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Abstract: Among various calamities, conflagrations stand out as one of the most-prevalent and
-menacing adversities, posing significant perils to public safety and societal progress. Traditional
fire-detection systems primarily rely on sensor-based detection techniques, which have inherent
limitations in accurately and promptly detecting fires, especially in complex environments. In recent
years, with the advancement of computer vision technology, video-oriented fire detection techniques,
owing to their non-contact sensing, adaptability to diverse environments, and comprehensive infor-
mation acquisition, have progressively emerged as a novel solution. However, approaches based on
handcrafted feature extraction struggle to cope with variations in smoke or flame caused by different
combustibles, lighting conditions, and other factors. As a powerful and flexible machine learning
framework, deep learning has demonstrated significant advantages in video fire detection. This
paper summarizes deep-learning-based video-fire-detection methods, focusing on recent advances
in deep learning approaches and commonly used datasets for fire recognition, fire object detection,
and fire segmentation. Furthermore, this paper provides a review and outlook on the development
prospects of this field.

Keywords: fire recognition; fire object detection; fire segmentation; deep learning

1. Introduction

Throughout human history, various disasters have constantly affected and threatened
humanity and society due to changes in the environmental conditions for human survival
and production. When fire is considereda hazard factor, the natural disaster phenomenon
caused by the uncontrolled spread of fire in time or space is called a fire disaster. Among
various disasters, fire is among the most-common and -significant threats to public safety
and social development. Forests and urban buildings serve as carriers that are affected
by and damaged by fire disasters and threaten human society. In recent years, due to the
continuous development of the social economy, the scale and quantity of urban high-rise
buildings have been increasing. According to data from the Fire Rescue Bureau of China’s
Ministry of Emergency Management, the number of reported fires in mainland China in
2022 was 825,000, a year-on-year increase of 7.8%. The direct property loss caused by fires
was CNY 7.16 billion, a year-on-year increase of 1.2% in deaths. The majority of fatal fires
occurred in residential areas [1]. Regarding forest fires, due to their strong destructive
power, they can cause the extinction of many forest species, cause soil erosion, and pose
a catastrophic ecological threat to people’s lives and property safety. In 2022, there were
709 forest fires in mainland China, causing 17 deaths [2]. Due to global warming, extreme
weather, such as heat waves and droughts, has become more frequent. The data show that

Fire 2023, 6, 315. https://doi.org/10.3390/fire6080315 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6080315
https://doi.org/10.3390/fire6080315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0009-0004-4483-3431
https://doi.org/10.3390/fire6080315
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6080315?type=check_update&version=1


Fire 2023, 6, 315 2 of 27

the overall form of fires in China is still severe, there are still hidden dangers in fire safety,
and major and extraordinary fires still occur occasionally.

Fire safety is an integral component of the national emergency management system
and necessitates continual capability modernization. In recent years, efforts to enhance the
pre-fire risk prevention capabilities have been consistently strengthened. Among these,
accurate, effective, and timely fire detection plays a pivotal role in initiating prompt fire-
fighting measures. In order to minimize potential loss of life and property, it is imperative
to identify the source of fire at its nascent stage, fortify early warning systems in affected
areas, and promptly implement measures to prevent the spread of flames.

Fire detection generally encompasses flame detection and smoke detection. Cur-
rent fire-detection approaches for urban buildings primarily rely on conventional sensor
perception, including thermal detection (e.g., fixed-temperature detectors), chemical com-
pound smoke detection (e.g., ionization and gas sensors), and optical radiation detection
(e.g., ultraviolet and infrared sensors) [3]. When a fire occurs, the characteristic signals of
mass flow, such as combustible gases, smoke particles, and aerosols, as well as energy
flow signals, such as flame radiation, can be sensed by sensors and transformed into easily
processed physical quantities. Through signal-processing methods, alarm operations can
be realized. Traditional sensor-based fire-detection systems are ideal for small indoor areas
such as homes and offices due to their low requirements for ambient light and high sensi-
tivity. However, these traditional systems are not acceptable for large open environments
since they can only detect smoke and flames through ionization-generated particles when
the sensors are close to the fire source. This proximity limitation can lead to transmission
delays, creating a risk that the fire at the scene could propagate and elude effective control
measures. Moreover, these sensors cannot provide information regarding the initial location
of the fire, its propagation direction, its scale, smoke spread direction, the growth rate, and
other factors essential for monitoring fire evolution [4].

Satellite remote sensing technology is currently the primary means of wildfire moni-
toring. Its fundamental principle lies in identifying and monitoring fire spots by utilizing
the electromagnetic radiation characteristics released during biomass combustion. This
technology boasts wide-ranging fire detection, high resolution, and timely response to dy-
namic changes, particularly playing an increasingly crucial role in the detection of wildfires
in landscapes and the prediction of potential hazards [5]. In recent years, the utilization
of optical data provided by satellite sensors such as HuanJing (HJ)-1B—WVC/IRMSS,
Terra/Aqua-MODIS, and Himawari-8/9—AHI-8 has become a vital decision-making basis
for early wildfire warning, emergency resource allocation, and post-disaster dynamic as-
sessment [6,7]. However, the methods based on satellite remote sensing technology for
wildfire detection also possess certain limitations. Cloud cover and dense smoke generated
by the combustion may obscure the wildfire area, affecting the quality of satellite images
and, thus, reducing the accuracy of fire monitoring. Meeting the real-time monitoring
demands for wildfires necessitates satisfying the requirements of both temporal and spatial
resolution in ground-observation satellites simultaneously.

Over the past few years, the continuous enhancement of smart cities and emergency
construction as part of various countries’ governmental policies has led to the wide de-
ployment of video surveillance systems in diverse production and living environments.
Leveraging existing video surveillance resources for fire detection demonstrates high fea-
sibility and application value. Researchers in this field have made substantial progress
in computer-vision-based fire-detection systems to overcome the limitations of sensor-
based traditional fire-detection systems. Video-based fire-detection technology offers
rapid response, strong anti-interference capabilities, and low costs. Moreover, it provides
comprehensive and intuitive feedback on fire scene information, which can be promptly
transmitted to monitoring centers through network transmission technology, offering valu-
able guidance for fire emergency response. Therefore, computer-vision-based fire-detection
systems, compared to conventional detection systems, can issue early warning signals more
quickly, affording individuals more time for evacuation and fire-extinguishing efforts.
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Recently, numerous computer-vision-based fire-detection systems have been developed.
These systems mainly fall into three categories: recognition, object detection, and segmentation.
Additionally, from an algorithmic standpoint, they can be classified into two types: approaches
based on handcrafted feature extraction and deep-learning-based approaches.

