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Abstract: Flame recognition is an important technique in firefighting, but existing image flame-
detection methods are slow, low in accuracy, and cannot accurately identify small flame areas. Current
detection technology struggles to satisfy the real-time detection requirements of firefighting drones
at fire scenes. To improve this situation, we developed a YOLOv5-based real-time flame-detection
algorithm. This algorithm can detect flames quickly and accurately. The main improvements are:
(1) The embedded coordinate attention mechanism helps the model more precisely find and detect
the target of interest. (2) We advanced the detection layer for small targets to enhance the model’s
associated identification ability. (3) We introduced a novel loss function, α-IoU, and improved the
accuracy of the regression results. (4) We combined the model with transfer learning to improve its
accuracy. The experimental results indicate that the enhanced YOLOv5′s mAP can reach 96.6%, 5.4%
higher than the original. The model needed 0.0177 s to identify a single image, demonstrating its
efficiency. In summary, the enhanced YOLOv5 network model’s overall efficiency is superior to that
of the original algorithm and existing mainstream identification approaches.

Keywords: flame recognition; artificial intelligence; real-time detection; YOLOv5; boundary loss
function

1. Introduction

In this period of rapid economic development and urbanization, fire has become one
of the main disasters that threatens people’s property and safety, with the potential to cause
serious economic losses and casualties. Despite the increasing sizes of urban buildings, the
main fire-extinguishing method at the scene is still manual fire extinguishing by firefighters.
However, firefighters are often injured or even lose their lives in the process. Therefore,
introducing firefighting robots to replace manual firefighting will gradually become a
trend. With firefighting robots, accurate and real-time detection of flames will be the key to
smooth firefighting. At present, traditional fire-detection methods have the disadvantages
of slow response speeds, depending on a single detection approach, and low accuracy. As
such, traditional detection cannot meet firefighting robots’ requirements for a real-time and
accurate approach.

Traditional flame detection techniques are mainly used to extract features. Celik et al.
proposed the use of an RGB color space to detect flames with different characteristics for
the three RGB channels [1]. Liu et al. used the characteristics of red and blue light generated
when a flame burns and used the YCbCr color space with brightness and red and blue
color information to extract the flame features and perform flame detection [2]. Song et al.
used the frame difference approach, with the area growth ratio as the basis for judging
changes over frames [3]. To a certain extent, traditional flame-identification methods meet
the requirements for flame detection. However, in a complex urban environment, there are
abundant problems like identification precision, a high false detection rate, and an inability
for real-time identification.
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In recent years, deep learning (DL) networks based on image processing have de-
veloped rapidly, and flame recognition based on machine vision has gradually become a
trend. Machine vision has the advantages of high recognition accuracy and fast recognition
speed. Current object recognition methods are mainly divided into two categories. One
class is to first generate a pre-selected box for the region that may contain the detected
object, and then combine it with the two-stage method of CNNs for sample classifica-
tion. DL methods, represented by convolutional neural networks (CNNs), can effectively
improve recognition accuracy and speed [4,5]. Common algorithms include R-CNN [6],
Faster R-CNN [7], SPP-Net [8], and so on. Zhong et al. implemented CNN-based video
flame detection [9]. Zhang et al. proposed an improved Faster R-CNN flame recognition
method, which effectively improves detection accuracy by using deep networks [10]. Yu
et al. added a bottom-up feature pyramid to Mask R-CNN to improve flame detection
accuracy [11]. Fires develop extremely quickly, especially in forest environments where
there is a lot of flammable material. If the flame detection algorithm fails to detect the
flame in the first instance, it may miss the best time to extinguish the fire, leading to rapid
spread and greater damage. However, CNN networks usually contain a large number
of neurons and parameters. For a large image and video data, CNNs need to perform a
large number of computations, including operations such as convolution, pooling, and full
connectivity. This can lead to processing delays that are not favorable for real-time flame
detection. Another class is the use of one-step methods for sample classification; common
algorithms include YOLO series [12], SSD [13], EfficientDet [14], etc. Abdusalomov et al.
proposed a fire detection method based on YOLOv3 [15]. Zheng et al. proposed a fire
detection method based on MobileNetV3 and YOLOv4 [16]. However, in the forest flame
detection scenario, the size and shape of forest flames in an image may vary greatly; some
flames may be very large and some may be very small, and one-step algorithms usually put
more emphasis on the speed of operation, while in some cases accuracy may be sacrificed.
Therefore, although one-step algorithms work well for many target detection tasks, further
improvements and optimizations may be needed for forest flame detection to increase the
accuracy of detection.

