relationships occurred as a prolonged AMO-positive
phase strengthened through the remainder of the study period. The subsequent period
of weakened fire–climate relationships could also be related to the shorter, more irregular
PDO cycles that have prevailed since about 1998 [56]. Thus, the tendency for regular PDO
oscillations and their attendant multi-year anomalous wet/dry periods to promote fine
fuel growth and drying may have been reduced. Additionally, the PDO teleconnections
may change with time, possibly modifying the length of the teleconnection lag between
PDO phases and attendant SCGA moisture anomalies. Finally, the PCs themselves may be
forced differently over time by other oscillations (e.g., AMO, ENSO), another observation
made by Hidalgo [51] and elaborated later in the Section 5 herein.

4.1.3. Component 3–4

Comp34 exhibited clear oscillatory behavior with a periodicity of 5–6 years, oscillating
about the y-axis, but with an increasing magnitude over time (Figure 6). Comp34 values
ranged from min = −2 to max = 2 AFSI points during the first oscillation but by −6 to
6 points over the latter half of the study period. Comp34 represented 2.39% of the total
time series variance and 27.01% of the non-trend variance (Table 1), again representing a
climatic component with significant influence on the SCGA fire regime.

Comp34 exhibited the strongest correlation with our annual EDDI threshold ex-
ceedance counts (EDDI herein) parameter used as a proxy for short-term, intra-annual
drought conditions. The EDDI time series featured an irregular oscillation with a period-
icity of 5–8 years and a magnitude increasing by a factor of ~3, closely aligning with the
behavior of Comp34 (Figure 11). The Comp34–EDDI correlation was of moderate strength
with r = 0.512 (p < 0.05) throughout the full study period. As with the Comp12–PDO
time series, Comp34–EDDI could also be separated into one half that correlated weakly
from 1992 to 2006 and another half with a much stronger correlation from 2006 to 2018
(r = 0.628, p < 0.05) in terms of both periodicity and magnitude. It is noteworthy that
the strongest fire–climate relationships here were observed during the weakest such rela-
tionships for Comp12–PDO and that the transition point between these time periods also
occurred around 2005–2006.

The Comp34–EDDI relationship seemed to be modulated by AMO, PDO, and ENSO
collectively. The initial period of weaker Comp34–EDDI correlation was largely character-
ized by negative/neutral AMO, positive PDO, and mostly positive ENSO; this contingent
of oscillation phases generally favored cooler, wetter conditions across the SCGA. During
the latter period of stronger Comp34–EDDI correlation, however, AMO maintained a
prolonged positive phase, whereas both PDO and ENSO tended toward mostly negative
phases. This phase contingency generally favored anomalously warm, dry conditions
across the SCGA, and it is evident in the Comp34 time series that higher AFSI values
were indeed found in this period (aside from 2010, a 1-year period of positive ONI). A
dampening of the Comp34–EDDI oscillation is observed by 2016, as both PDO and ENSO
entered a positive phase.

Although our EDDI parameter does not explicitly quantify SAW occurrence and is
only weakly correlated to the yearly SAW count time series calculated in Rolinski et al. [15],
(r = 0.293, p > 0.05), it is noteworthy that both the SAW time series and our Comp34–
EDDI parameter exhibited similar responses to contingent AMO, PDO, and ENSO phases.
The authors noted a period of reduced SAW frequency through 2005, whereas a distinct
period of elevated SAW frequency was found from 2006 to 2014. Statistically significant
relationships were identified with AMO, PDO, and ENSO. Therefore, our Comp34 appeared
to effectively integrate the influence of short-term moisture anomalies due in part to SAWs
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while also representing the influence of AMO, PDO, and ENSO on SCGA fire activity.
We hypothesize that only a weak Comp34–SAW correlation existed because SAW events
often occur throughout the winter months when fuels may be sufficiently moistened to
preclude widespread fire activity [15], whereas our EDDI parameter more directly reflects
fuel flammability with or without the explicit presence of SAWs.
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4.1.4. Component 5–6