Deep-learning-based fire-detection approaches have become mainstream in this field.
With the continuous expansion of the data volume, advancements in big data technology,
and the remarkable performance of hardware such as GPUs, deep learning has experi-
enced a surge of research interest. It has achieved impressive results in various domains,
surpassing traditional pattern-recognition approaches in image classification and object de-
tection. It has been successfully applied in multiple industry sectors, including autonomous
driving [8], smart agriculture [9], healthcare [10], the Industrial IoT [11,12], sentiment anal-
ysis [13], and conversational systems [14]. Deep learning enables end-to-end learning,
eliminating the need for handcrafted feature extraction and reducing reliance on prior
knowledge. Deep-learning-based fire-detection approaches require abundant and diverse
training samples to train deep neural networks, selecting fire-related information from
low-level to high-level features, thereby achieving accurate detection of fire at different
granularities. Figure 1 illustrates the mainstream deep-learning-based video-fire-detection
framework.

Figure 1. The framework of video-fire-detection methods based on deep learning. The process
commences by collecting video sequences from diverse camera devices and extracting pertinent
information from these sequences. Subsequently, this extracted information is fed into a deep
learning model network for fire detection, ultimately leading to recognition, object detection,
or segmentation outcomes.

The main contributions of this paper are as follows:

• We aimed to explore and analyze current advanced approaches used in video-based
fire detection and their associated systems. We discuss the challenges and opportuni-
ties in designing and developing deep learning approaches for fire detection, focusing
on recognition, object detection, and segmentation;

• We present the most-widely used public datasets for the fire-recognition, fire-object-
detection, and fire-segmentation tasks;

• We discuss various challenges and potential research directions in this field.



Fire 2023, 6, 315 4 of 27

The rest of the paper is organized as follows: Section 2 provides an overview of the
two categories of video-based fire-detection approaches: approaches based on handcrafted
feature extraction and approaches based on deep learning. Section 3 introduces commonly
used datasets and evaluation metrics for these tasks. Section 4 reviews the methods’ models
based on deep learning for fire recognition, fire object detection, and fire segmentation.
Section 5 discusses the main challenges of deep-learning-based video-based fire-detection
methods. Finally, in Section 6, we conclude the paper.

2. Background and Related Work

From the perspective of algorithm types, one can typically classify video-fire-detection
approaches into two categories: approaches based on handcrafted feature extraction and
approaches based on deep learning.

For approaches based on handcrafted feature extraction, research on their features
mainly focuses on static and dynamic characteristics. In videos, flame characteristics typi-
cally manifest as sustained burning in shades of orange-red, emitting heat and brightness.
On the other hand, smoke commonly appears as white, gray, or black feather-like plumes
composed of tiny particles of smoke or combustion. Under the influence of rising hot air,
smoke swiftly moves within the environment. The shapes, densities, and colors of flames
and smoke vary depending on the size of the fire source, the type of combustible materials,
and the environmental conditions [15].

Static features of flames include color and appearance, while static features of smoke
include color, texture, and blur level. Relevant studies use probability density functions,
different color spaces, and texture analysis. For example, Kong et al. [16] subtracted
the difference between flame and background colors to obtain candidate flame regions
and used features such as area and color along with logistic regression to determine the
probability of a region proposal being a flame. Filonenko et al. [17] proposed a probabilistic
smoke-detection method using the RGB and HSV color spaces. However, this method
requires good video image quality and cannot effectively handle smoke detection at night.

In the other category of approaches, the motion characteristics of fire are utilized.
Dynamic features of flames include flickering, shape changes, and area variations, while
dynamic features of smoke include motion direction and contour changes. Due to the
movement characteristics of smoke and fire, these methods aim to extract the moving
components that may contain targets in the image’s foreground. Unlike flames, when the
environmental visibility is good, the camera can easily capture smoke from a distance in
the initial minutes of a fire due to its upward movement [18]. In these methods, motion
values, direction, and energy have shown promising results under certain conditions. For
example, Ye et al. [19] proposed a method that utilizes motion characteristics and extracts
smoke and fire from the current frame of region proposals using adaptive background
subtraction. Motion blobs are classified through spatiotemporal wavelet analysis, Weber
contrast analysis, and color segmentation, resulting in high smoke- and flame-detection
rates. As the fire situation evolves, under the influence of heat, the overall motion direction
of smoke tends to be upward and gradually spreads outward, and the high-frequency signal
of the smoke gradually decays compared to the background image’s edge information.
In order to address the issue of high false favorable rates resulting from the use of static
features alone, the objective of reducing false positives can be achieved by incorporating
both static and dynamic features. Lin et al. [20] proposed a smoke-detection method based
on irregular motion region’s dynamic texture, which utilizes the inter-frame information
of smoke video sequences and describes it as using LBP dynamic texture descriptors. The
authors analyzed the sliding window block feature-extraction method, which is greatly
affected by factors such as the block size and motion scale coefficient. They designed a
dynamic texture feature extraction algorithm for irregular regions, significantly reducing
smoke-detection false alarm rates while ensuring a high detection rate.

In general, fire recognition using approaches based on handcrafted feature extraction
involves extracting suspected smoke or flame regions from images or videos through
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techniques such as sliding windows or segmentation. Then, features such as color and
texture are extracted using SIFT, HOG, and LBP and transformed into feature vectors.
Finally, classifiers such as SVM and Adaboost are employed to classify the feature vectors
and determine the presence of smoke or flame. This approach has the advantage of
utilizing handcrafted, designed features to describe the characteristics of smoke or flame,
thereby improving detection accuracy. However, approaches based on handcrafted feature
extraction heavily rely on the expertise and extensive experimentation of the designer.
They struggle to cope with variations in smoke or flame caused by different combustible
materials, lighting conditions, and airflow. These methods are time-consuming, prone to
false alarms, lack real-time capability, and have limitations in long-range detection [21].