To effectively solve the mentioned problems, we adopt an enhanced YOLOv5 approach
based on YOLOv4 [17]. The YOLOv5 approach has the characteristics of high precision
and high speed in image detection, but it has poor identification ability for small targets.
Nonetheless, the work in this paper focuses on making improvements to solve the poor
small-target identification problem using the YOLOv5 algorithm. We greatly improve the
detection accuracy for a small flame area while ensuring the image flame-detection speed.
The improved model is compared to the original one, and the results indicate that its power
is greatly increased, which proves its effectiveness.

2. Enhancement of the YOLOv5 Network Framework
2.1. Introduction to the YOLO Algorithm

Before YOLOv1 was proposed, the R-CNN series of algorithms came out on top in
target identification. However, despite the high identification accuracy of the R-CNN
series, the network structure uses a two-step method, which means that the detection
speed cannot attain real-time efficiency. In 2016, Redmon et al. [18] presented a single-step
object-identification network with fast recognition ability, processing 45 frames per second
and easily executable in real-time. The main idea of YOLO is to convert target identification
into a regression problem and then employ the whole image as the network input to obtain
the position of the bounding box and its corresponding group via the neural network [19].
By developing YOLOv1, Redmon et al. made significant improvements and proposed
YOLOv2, in which the k-means clustering approach was utilized to attain a better anchor
template in the training set. This effectively improved the algorithm’s recall rate. Combined
with the image’s fine-grained characteristics, the shallow characteristics were combined
with the deep ones to enhance the identification of small-sized objects. YOLOv3 was based
on YOLOv2, but its feature-extraction setup adopted the Darknet-53 network structure,
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replacing the original Darknet-19. A feature pyramid network framework was utilized
to effectively achieve multi-scale identification. The classification approach was logistic
regression rather than softmax. While considering the real-time efficiency, it also effectively
guaranteed the precision of target identification [20]. YOLOv4 retained the head of YOLOv3
and combined the original Darknet-53 with CSPNet [21]. The trunk component stacked
the original residual blocks, and the branch component was equivalent to a residual edge,
which was directly linked to the end after a little processing. The Mish activation function
was utilized rather than the original ReLu. The idea of SPPF [22] was used to extend the
receptive field and isolate the essential contextual characteristics. This study mainly used
PANet [23], instead of the original FPN, as a parameter aggregation approach. For various
detector levels, parameters were aggregated from various backbone layers.

YOLOv5, as the latest network structure of the YOLO series, comprises four compo-
nents: input, backbone, neck, and detect. Figure 1 presents its network framework.
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2.1.1. Input

The YOLOv5 input adopts a similar mosaic data-improvement approach as YOLOv4.
Stitching by random scaling, cropping, and arrangement can effectively enhance the iden-
tification impact for small targets. In addition, YOLOv5 adds an adaptive anchor box
calculation. In different datasets, the optimal anchor box value is calculated adaptively,
and YOLOv5 adaptively adds the least black borders to the original image. At the height of
the image, the black borders at both ends are reduced. The identification time is effectively
reduced in the target identification process.