The final component considered in this analysis, Comp56, is also an oscillatory com-
ponent with a periodicity of 2–3 years, varying from min = −6 to max = 5 AFSI points
(Figure 6). However, a substantial loss of interannual variability was evident over roughly
the second half of the study period, beginning in the mid-2000s, with values ranging from
only –1 to 1 points. Comp56 was responsible for 0.98% and 11.07% of the total and non-
trend variance, respectively, and was the smallest component of the decomposition (Table 1).
Comp56 thus isolated a component of the SCGA fire–climate system that modulated fire
activity initially but underwent a significant transition in the mid-2000s by which its mode
of variability was effectively overridden by another.

Comp56 correlated most closely with ENSO (Figure 12). Over the full study period,
a moderate negative correlation was identified (r = −0.439, p < 0.05), whereas the
relationship strengthened when considering only the first 15 years from 1992 to 2007
(r = −0.633, p < 0.05). ENSO periodicity here was variable, ranging from 2 to 6 years,
with irregular period and magnitude throughout. Although ENSO exhibited greater
interannual variability from 1992 to the early 2000s, that regular oscillatory behavior was
interrupted by a multi-year period of reduced interannual variability in the early to mid-
2000s. Periods of reduced interannual ENSO variability have been linked to reduced fire
activity across the Western US due to a lack of anomalous wet/dry periods and subsequent
fine vegetation growth, drying, and fuel accumulation [7,57]. This pattern is evident here
in the Comp56–ENSO relationship from the early to mid-2000s. Yet, as ENSO returned to a
pattern of increased positive and negative phases from 2006 to 2018, no coincident increase
in Comp56 variability was observed.

Comp56 behaved similarly to Comp34 in that its strongest PC–predictor correlation
occurred during the first half of the study period when AMO remained mostly negative
or neutral, whereas ENSO and PDO remained mostly positive. We again identified a
significant transition in the early 2000s whereby the dampened and irregular behavior of
Comp56 coincided with extended positive AMO and mostly negative ENSO and PDO.
Kitzberger et al. [7] reported a statistically significant relationship for synchronous (i.e.,
widespread) Sierra Nevada fire activity during negative AMO, positive PDO, and positive
ENSO. This could be attributed to the observed decadal modulation of AMO on ENSO
whereby negative AMO phases lead to stronger ENSO events [58], yielding closer fire–
climate relationships. The non-linear modulation of AMO on ENSO was not explicitly
captured by our PC–predictor relationships, yet it is intriguing that SSA seemingly captured
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the complex breakdown of these fire–climate relationships. Additionally, our research
supports the notion that ENSO played a relatively minor role on SCGA fire activity over the
27-year study period, evidenced by the low AFSI variance of Comp56 and the significantly
dampened oscillation beginning in the mid-2000s. This aligns with analyses of drought–
oscillation relationships in which ENSO exhibited a weaker influence on drought frequency
over the Western US than PDO and AMO [8,51].
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5. Discussion and Conclusions

Our research employed two important methodological advances in delineating the
macroscale fire–climate relationships of Southern and Central California. First, we de-
veloped an annual index of fire activity that aimed to dilute the complex interference of
anthropogenic influence from within the fire occurrence record by maximizing the influence
of climatic metrics in our quantification of fire activity. One of the key benefits of our AFSI
methodology lies in its simple calculation and interpretation for fire managers. Each of our
index inputs (ignitions, acres burned, ERC magnitude, fire season length) are established
within the fire science and fire management communities, and the AFSI output is a nor-
malized numerical value that lends itself to easy historical comparisons. An additional
strength of this model structure is its adaptability, where the AFSI can be represented by
any set of metrics that quantifies both observed and potential fire activity according to the
specific goals of the user. Therefore, future research could investigate whether different fire
activity metrics may better account for the anthropogenic manipulation of the fire regime
and whether weighting each variable would better represent fire season severity.