As a new technology in computer vision and supervised learning, deep learning has
brought great hope to fire detection. Fire-detection approaches based on deep learning
largely avoid the reliance on handcraft processes and can automatically extract high-
level features that are difficult to obtain with traditional techniques, enabling accurate
recognition and segmentation of fire scenes. These methods primarily utilize convolutional
neural networks, recurrent neural networks, or their variants to construct end-to-end fire-
detection systems. Due to the rapid development of deep learning models, researchers in
the field continue to discover new variants, with each variant specifically targeting certain
image features.

In recent years, numerous reviews on fire-detection methods have been published [22–28].
Table 1 provides a summary of the existing reviews in this field over the past few years.
Xia et al. [23] pointed out that traditional methods rely on statistical learning approaches to
achieve fine-grained tasks, but when the video image resolution is low, failure to effectively
combine multiple visual features can result in higher false alarm rates. On the other hand,
deep learning approaches have achieved superior efficiency and accuracy in finer-grained
smoke-monitoring tasks. Gaur et al. [25] indicated that deep learning could complement
approaches based on handcrafted feature extraction. Since directly using convolutional neural
networks makes it challenging to detect lower-level features such as color, edges, or textures, it
is recommended to employ a hybrid approach that combines handcrafted feature extraction and
engineered features from deep learning models or to use 3D convolutional networks to extract
features at different scales and fuse them, achieving the coexistence of multi-scale features.
Chaturvedi et al. [26] pointed out that smoke detection based on machine learning and deep
learning computer vision techniques has shown promising performance. They also provided an
outlook on future research focuses in this field, including establishing datasets with complex
backgrounds and variations, exploring interpretable deep learning approaches to reduce false
alarm rates, achieving early distant smoke detection, and researching lightweight detection
models suitable for IoT devices such as unmanned drones.

Based on the task, fire-detection methods can primarily fall into three categories: fire
recognition, fire object detection, and fire segmentation:

(1) Fire recognition:
Fire recognition refers to determining whether there is the presence of smoke or
flames in an image. It is also known as global fire recognition and represents the
coarsest-grained recognition task in fire detection.

(2) Fire object detection:
Fire object detection is an extension of fire recognition in fire-detection tasks. Its main
objective is to detect fire or smoke objects in a given image. The core functionality of
this task is to roughly locate fire instances in the image and bounding box estimation.
These bounding boxes provide localization information for the targets and serve
finer-grained tasks in fire detection.

(3) Fire segmentation:
Fire segmentation involves accurately classifying every pixel in the image, sepa-
rating the fire objects and their detailed boundaries from the image. It represents
a comprehensive task encompassing fire classification, localization, and boundary
delineation. Image segmentation can effectively identify and track fire events. When
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a fire occurs, image segmentation can use surveillance cameras in open areas to
capture the distribution of flames and make relatively accurate predictions about
the spread of the fire, enabling quick localization of specific areas and appropriate
responses. Smoke segmentation typically outputs masks with detailed boundaries
involving object classification, localization, and boundary description.

Table 1. Comparison of previous surveys and reviews on fire detection.

Author Year Scenes Key Notes

Gaur et al. [22] 2019 Building

This work discussed the advancements in
fire-sensing technology and highlights the
disparities between hardware and method
development.

Xia et al. [23] 2019 Outdoor

This work comprehensively reviewed recent
research results in smoke recognition, detection,
and pixelwise smoke segmentation from both
traditional and deep learning perspectives.

Bu et al. [24] 2019 Multi-scene
environment

This endeavor entailed conducting a thorough
examination of the visual-based intelligent
fire-detection system, dividing it into two distinct
categories: forest fires and all of the environment.

Gaur et al. [25] 2020 Indoor, Outdoor

This work focused on the discussion of the
handcrafted rules and classifiers method and the
deep learning method used for fire flame and
smoke detection.

Chaturvedi et al. [26] 2022 Outdoor

This work primarily discussed the research
progress in smoke detection focused on outdoor
environmental scenes using visual technology. It
comprehensively presented three research
directions in smoke detection: classification,
segmentation, and bounding box estimation.

Bouguettaya et al. [27] 2022 Forest, wildland

This work primarily focused on the comparative
analysis of utilizing unmanned aerial vehicles
(UAVs) and remote sensing technology based on
deep learning approaches for the early detection of
wildfires in forested and barren terrains.

Ghali et al. [28] 2023 Forest, wildland

This work conducted a comprehensive literature
review on deep learning approaches for the
classification, detection, and segmentation of
wildland fires and introduced popular wildfire
datasets in this field.

3. Datasets and Evaluation Metrics
3.1. Datasets

It is widely acknowledged that datasets constitute a crucial component of deep learn-
ing applications. In the domain of fire detection research, in order to significantly enhance
detection effectiveness by enabling the model to extract a plethora of diverse and rich
features, a sizable and well-curated dataset consisting of high-dimensional images and
video sequences is imperative. Regarding the color aspects of samples, the range of flame
colors spans from blue to red, with the specific hue being contingent upon factors such
as the burning material and flame temperature. Smoke also plays a pivotal role in fire
detection, typically manifesting as shades of gray, white, or black within videos. From the
perspective of sample testing facilities, it is necessary to encompass various sectors such as
industry, agriculture, infrastructure, households, and forests. In order to accomplish the
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distribution of image features across such extensive application domains, the requirement
arises for a voluminous and heterogeneous dataset.

Below are some commonly used and publicly available datasets in the field of fire detection:

• VisiFire dataset [29]:
The VisiFire dataset is a widely used public video dataset for fire and smoke detection.
It consists of four categories of videos: flame, smoke, other, and forest smoke. The fire
set comprises 13 videos, the smoke set 21 videos, the forest smoke set 21 videos, and
the other video set 2 videos. Dharmawan et al. [30] selected 12 commonly used videos
from the VisiFire dataset for frame-by-frame segmentation annotation, resulting in
2684 annotated frames.