2.1.2. Backbone

YOLOv5 adds a focus framework to the network (shown in Figure 2). The most critical step
in the focus framework is slicing. A 4× 4× 3 image is transformed into a 2× 2× 12 feature
map after slicing. In the YOLOv5 network, the original 3× 640× 640 image is fed into the
focus framework. After the slicing operation, it first becomes a 12 × 320 × 320 feature map
and becomes a 64 × 320 × 320 feature map (Figure 3) through the convolution operation
of 64 convolution kernels.
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Figure 3. Schematic diagram of slice operation.

2.1.3. Neck

Both YOLOv5 and YOLOv4 adopt the FPN + PAN framework, as presented in Figure 4,
which contains two PAN structures. The FPN layer transforms powerful semantic charac-
teristics from top to bottom, and the characteristic pyramid transforms strong localization
characteristics from the bottom to the top. The combined operation is used to effectively
aggregate the features of the identification layer from various backbone layers to promote
the feature-extraction capability.
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2.1.4. Output

YOLOv5 uses CIoU_Loss as the bounding box’s loss function. In post-processing
target identification, it is usually crucial to employ nms to screen the target frame. Based
on DIOU_LOSS, YOLOv4 used DIoU nms, which is not sufficient for YOLOv5, so instead,
it uses weighted nms.

2.2. YOLOv5 Algorithm Optimization
2.2.1. Adding a Small Target-Detection Layer

In the original model of YOLOv5, there are only four detection layers, which are
80 × 80, 40 × 40, 20 × 20, and 10 × 10. The 80 × 80 detection layer is utilized to recognize
targets with a size of 8 × 8 or more, the 40 × 40 detection layer is utilized to identify
targets with a size of 16 × 16 or more, the 20 × 20 detection layer is used to identify targets
above 32 × 32, and the 10 × 10 detection layer is used to recognize targets above 64 × 64.
These detection layers are subjected to six down-sampling operations of the YOLOv5
network, and then four feature maps are obtained: 10 × 10, 20 × 20, 40 × 40, and 80 × 80.
The 80 × 80 feature map is mainly employed to identify small targets, corresponding
to 640 × 640, and each feature map’s receptive field is 640/80 = 8 × 8. If the width or
height of the target in the original image is smaller than 8 pixels, some information will
be lost after layer-by-layer convolution. As a result, the shallow special information
cannot be fully utilized. Furthermore, the neural network cannot learn the target’s feature
information, leading to low detection accuracy for a small flame area. To fully enhance the
network’s capability to fuse multi-scale characteristics, we added a 160 × 160 small target
identification layer, which was mainly used to detect targets above 4 × 4. To increase the
small target detection ability, several feature extraction layers were specially set up. After
the 24th layer, we performed upsampling and other methods of processing on the feature
map so that it continued to expand; at the 26th layer, the acquired 160 × 160 feature map
was concatenated and fused with the second layer feature map in the backbone network.
Larger feature maps can be attained for effective small object identification. Figure 5
presents the enhanced network framework.
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2.2.2. Increase Attention Mechanism

Recently, attention mechanism modules have been utilized on a large scale in computer
vision. The attention mechanism aims to find the information of interest and eliminate
ineffective information. Most attention mechanisms are used in deep neural networks,
which can lead to performance improvements. Currently, the commonly used attention
mechanisms are SE [24], BAM [25], and CBAM [26]. Nevertheless, SE only assumes
the internal channel information while neglecting the necessity of position information,
although the target’s spatial framework in vision is very important. BAM and CBAM try to
present location information by global pooling across channels. Nevertheless, this method
can only capture local information and cannot attain long-range dependency information.
Therefore, this study introduces a flexible and lightweight attention mechanism (coordinate
attention) into the method [27]. Coordinate Attention (CA) is a novel attention mechanism
presented by Hou et al., where embedding location information into the channel attention
allows the neural network to attain information from a broader area and reduces the
computing power requirement. The CA module mainly sustains a channel relationship and
long-range encoding via accurate location information. It is categorized into two stages:
coordinate information embedding and coordinate attention production, as presented in
Figure 6.