As traditional metrics of fire activity decouple from their atmospheric drivers, our
research builds upon the understanding that conventional measures of fire activity must
be supplemented by indices that more fully encapsulate the variety of ways that wildfires
can disrupt society, particularly as the WUI continually expands. One example comes from
Beverly et al. [53], who utilized ecological and socioeconomic measures of wildfire activity,
including wildfire evacuation frequency and fire suppression expenditure data, to deduce
relationships with AMO. The authors found a significant connection between AMO index
values and these indicators of fire activity. This method emphasizes the societal impact
of wildfires, thereby providing a direct link between research results and their utility in
informing fire management and policy decisions. Such metrics could be exploited within
the AFSI framework to deduce relationships with climate patterns.

The second methodological improvement tested in this research was the application
of SSA to identify the individual influences of climatic predictors on our fire activity index.
SSA’s model-free, non-parametric technique reconciles the oscillatory behavior of climatic
modes and the complex, non-linear fire–climate relationships that may be incompletely
captured by other modeling techniques. The results of the PC–predictor relationships
suggest that we can indeed isolate the signal of individual climatic predictors on the AFSI.
The top 7 PCs (Comp0–6) responsible for the greatest variance in the reconstructed time
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series were each correlated with respective climate predictors and generally exhibited
statistically significant correlations of moderate strength |r| > 0.4. Each of the three
oscillatory components (Comp12, 34, and 56) could be separated into distinct periods:
about one half of the time series where PC–predictor correlations were moderate–strong
and another half where the correlations were generally weak. For each of these scenarios,
we were able to suggest how respective phases and phase transitions of AMO, PDO, and/or
ENSO may have strengthened or weakened these correlations.

One of the complicating factors in this methodology may have been related to the
construction of the PCs themselves and the assumptions contained within this methodology.
Illustrating this obstacle is Hidalgo [51], who employed a variant of PCA to identify the
dominant modes of variability of the Palmer Drought Severity Index (PDSI) over the
Western US. The author found that each of the resulting PCs, which are by definition,
orthogonal, were correlated to AMO and PDO. However, the author determined that the
forcings of each oscillation can influence the other’s state and are therefore intercorrelated
to some degree. Thus, the relative influence of one oscillation from another on PDSI cannot
be fully untangled. Therefore, the “identification of PCs is achieved at the expense of
losing some of the characteristics (i.e., intercorrelation) known to exist between the main
teleconnection signals” [51]. Over time, the PCs may be forced differently by each climatic
oscillation, potentially resulting in stronger or weaker PC–predictor relationships. Such a
case in our work can be identified in the supposed interaction between AMO and ENSO,
with influences on the Comp56–ENSO relationship. During the first half of the study period,
when AMO remained in a negative phase, the strongest Comp56–ENSO relationship was
observed. Because negative AMO phases have been shown to lead to stronger ENSO
events [58], we hypothesize that the subsequent climate patterns induced by such ENSO
events during this time would tend toward more pronounced wet–dry cycles in our study
region. Kitzberger et al. [57] showed that these pronounced ENSO effects play a significant
role in enhanced regional fire frequencies. Therefore, we can surmise that AMO’s implicit
influence on ENSO modified the Comp56–ENSO relationship, which we cannot currently
explicitly identify. However, we suggest that the signal of fire–climate relationships herein
remains promising. SSA’s ability to resolve complex interactions between the dominant
modes of fire–climate variability is evident in our study of the SCGA.

Finally, SSA also helped to elucidate significant shifts in the dominant modes of SCGA
fire–climate variability in the mid-2000s that align with previous findings, e.g., [50,59].
This is a significant strength of the technique—the data-adaptive structure allows for the
identification of time series that exhibit dominant structures that differ along the signal [45].
It is intriguing that such a shift in fire–climate modes of variability were detected in each
of our oscillatory components and that these observations could be leveraged to better
resolve the complex interactions of individual climatic oscillations. We believe that with
continued research, this method can be further developed into a predictive model of annual
fire activity for any macroscale fire regime given inputs of the region’s dominant climatic
features. Such a model would have the most utility in the months leading up to each
fire season to proactively determine resource requirements per geographic area, thereby
optimizing resource efficiency nationwide.
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