• BoWFire dataset [31]:
The BoWFire dataset comprises 226 images of varying resolutions, with 119 images
depicting fires and 107 representing non-fire scenes. The fire images encompass differ-
ent scenarios of urgent fire events, such as building fires, industrial fires, accidents,
and riots. The non-fire images include fire-like objects in red or yellow hues and
sunset scenes. Additionally, a training set consisting of 240 images with a resolution
of 50 × 50 px is provided, comprising 80 fire images and 160 non-fire images.

• Corsican Fire Database [32]:
The Corsican Fire Database is a comprehensive dataset containing multi-modal wild-
fire images and videos. It includes 500 visible images, 100 multi-modal fire images
incorporating visible light and near-infrared spectra, and 5 multi-modal sequences
depicting fire propagation. The Corsican Fire Database encompasses annotations re-
garding fire and background attribute categories, describing visual information related
to fires, such as flame color, smoke color, fire distance, percentage of smoke obscuring
flames, background brightness, vegetation conditions, and weather conditions. Each
image in this dataset is accompanied by its corresponding segmentation mask, which
can be utilized for fire-segmentation research.

• FESB MLID dataset [33]:
The FESB MLID dataset comprises 400 natural Mediterranean landscape images
and their corresponding semantic segmentation. These images are segmented into
11 semantic categories, including smoke, clouds and fog, sunlight, sky, water surface,
and distant views, among others. Additionally, an unknown region category is added,
resulting in 12 defined classes. This dataset contains several challenging samples,
where many smoke features are small-scale or distant smoke instances.

• Smoke100k [34]:
Due to the hazy edges and translucent nature of smoke, the manual annotation of
smoke objects can be challenging. The Smoke100k dataset provides a large-scale
synthetic smoke image dataset for training smoke-detection models. The dataset
includes three subsets: Smoke100k-L, Smoke100k-M, and Smoke100k-H, with 33 k,
36 k, and 33 k images, respectively. Each subset comprises synthetic smoke images,
background images, smoke masks, and ground-truth bounding box positions. The
Smoke100k dataset generates three different smoke masks based on smoke density
to simulate the dynamic motion of rising smoke, blending pure smoke images with
background images to generate synthetic smoke scene images.

• Video Smoke Detection Dataset [35]:
The Video Smoke Detection Dataset (VSD) consists of three smoke videos, three non-
smoke videos, and four sets of smoke and non-smoke image datasets. The image
datasets are referred to as Set 1, Set 2, Set 3, and Set 4. Set 1 comprises 552 smoke
images and 831 non-smoke images. Set 2 comprises 668 smoke images and 817 non-
smoke images. Set 3 consists of 2201 smoke images and 8511 non-smoke images. Set
4 contains 2254 smoke images and 8363 non-smoke images. The non-smoke images
exhibit many similarities to the smoke images in color, shape, and texture.

• FLAME dataset [36]:
The Fire Luminosity Air-Based Machine Learning Evaluation (FLAME) provides aerial
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images and videos of burning piled detritus in the Northern Arizona forests, collected
using two unmanned aerial vehicles (UAVs). The dataset includes four photographic
modes captured with conventional and thermal imaging cameras: normal, Fusion,
WhiteHot, and GreenHot. The fire-recognition task comprises 48,010 RGB aerial
images, divided into 30,155 fire images and 17,855 non-fire images, curated explicitly
for wildfire recognition. The dataset includes 2003 segmentation masks with pixel-
level annotations for the fire-segmentation task. This dataset serves as a valuable
resource for fire recognition, segmentation methods, and further development of
visual-based fire spread models.

• Flame and Smoke Detection Dataset [37]:
The Flame and Smoke Detection Dataset (FASDD) is a large-scale dataset containing
100,000-level flame and smoke images from various sources, including surveillance
cameras, drones, multi-source remote sensing satellite images, and computer graphics
paintings depicting fire scenes. Moreover, the FASDD dataset encompasses a sig-
nificant number of small-scale flame and smoke objects, posing challenges for deep
learning research on small object detection. It consists of two subsets: FASDD_CV,
which includes 95,314 samples captured from surveillance cameras, lookout tow-
ers, and drones, and FASDD_RS, comprising 5773 remote sensing image samples.
Additionally, FASDD provides annotation files in three different formats.

• D-Fire dataset [38]:
The D-Fire dataset is a collection of fire and smoke images specifically designed for
object-detection-method development. Considering the diverse morphology of smoke
and flame, the dataset incorporates data from the Internet, fire simulations, surveillance
cameras, and artificially synthesized images where artificial smoke is composited with
green landscape backgrounds using computer software. The D-Fire dataset consists of
21,527 images annotated with YOLO format labels, amounting to 26,557 bounding boxes.
Among these, 1164 images depict fire, 5867 images solely smoke, 4658 images fire and
smoke, and 9838 images as negative examples.

• DSDF [39]:
The dataset for smoke detection in foggy environments (DSDF) is designed for study-
ing smoke detection in foggy conditions. It comprises over 18,413 real-world images
collected in both normal and foggy weather conditions. These images are annotated
with four distinct categories, namely: non-smoke without fog (nSnF), smoke without
fog (SnF), non-smoke with fog (nSF), and smoke with fog (SF). The dataset consists of
6528 images for nSnF, 6907 for SnF, 1518 for nSF, and 3460 for SF. DSDF covers a wide
range of smoke variations in terms of color, size, shape, and density. Additionally,
the samples in the dataset provide rich background information, which contributes to
enhancing the detection model’s generalization capability in real-world scenarios.

• DFS [40]:
The Dataset for Fire and Smoke Detection (DFS) contains 9462 fire images collected from
real-world scenes. The images are categorized based on the proportion of the flame area
in the image, including Large Flame, Medium Flame, and Small Flame, with 3357, 4722,
and 349 images, respectively. In addition to the annotations for “Flame” and “Smoke”,
the DFS includes a new category called “Other” to label objects such as vehicle lights,
streetlights, sunlight, and metal lamps, comprising a total of 1034 images. This “Other”
category is included to reduce false positives caused by misclassification.