For the feature map X produced through the previous layer of convolution, all channels
are separately encoded along with the horizontal and vertical coordinates by an average
pooling kernel of size (H, 1) and (1, W). The following relation represents the output of the
cth channel with height h and the cth channel with width w:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H

0

∑
0≤j<H

xc(j, w)0
0 (2)
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The above transformation performs feature aggregation in two spatial orientations,
returning a pair of orientation-aware attention maps. The two feature maps zh and zw

generated by concatenation employ a shared 1 × 1 convolution operation F1. Then, the
intermediate feature f of the spatial information in the horizontal and vertical orientations
is obtained through the following relation:

f = δ
(

F1

([
zh, zw

]))
(3)

The intermediate feature f is categorized into two separate tensors, fh and fw, along
with the spatial dimension. Feature maps fh and fh are converted into a similar number of
channels as channel x by 1 × 1 convolution. The formulas are:

gh = σ
(

Fh

(
fh
))

(4)

gw = σ(Fw(fw)) (5)

fh and fw are extended by the sigmoid activation function. Taking gh and gw as the
attention weights, the final formula for the CA module can be obtained as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

CA decomposes channel attention into two one-dimensional feature-encoding pro-
cesses aggregating features along 2 spatial orientations. Accordingly, long-range dependen-
cies can be captured along a spatial orientation, while accurate location information can be
maintained along the other. The produced feature maps are encoded as direction-aware and
position-sensitive attention maps, respectively, which can be applied complementary to the
input feature maps to improve the description of objects of interest. We added coordinate
attention to the backbone network. Figure 7 presents the enhanced network framework.
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2.2.3. Boundary Loss Function

The full name of IoU [28] is the intersection over union employed to calculate the ratio
of the intersection and union of the “predicted bounding box” and the “true bounding
box”. IoU is an important function of mAP calculation of the object-detection algorithmic
performance. It is a precision measure when identifying the corresponding objects in a
given dataset. When the predicted bounding box is closer to the ground truth bounding
box, the IoU is closer to 1. By continuously reducing the loss, the model obtains better
prediction results. However, IoU does not assume the distance between boxes, and it has
corresponding drawbacks when employed as a loss function. For example: if the two
borders do not overlap, the IoU is 0, and no gradient will be returned at this time; multiple
iterations are required, and learning cannot be performed. Loss is only related to the
intersection ratio and intersection area of the two boxes. Therefore, a phenomenon of the
same intersection area and different coincidence degrees will occur, as shown in Figure 8.
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To effectively resolve the mentioned drawbacks, Rezatofighi et al. presented the
Generalized Intersection over Union (GIoU) [29]. For any two boxes, A and B, the smallest
box C is found that can enclose them, and the ratio of the area of C\(A ∪ B) to the area of C
is obtained. Note: The area of C\(A ∪ B) can be obtained by subtracting the area of A ∪ B
from the area of C. The ratio is subtracted from the IOU values of A and B to obtain GIoU.
The following formula calculates the GIoU:

GIoU = IoU − C− (A ∪ B)
C

(7)

GIoU still has some problems. At first, with GIoU, it is necessary to make the detection
result intersect with the target frame, then start to reduce the detection result to coincide
with the GT. This results in the need for more iterations to converge, especially in respect of
horizontal and vertical boxes. Therefore, Zheng et al. proposed DIoU [30] and CIoU [31],
the DIoU formula can be described as follows:

DIoU = 1− IoU +
ρ2(A, B)

c2 (8)
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d = ρ (A, B) describes the Euclidean distance between the coordinates of the center
point of the A and B frames. c indicates the diagonal distance of the smallest box that
encloses them. The penalty term for DIoU is calculated according to the ratio of the center
point distance to the diagonal distance. This avoids the generation of a larger outer frame
when the two frames are far apart, such as in GIoU. The loss value is large, and it is difficult
to optimize the problem. Therefore, the convergence rate of DIoU is higher than GIoU
loss. In the calculation of DIoU, only the center point distance and overlapping area are
considered; the aspect ratio is not considered. Therefore, Zheng et al. proposed CIoU based
on DIoU. Compared to GIoU, CIoU adds penalty items for the aspect ratio, including a and
v (a represents the weight function, such as in Formula (9); v is utilized to determine the
aspect ratio’s similarity, such as in Formula (10)). CIoU can converge quickly by assuming
the overlapping area, center point distance, and aspect ratio. Even if the predicted box is
included in the real box, it still has an accurate convergence rate. The CIoU loss function is
presented in Formula (11):

α =
v

(1− IoU) + v
(9)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(10)

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (11)

He et al. introduced power transformation based on IoU loss and proposed a novel
IoU loss function, α-IoU [32]. Setting α gives the detector more flexibility in attaining
various levels of box regression precision. α-IoU is more robust against small datasets and
noise. Equation (12) describes the α-IoU loss function:

Lα−IoU =
1− IoUα

α
, α > 0 (12)

The equation applies to lightweight models. Therefore, this paper adopts the α-IoU
loss function, α = 3.

2.3. Network Training
2.3.1. Training Device

The experimental platform used personal desktops (Intel® Core™ i9 11900 k CPU,
128 GB running memory; NVIDIA® GeForce RTX 3090 GPU, 24 GB video memory). In
order to perform this research, a PyTorch DL structure was constructed on a Windows
10 operating system. We used Python to write program code and call up libraries like
CUDA, CUDNN, and OpenCV. The software environment was CUDA 10.1, CUDNN 7.6,
and Python3.8. Accordingly, the firefighting drone flame-detection model was learned and
evaluated efficiently.

The original and enhanced YOLOv5 were learned separately. The parameter settings
were as follows: the maximum number of iterations was 600, the batch size was 64, the
momentum factor was 0.937, and the weight decay rate was 0.0005. The enhancement
coefficients of hue (H), saturation (S), and brightness (V) were 0.015, 0.7, and 0.4, respectively.
After training, we saved the established recognition model’s weight file. We combined it
with the test set to verify the model’s efficiency.
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2.3.2. Data Acquisition and Preprocessing

In 2021, the Nansha Fire Brigade in Guangzhou collected 20,000 different flame images,
which we used in this research. In order to enhance the training efficiency and increase
the sample diversity, the acquired image data were monitored before training. This was
combined with labeling to process the images, then we saved the processed images in JPG
format with a resolution of 640 × 640. In addition, to effectively improve the network
learning ability, we used a data-augmentation method to promote the network model’s
generalizability, and we selected three methods: image rotation, image flipping, and
brightness balance. Rotating and flipping images can effectively enhance the network’s
identification efficiency and robustness. Brightness balancing removes the effects of ambient
lighting variations and brightness deviations caused by sensor differences on the network
performance. After data augmentation, 13,733 images were acquired and used as the
training set. We randomly selected 600 flame pictures and 300 non-flame pictures as the
validation set. Then, 300 unlabeled flame pictures were chosen as the test set. Figure 9
presents the data-augmentation results.
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2.3.3. Transfer Learning

Transfer learning is often used in machine learning; it refers to the further application
of knowledge or patterns trained in a specific area or task to various but relevant areas
or problems. The key in this study was to train the model and transfer the results to
the YOLOv5 network to finally complete the flame target-identification. Since the flame
target data in this paper were very limited, transfer learning was also used to initialize
the YOLOv5 network. In doing so, we guaranteed the successful transfer of the trained
knowledge and enhanced the ability of the novel network to learn rapidly. This can enhance
the over-fitting problem caused by insufficient flame datasets to a certain extent. The
generalizability of flame target-identification is also effectively improved, which promotes
the establishment of a recognition model. This gives it a good transfer learning recognition
ability, even in complex fire situations. In addition, in image DL, there are various datasets
that are applicable to different fields, and it is necessary to analyze the datasets in-depth.
We selected the most commonly and widely used dataset, ImageNet, which has an excellent
efficiency in image classification, identification, localization, and other areas. The improved
YOLOv5 neural network was pre-trained using the ImageNet dataset. During the pre-
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training process, the network learned to extract generic image features by performing
backpropagation and parameter updates on the ImageNet dataset. After the pre-training
was completed, the weights of the model were saved and the pre-trained weights were
loaded into the YOLOv5 model as initial weights to flame recognition model training.