In the context of deep-learning-based video-fire-detection tasks, addressing challenges
such as limited sample quantity and uneven sample distribution across different scenarios is
crucial to enhance the performance, generalization capability, and robustness of the models
employed. One effective approach involves the targeted utilization of data augmentation
techniques. Specifically, for fire images, data augmentation methods such as CutMix,
Mosaic, MixUP, GridMask, and Gaussian blur can be employed to augment the diversity
of the dataset. Figure 2 shows the Mosaic and MixUp data augmentation methods, with
the white boxes representing bounding boxes of smoke or flame objects. To enable the
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network model to learn more-comprehensive semantic features, a combination of data
augmentation techniques is often employed in various forms, which results in richer and
more-complex approaches compared to geometric and color transformations.

Figure 2. Visual comparison of Mosaic and MixUP. Mosaic involves combining four randomly
cropped images to create a new image, thereby enhancing the diversity of the training data and
enriching the spatial semantic information, as shown in subfigure (a). MixUp employs linear interpo-
lation on input data and labels to generate novel training data, effectively expanding the training
dataset. Subfigure (b) shows uses a combination of the Mosaic and Mixup data augmentation strategy.

3.2. Evaluation Metrics
3.2.1. Evaluation Metrics for Fire Recognition

Due to the particular nature of fire-detection tasks, it is necessary to evaluate the
recognition performance from various perspectives in addition to solely relying on accuracy.
From a multi-classification standpoint, objective metrics for recognition tasks include true
positives (TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs). TPs
refers to the number of instances correctly classified as fires, FPs the number of instances
mistakenly classified as fires, TNs the number of instances correctly classified as non-fires,
and FNs the number of instances mistakenly classified as non-fires. When analyzing
recognition tasks in multi-classification scenarios, a set of commonly used evaluation
metrics includes the Accuracy Rate (AR), Detection Rate (DR), Precision Rate (PR), False
Alarm Rate (FAR), and False Negative Rate (FNR).

Accuracy Rate is the probability of correctly classifying both positive and negative
samples in fire-detection tasks. It evaluates the overall recognition performance of the
model and serves as an essential reflection of the algorithm’s overall performance.

AR =
TPs + TNs

TPs + TNs + FPs + FNs
× 100% (1)

The Detection Rate represents the probability of correctly classifying all fire samples
as fires, reflecting the algorithm’s accuracy in identifying fire targets.

DR =
TPs

TPs + FNs
× 100% (2)

The Precision Rate, on the other hand, refers to the proportion of samples identified as
fires that are true fire samples.
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PR =
TPs

TPs + FPs
× 100% (3)

Both the False Alarm Rate and the False Negative Rate are vital indicators in fire
detection. The False Alarm Rate denotes the proportion of non-fire samples incorrectly
identified as fire samples, while the False Negative Rate represents the proportion of
fire samples not recognized as such. Given the low probability of fire incidents, real-time
surveillance videos usually do not contain actual fires. Excessive false alarms would burden
the managerial staff with the task of verification. Hence, it is crucial to control false alarms
in fire detection.

FAR =
FPs

FPs + TNs
× 100% (4)

FNR =
FNs

FPs + TNs
× 100% (5)

The Fmeasure is a commonly used metric that combines the Recall Rate and Precision
Rate, serving as the harmonic mean between these two metrics. A higher Fmeasure, closer
to 1, indicates greater accuracy, allowing for effective differentiation of the strengths and
weaknesses of the algorithm. The parameter β in Fβ denotes the degree of bias towards the
Precision Rate or Recall Rate when evaluating the algorithm.

Fβ =
(

1 + β2
)
× PR× DR

β2 × PR + DR
× 100% (6)

F1 =
2× PR× DR

PR + DR
× 100% (7)

3.2.2. Evaluation Metrics for Fire Object Detection and Segmentation

In the fire-object-detection and -segmentation task, the overall goal is that the method
can quickly identify all smoke and fire objects in the video frame and can assist the relevant
personnel in locating the fire area in the video. The fire object detection task can be
considered a fire-recognition task extended to the time axis, and therefore, the evaluation
metrics related to the fire-recognition task can be used. In general, the performance of the
detection model can also be measured by the size of the area where the predicted bounding
box overlaps with the true value bounding box.

The Intersection over Union (IoU), also known as the Jaccard Overlap, reflects the
degree of overlap between a candidate box and the corresponding ground-truth box,
specifically the ratio of their intersection to their union. When this ratio is 1, it signifies
complete overlap. It is widely accepted that if the IoU between a candidate box and a fire
objectś ground-truth bounding box is greater than 0.5, the detection is considered correct;
otherwise, it is deemed erroneous. RoI(y) represents the rectangular region corresponding
to the coordinate vector ŷ, with y and y denoting the coordinates of the candidate box and
the ground-truth box, respectively.

fIoU =
|RoI(ŷ) ∩ RoI(y)|
|RoI(ŷ) ∪ RoI(y)| (8)

For positive samples, only when all objects in an image are detected can we classify it
as a true positive. Even if multiple objects are detected successfully, they are classified as
false negatives. The detection requirement is not met if even one fire object is missed. For
negative samples, if there is no detection box, they are classified as true negatives; if there
is a detection box, they are classified as false positives.

The mean average precision (mAP) is used to evaluate the performance of object
detection algorithms. The average precision (AP) for a specific target category is obtained
by integrating the recall–precision curve. Here, N represents the number of object categories,
and APn denotes the precision for the nth object category. A higher AP value and a closer
mAP value to 1 indicate a higher overall recognition accuracy of the model. mAP@0.5
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refers to the mAP at an IoU threshold of 0.5. mAP@[0.5:0.95] refers to taking the threshold
of IoU from 0.5 to 0.95, with a step size of 0.05, and then calculating the mAP under
these conditions.