2.3.4. Model Verification Metrics

The current work utilized objective verification indicators such as identification preci-
sion and speed to verify the efficiency of the trained target-recognition model. Frames Per
Second (FPS) is an identification speed measure; True Positives (TP) indicates the number of
truly identified flame targets; False Positives (FP) indicates the number of lights or shadows
detected as flame targets; and False Negatives (FN) indicates the number of unidentified
flame targets. If the IoU obtained by the predicted and ground-truth flame boxes exceeded
0.5, the identification box was indicated by TP; otherwise, it was marked as FP. If the
detected real flame target did not match the corresponding prediction frame, it was marked
as FN. The following relations can be employed to compute precision and recall:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

There was no interplay between precision and recall. Therefore, to better evaluate
the detection accuracy, we introduced mAP to represent the detection accuracy, where m
represented the average and AP referred to integrating the P index to the R index in the
range 0–1, which was the area under the P-R curve. The greater the AP, the higher the
network accuracy. The AP and mAP calculation formulas are as follows:

AP =
∫ 1

0
Pr(Re)dRe (15)

mAP =
1
C

N

∑
K=i

P(k)∆R(k) (16)

3. Results
3.1. Experimental Results

We combined the loss function curve and the mean precision to judge the detection
model’s quality. In the network training process, the loss function can intuitively indicate
whether the network model converges stably with increased iterations. Figure 10 presents
the model loss function. Experiments showed that the convergence rate of the loss function
of the improved YOLOv5 approach is higher than the original YOLOv5 algorithm. More-
over, when the improved YOLOv5 algorithm iterated 300 times in the model, the loss value
was close to 0, meaning the network basically converged.

The highest accuracy was obtained using the enhanced YOLOv5 algorithm. The mAP
value was utilized to judge the flame-identification model’s quality. The higher the mAP
value, the higher the identification precision and the more superior the network efficiency.
When the threshold was 0.5, the predicted value, recall rate, mAP value, and fps of the
improved YOLOv5 algorithm were 85.7%, 94.8%, 96.6%, and 68, respectively. In addition,
the predicted value, recall rate, mAP value, and fps of the original YOLOv5 were 84.2%,
89.7%, 91.2%, and 71, respectively. As shown in Figure 11, when the improved YOLOv5
was iterated 300 times, the AP value reached 94% and tended to be stable, and the final
maximum value reached 96.6%.
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The above experiments fully demonstrated the efficiency of the improved network.
The accurate detection of flames (especially small target flames) was achieved. Figure 12
presents the recognition results.
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3.2. Comparison of Recognition Results for Various Target-Identification Approaches

In order to comprehensively test the accuracy of the improved YOLOv5 algorithm for
flame detection, a test was conducted to compare the proposed method with YOLOv3-5
based on 300 images used in this experiment using the same initialized weights. mAP
values and FPS were the main validation metrics. The test results for the four approaches
are presented in Table 1. The data in Table 1 indicate that the improved YOLOv5 had the
maximum detection precision compared to the other three approaches. Compared to the
YOLO series of algorithms, the algorithm in this paper was improved by 10.9%, 3.9%, and
5.4%, respectively, compared to YOLOv3, YOLOv4, and YOLOv5s.

Table 1. Comparison of recognition results for various algorithms.

Algorithm mAP (%) FPS Model Size (MB)

YOLOv3 85.7 52 235
YOLOv4 92.7 54 244
YOLOv5s 91.2 71 14

The improved YOLOv5 96.6 68 25.1

To better compare the performance of the improved YOLOv5, we decided to compare
some algorithms from the past few years that use the YOLO family and other methods for
flame detection, as shown in Table 2.

Table 2. Comparison of recognition results for various algorithms.

Algorithm mAP (%)

Lightweight YOLOv4 [33] 58
Reference [34] algorithm 94.5
Reference [35] algorithm 94.43
Reference [36] algorithm 94.39
Reference [37] algorithm 83.4
Reference [38] algorithm 86.0
Reference [39] algorithm 91.4

YOLOv8 [40] 95.7
The improved YOLOv5 96.6

Table 2 shows that YOLOv4, which uses lightweight YOLOv4, has a large disadvantage
in the mAP metric. Because lightweight YOLOv4 uses fewer network layers and parameters,
it results in lower detection performance on small targets. Compared to algorithms that
also use the YOLOv5 network and the latest YOLOv8, our improved YOLOv5 network
still achieved the best mAP values compared to the other networks, which proves the
effectiveness of the attention mechanism and the loss function improvement, and our
improved network was more suitable for small target flame detection. The flame detection
algorithm using convolutional neural networks achieved better results in terms of accuracy,
second only to our improved YOLOv5 algorithm. However, since convolutional neural
networks require high computational resources, they may result in limited real-time or
non-deployment for resource-constrained devices such as UAVs. The improved YOLOv5
network ensures both recognition accuracy and effective network lightweight, as shown by
the above experimental results.

3.3. Ablation Experiment

To further illustrate the effectiveness of the improvements and to verify the impact of
each improvement module on the model performance, we designed ablation experiments
using YOLOv5s as the baseline network, mAP as the main evaluation index, and FPS as
the auxiliary evaluation index. The specific data of the ablation experiment are shown in
Table 3.
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Table 3. Results of ablation experiments.

Algorithm mAP (%) FPS

YOLOv5s 91.2 71
YOLOv5s + STDL 92.8 64

YOLOv5s + CA 93.9 73
YOLOv5s + α-IoU 93.7 70

YOLOv5s + STDL + CA 95.3 67
YOLOv5s + STDL + α-IoU 94.8 65

YOLOv5s + STDL + CA + α-IoU 96.6 68

The comparison of the ablation experiments shows that increasing the small target
detection layer increases the computational complexity and leads to a decrease in the
detection speed, but it can increase the detection accuracy. The introduction of the CA
module and the α-IoU can effectively improve the mAP value. The results of experiments
5–7 show that the use of the fusion of the three modules reduces the FPS value of the model,
but the improvement of the mAP value is very obvious, which proves the effectiveness of
our improvement of the YOLOv5 model.

4. Discussion

The current paper fully researched and tested a real-time flame-identification approach.
To effectively meet the needs of fire rescue and firefighting, the latest YOLOv5 model was
selected for research. Aiming to overcome the problem of insufficient recognition of a
small target flame with the YOLOv5 network, we added a small-target identification layer
to the YOLOv5 network. Thus, the detection capability concerning small target flames
was efficiently enhanced. Adding an attention mechanism to the network improved the
extraction of useful information and suppressed useless information. In addition, we also
used α-IoU as the loss function, showing that the convergence rate and the regression’s
stability were improved. The above experimental results indicate that improving the
YOLOv5 network can efficiently enhance the identification precision for flame targets,
along with the detection speed. Our research proves that the enhanced approach has strong
superiority and applicability. The specific advantages are as follows:

• Detection accuracy: the dataset in this paper consists of various sources such as
artificially captured images, online images, and public datasets. Therefore, the dataset
can successfully simulate a complex fire scene. The data reflect that the enhanced
YOLOv5 network can meet the requirements of accurately identifying small target
flames against complex backgrounds, thereby alleviating the probability of false
identification of flames.