Common segmentation evaluation metrics include the mean Intersection over Union
(mIoU), average mean-squared error (mMSE), and Dice coefficient. The mIoU is the stan-
dard measure for semantic segmentation, calculating the average ratio of the intersection
to the union for all categories. A higher mIoU indicates higher accuracy. In the equation,
GT represents the ith ground-truth, PR represents the predicted segmentation map for the
ith image, and N represents the number of images in the set.

fmlou =
1
N

N

∑
i

|GTi ∩ PRi|
|GTi ∪ PRi|

(9)

The average mean-squared error (mMSE) can be used as another quantitative evalua-
tion metric for segmentation. It is calculated by averaging the mean-squared differences
between the predicted results of the model and the ground-truth, across all pixels. Here, xk

j

represents the coordinate of the jth pixel in the kth image, and n is the number of images
in the test dataset. A smaller mMSE value indicates better segmentation results for the
fire-segmentation model.

MSE =
N

∑
k=1

√√√√ 1
Mk

Mk

∑
j=1

(
P
(

xk
j

)
− G

(
xk

j

))2
(10)

mMSE =
1
n

MSE (11)

In the pixel-level fire-segmentation task, the evaluation metrics for fire recognition can
be extended for use at the pixel level.

Currently, no standardized video fire dataset is available for training and testing fire-
recognition, -detection, and -segmentation tasks. Furthermore, the diversity of fire scenes,
shooting distances and angles, and imaging devices can result in significant variations
among fire videos. As a result, the same algorithm may exhibit different detection perfor-
mances on different datasets. Therefore, the specific numerical values of the evaluation
criteria, such as the Detection Rate and the False Alarm Rate for relevant detection algo-
rithms, have limited reference values. Instead, their relative values are more meaningful in
guiding algorithm improvements during the research process.

In addition to the aforementioned metrics, algorithms utilized for fire-recognition,
-detection, and -segmentation tasks should also consider performance indicators that affect
real-time capability, stability, and operational costs, such as model size, detection speed,
and related measures such as the giga floating-point operations per second (GFLOPs),
frames per second (FPS), and inference time. These performance indicators are of practical
importance when considering the application of such algorithms in engineering contexts.

4. Deep-Learning-Based Approaches for Videos Fire Detection
4.1. Fire Recognition Methods

Fire recognition refers to determining the presence of smoke or flames in an image,
representing the coarsest classification level in fire detection. Classic classification net-
works based on CNNs, such as AlexNet [41], GoogLeNet [42], VGGNet [43], ResNet [44],
MobileNet [45], and DenseNet [46], have been employed for fire-recognition tasks, signifi-
cantly enhancing the robustness of the models in identifying environmental features, while
reducing false positives. Muhammad et al. [47] proposed a method that incorporates the
lightweight network SqueezeNet as the backbone network and fine-tunes its architecture,
including using smaller convolutional kernels and excluding dense fully connected layers
for video fire detection. The results demonstrated that this model is more efficient regard-
ing model size and inference speed. Additionally, the authors developed an algorithm to
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select fire-sensitive feature maps from the convolutional layers, enabling further analysis of
flame propagation speed and determination of the fire’s severity or degree of combustion.
Yuan et al. [48] proposed a deep multi-scale CNN (DMCNN) for smoke recognition. It
incorporates the multi-scale convolutional structure of Inception to achieve scale invari-
ance and adopt multi-scale additive merging layers to reduce computational cost while
preserving more dynamic and static smoke features. Khudayberdiev et al. [49] proposed a
lightweight fire-detection model, Light-FireNet, inspired by the concept of hard Swish (H-
Swish). This network combines a more-lightweight convolution mechanism with a novel
architectural design, resulting in a smaller model size while maintaining high detection
accuracy. Zheng et al. [50] proposed a dynamic CNN model named DCN_Fire for assessing
the risk of forest fires. This approach utilizes principal component analysis (PCA) recon-
struction techniques to enhance inter-class discriminability and employs saliency detection
to segment flame images into standard sizes for model training. The experimental results
demonstrated that DCN_Fire achieved an accuracy of 98.3% on the test set. Majid et al. [51]
proposed a CNN model with an attention mechanism for fire detection and employed
GRAD-CAM visualization to display the contribution distribution of the model’s flame
predictions. This model achieved high Recall Rates of 95.4% and 97.61%. Tao et al. [52]
proposed an adaptive frame-selection network (AFSNet) for video smoke recognition, as
shown in Figure 3. This method automatically selects the most-useful video frames to re-
duce feature redundancy and introduces enhanced dilated convolution to mitigate the loss
of detailed information. The method learns discriminative representations by considering
multi-scale, context, and spatiotemporal information. The experimental results indicated
that the proposed method achieved an accuracy of 96.73% and an F1-score of 87.22% on
the SRSet dataset. However, the proposed method has not been experimentally evaluated
for smoke recognition in mobile scenarios. SE-EFFNet, proposed by Khan et al. [53], uti-
lizes EfficientNet-B3 as the backbone network for extracting useful features. It employs
stacked autoencoders to achieve effective feature selection. EfficientNet ensures a balance
among depth, width, and resolution dimensions while introducing the dense connectivity
network from DenseNet to ensure effective fire scene recognition. The experimental results
demonstrated that, compared to the baseline model, SE-EFFNet achieved a lower false
positive rate, false negative rate, and higher accuracy. However, this architecture may suffer
from overfitting in complex environments, and its performance in real-time processing on
resource-constrained devices is average when deployed.

Utilizing only the CNN for extracting static features in fire recognition would increase
computational complexity, impact detection performance, and lower recognition accuracy
due to the subtle nature of early fire features. However, we can gather crucial information
for fire recognition by observing dynamic characteristics such as the movement, flickering,
and diffusion of smoke. Fusing deep and traditional features through multi-feature fusion
methods is an important research direction. Huang et al. [54] combined CNN with tradi-
tional spectral analysis techniques for fire detection. They proposed a novel Wavelet-CNN
approach for feature extraction, utilizing the 2D Haar transform to extract spectral features
from images, which were then input into the FPN network. The experimental results
yielded promising outcomes. The authors employed ResNet50 and MobileNet v2 as the
backbone networks, and compared to not using the 2D Haar transform, they achieved
improved fire detection accuracy and reduced false alarms. Kwak et al. [55] performed
preprocessing on flame regions using color- and corner-detection techniques and employed
dark channel prior characteristics and optical flow for smoke detection. They proposed a
fire-detection method based on deep learning and image filtering. As a result, this method
effectively reduced the false detection rates and improved the accuracy, achieving 97%
accuracy for flame detection and 94% for smoke detection.

By utilizing a CNN to extract various low-level and high-level features and an RNN to
capture dependencies and sequential patterns, new perspectives have emerged for utilizing
computer vision in fire detection. Hu et al. [56] attempted to combine deep convolutional
long short-term memory (LSTM) networks with optical flow methods for real-time fire
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detection. By studying the static and dynamic characteristics of fire detection, they trans-
formed fire images into optical flow images in real-time and utilized deep LSTM with
sequence learning capability for training. The experimental results demonstrated that incor-
porating optical flow as the input improved the detection performance, although the effect
was less pronounced for video frames with slow changes in fire or smoke. Ghosh et al. [57]
proposed a combined CNN and RNN model, a hybrid deep learning approach, for forest
fire detection. By incorporating the RNN, the model can better capture the correlations and
dynamic features among adjacent frames in fire videos, thereby improving the accuracy and
efficiency of fire detection. However, RNN models have higher computational complexity
and may not meet real-time requirements in fire detection, particularly for slowly evolving
fire incidents, where their performance is suboptimal.

Figure 3. AFSNet’s network architecture. The architecture consists of an adaptive frame-selection
module, a feature-extraction module, and a recognition module. The figure was borrowed from the
original paper [52].

Currently, most fire-detection methods only consider normal weather conditions, and
when video images are degraded in adverse weather environments, using traditional
image-processing algorithms for dehazing would increase the computational costs. To
improve the generalization performance of fire detection in adverse weather conditions,
He et al. [58] proposed a method for smoke detection in both normal and hazy conditions.
This method introduced an attention mechanism module that combines spatial attention
and channel attention to address the detection of small smoke particles. By incorporating
lightweight feature-level and decision-level fusion modules, the method enhances the
discrimination between smoke, fog, and other similar objects while ensuring the real-time
performance of the model. However, the method still faces challenges in detecting small
targets due to the high probability of small targets being affected by fog interference. Gong
et al. [39] proposed a smoke-detection method that combines the dark channel assisted
with mixed attention and feature fusion. They employed a two-stage training strategy to
address the issue of data imbalance. The method was evaluated on a smoke-detection
dataset containing hazy environments, and the experimental results showed an accuracy of
87.33% and an F1-score of 0.8722 for the proposed method.

For more details on the fire-detection methods, please refer to Table 2.
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Table 2. The main methods of fire recognition based on deep learning.

Method Technique Application
Scenario Dataset Evaluate

Muhammad et al. [47] SqueezeNet, feature map
selection

Fire detection in
monitoring scenarios BoWFire Dataset PR (%) = 86;

F-m (%) = 91

Yuan et al. [48]
Deep multi-scale

convolutional
Multi-scene

smoke detection
The datasets of
smoke images

DR (%) = 98.55;
AR (%) = 99.14;
FAR (%) = 0.36

Khudayberdiev et al. [49] Hard Swish Multi-scene
fire detection

55,500 images,
including fire
and non-fire

AR(%) = 97.83;
PR (%) = 98.37

F-m (%) = 99.18

Zheng et al. [50] Dynamic CNN, PCA
reconstruction techniques

Forest fire
smoke detection

More than 4000
forest fire risk images

AR (%) = 98.3;
FNR (%) = 0.13

Majid et al. [51] EfficientNet-B0, attention
mechanism, Grad-CAM

Multi-scene
fire detection

7977 images,
including fire
and non-fire

AR (%) = 95.40;
DR (%) = 97.61;
FNR (%) = 94.76

Tao et al. [52]
Adaptive frame-selection

convolution,
dilated convolution

Smoke detection in
surveillance

video scenes

SRSet
DR (%) = 96.73;
FAR (%) = 3.16;
F-m (%) = 96.57

Khan et al. [53]
EfficientNet, autoencoder,
weights’ randomization

Fire detection in
surveillance
video scenes

Foggia Dataset [59]
AR (%) = 97.20;
FAR (%) = 0.042;
FNR (%) = 0.034

Huang et al. [54] Haar wavelet transform,
Faster R-CNN

Fire detection in
surveillance
video scenes

5667 images,
including fire
and non-fire

PR (%) = 89.0;
F-m (%) = 94.0

Kwak et al. [55]
Dark channel prior,

Lucas–Kanade method,
Inception-V4

Multi-scene
fire detection

8000 images,
including flame,

smoke, and non-fire
AR-flame (%) = 97.0;
AR-smoke (%) = 94.0

Hu et al. [56] Deep LSTM, optical
flow method

Open space
fire detection

The video dataset
includes 100 fire
videos and 110
non-fire videos

AR (%) = 93.3;
F-m (%) = 90.0

Ghosh et al. [57]
Combination of CNN and

RNN networks for
feature extraction

Forest fire
smoke detection Mivia Dataset AR (%) = 99.54;

DR (%) = 99.75

He et al. [58] Spatial and channel attention
mechanism, FPN

Smoke detection in
fog scenes

Fog smoke dataset
for 33,666 images

AR (%) = 92.3088;
F-m (%) = 92.3833

Gong et al. [39]
Dark-channel-based mixed

attention, two-stage
training strategy

Smoke detection in
fog scenes DSDF AR (%) = 87.33;