• Detection speed: the enhanced YOLOv5 network meets the real-time flame recognition
requirements. In the original network-selection process, a comprehensive comparison
of the one- and two-step methods was conducted, and the most representative YOLOv5
network in the one-step method was selected. The improved YOLOv5 network
increases the network complexity, and is somewhat slower than the initial YOLOv5
network regarding detection speed, but still surpasses other neural networks. It also
fully meets the needs for real-time detection.

• Lightweight network: this research mainly applied to equipment such as firefighting
drones, and networking was considered at the beginning of the design. The enhanced
YOLOv5 network model is very small, at only 25.1 MB. Accordingly, this network
has very broad prospects in hardware applications. The model size directly depends
on the hardware cost. It plays a crucial role in determining whether the detection
algorithm can be employed on a large scale. In the comparison of different algorithms
in Section 3.2, the YOLOv4 network achieved good results regarding identification
precision and speed. However, the size of the YOLOv4 model is as high as 244 MB,
which greatly limits the YOLOv4 network’s practical usage. This further increases the
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recognition algorithm’s deployment cost when being put into use in the embedded
devices of firefighting drone vision systems.

The YOLOv5 network is designed for industrial scenarios, including four network
frameworks: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The complexity of the
network structure increases sequentially. Users can choose the appropriate network ar-
chitecture according to their actual needs. In this study, the selection and design of the
recognition algorithm mainly considered the application and deployment of the detection
algorithm on a firefighting drone for real-time identification of flames. Therefore, the iden-
tification precision, identification speed, and model size became the main considerations.
The same improvement approach was utilized to enhance the four kinds of networks, and
the same experimental dataset was trained. Table 4 presents the results.

Table 4. Comparing the recognition results of various network frameworks.

Algorithm mAP (%) Rate (Frame s−1) Model Size (MB)

YOLOv5s 96.6 68 14
YOLOv5m 96.7 62 25.1
YOLOv5l 96.9 59 89.2
YOLOv5x 97.3 57 167

The experimental results indicate that the YOLOv5s network can attain superior
detection accuracy and an optimal detection speed when using the same improved strategy
and dataset, and it also has the characteristic of small model size. In summary, the network
model based on YOLOv5s will have strong deployment potential in the embedded devices
of firefighting drone vision systems.

However, firefighting drones may work at night, and the dataset in this paper was
mainly based on daytime scenes, with only a small amount of night-time flame data. The
experiments showed that the improved YOLOv5 has a certain error of detection and false
detection capacity at night, which is a limitation of the current detection algorithm.

5. Conclusions and Future Research

The current study applied DL technology to the task of flame detection. In this way, a
real-time identification approach for firefighting drone flame targets was proposed based
on an improved YOLOv5. The YOLOv5 was employed for flame recognition for the
first time. The capability to extract small target flame features was effectively improved
based on the improved YOLOv5 network and by adding a small target-identification layer
to the backbone network. In addition, a CA unit was added to the improved YOLOv5
network to fully enhance the flame target recognition precision. In addition, the DIoU in
the original model was changed to α-IoU to enhance the capability of the model prediction
framework to precisely find flames. This effectively improved the network’s convergence
rate and effect. The above experiments showed that the enhanced network model can
effectively detect flame targets (especially small target flames). The improved YOLOv5
prediction value, recall rate, and mAP value were 85.7%, 94.8%, and 96.6%, respectively.
Using the same dataset, the enhanced YOLOv5 algorithm was compared with another
six algorithms; the mAP values increased by 10.9%, 3.9%, 5.4%, 15%, 7.9%, and 6.3%,
respectively. Furthermore, the average recognition speed of the improved model was
0.014 s per image, which can fully satisfy the real-time flame identification needs.

In future research, we will gradually describe the established network framework and
explain the network’s semantics. We will explain how the individual hidden modules of a
deep CNN guide the network to solve the flame-identification task. In addition, we will
gradually optimize the flame-detection network framework, collect night-time flame data,
and gradually improve the dataset. Ultimately, the network’s ability to recognize flames at
night will be fully enhanced to obtain a better flame-detection performance.
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