F-m (%) = 87.22

4.2. Fire-Object-Detection Methods

Currently, deep learning object-detection networks such as Faster RCNN [60–63],
YOLO [64–74], and SSD [75,76] have demonstrated outstanding performance in fire-
detection applications. By combining traditional fire-recognition methods, Barmpoutis et
al. [62] proposed a novel fire-object-detection approach. This method trains a Faster R-
CNN model to obtain candidate fire regions in images and then utilizes a multidimensional
texture analysis based on higher-order linear dynamical systems to determine whether
the region proposals are fire regions. The experimental results indicated that, compared
to using VGG16 and ResNet101 as the base networks with the YOLO v3 and SSD meth-
ods, this approach achieved a higher F1-score. Chaoxia et al. [63] improved the Faster
R-CNN for fire detection by employing a color-guided anchoring strategy and a global
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information-guided strategy. However, the performance of this method was compromised
due to the predefined anchors. Although two-stage object-detection algorithms exhibit
high accuracy and precise localization, they are more complex and slower in detection
speed. Addressing the deployment requirements of industries with a high-risk of fires,
such as the chemical industry, Wu et al. [73] proposed an intelligent fire-detection method
utilizing cameras. This method consists of three steps: motion detection, fire detection,
and fire classification. It combines motion detection based on background subtraction,
fire object detection based on YOLO, and region classification of fire and fire-like images
using Xception. By employing a region-classification model for fire recognition, the system
outputs the coordinates of the fire region once a fire is detected. Mukhiddinov et al. [66]
developed an automatic fire-detection system based on an improved YOLOv4 model and
convolutional block attention module for visually impaired individuals. However, this sys-
tem suffers from a high false alarm rate. Regarding one-stage object detection algorithms,
these models do not require generating region proposals, resulting in faster computational
speed. They are suitable for scenarios that demand real-time performance. However, they
often exhibit missed detections and false positives for small objects.

Due to the variations in fire color, lighting conditions, flame characteristics, and smoke
shapes across different scenarios, traditional visual-based methods require the manual
design of fire-detection features. In fire-object-detection methods based on deep learning,
the effectiveness of detecting fires at different scales using a single-scale feature map is
not sufficiently robust. Therefore, researchers have attempted to incorporate multi-scale
feature-fusion techniques to balance the models’ accuracy, model size, and inference speed.
Li et al. [77] proposed EFDNet, which employs a multiscale feature-extraction mechanism
to enhance spatial details in the lower-level feature-extraction stage, thus improving the
discriminative ability for fire-like objects. They utilized an implicit deep supervision mecha-
nism through dense skip connections to enhance the interaction between information flows,
transforming shallow spatial features into high-level semantic information. Additionally,
they employed channel attention mechanisms to selectively emphasize the contributions
of different feature maps, capturing richer and more-effective deep semantic information.
This approach achieved an accuracy of 95.3% with a compact model size of only 4.80 MB.
Huo et al. [72] introduced an optimized multi-scale smoke-detection method based on the
YOLOv4 model. They enhanced the features of small targets by incorporating a spatial
pyramid pooling (SPP) module and reduced the network parameters using depthwise-
separable convolutions. The experimental results demonstrated that their method achieved
an accuracy of 98.5% and a detection speed of 32 FPS, exhibiting higher sensitivity to
early-stage smoke detection.

To reduce false alarms and achieve improved predictive performance, Venâncio et al. [74]
proposed a hybrid fire-detection method based on temporal and spatial patterns. This method
consists of two stages: firstly, potential fire events are detected using a target-detection
model based on the YOLO architecture, and then, the dynamic changes of these events
over time are analyzed, including the duration and spatial expansion of flame and smoke
objects. Xie et al. [78] introduced a video-based fire-detection method that utilizes dynamic
features based on motion flicker and deep static features. Dynamic features were extracted by
analyzing the differences in motion and flicker characteristics between fire and other objects
in the video. They also proposed an adaptive lightweight convolutional neural network
(AL-CNN) to extract deep static features of fire. This approach aims to reduce computational
burden while avoiding the loss of image features caused by fixed-size image inputs.

The utilization of 3D convolutional networks allows for the simultaneous extraction
of feature information from both temporal and spatial dimensions, thereby enhancing the
efficiency of object detection. Huo et al. [79] proposed an end-to-end 3D convolutional
smoke-object-detection network called 3DVSD. The network captures the moving objects
within the input video sequence, extracting spatiotemporal features through 3D convo-
lution. It utilizes the temporal variations in static features to perform identification and
localization in the time dimension. The authors also investigated the influence of different
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time steps and time spans between two video frames on the detection performance. The
experimental results demonstrated that 3DVSD achieved an accuracy of 99.54% and a false
positive rate of 1.11%. However, it should be noted that this method is only applicable
to stationary surveillance cameras. When the camera moves, it becomes challenging to
effectively capture smoke features, leading to potential false positives or missed detections.

In recent years, the Transformer framework has become the mainstream architecture
in natural language processing due to its robust feature-extraction capabilities. Its appli-
cations in the visual domain have also gained widespread attention and utilization [80].
Li et al. [81] incorporated a CNN into the popular DETR network for fire detection, as
shown in Figure 4. This network enhanced the detection of small objects by adding a
normalization-based attention module [82] during the feature-extraction stage and employ-
ing deformable attention mechanisms in the encoder–decoder structure. However, this
approach has drawbacks, such as slower processing speed and higher device requirements.
Yang et al. [83] proposed a fire-detection network called GLCT, which combines a CNN
and Transformer. The model introduces a backbone network called MobileLP based on
the MobileViT block [84], enabling feature extraction of both global and local information.
By combining SPP with a BiFPN for feature fusion and incorporating YOLO Head, the
GLCT network was constructed holistically. The experimental results demonstrated that
the GLCT network achieved an mAP of 80.71, striking a balance between speed and accu-
racy. Yan et al. [71] proposed a fire-detection model based on an enhanced YOLOv5. They
enhanced the model’s feature-extraction capability by introducing coordinate attention
blocks, Swin Transformer blocks, and an adaptive spatial feature fusion model.

Figure 4. Overview of the proposed framework from the original paper [81]. The network model
consists of three parts, feature extraction network, encoder–decoder structure, and prediction head.

For a more-detailed overview of fire-object-detection methods, please refer to Table 3.
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Table 3. The main methods of fire object detection based on deep learning.

Method Technique Application Scenario Dataset Evaluate

Barmpoutis et
al. [62]

Faster R-CNN, linear
dynamical systems,

Grassmannian
VLAD encoding

Multi-scene
fire detection Corsican Fire Database F-m (%) = 99.7

Chaoxia et al. [63]

Faster R-CNN,
color-guided

anchoring strategy,
global

information network

Multi-scene
fire detection

3719 images, including
fire and non-fire

AR (%) = 93.36
F-m (%) = 94

Chen et al. [67] YOLOv5s, CoT, CA,
BiFPN

Multi-scene
fire detection

2976 images including
BowFire and forest fire

mAP@0.5(%) = 87.7

Yan et al. [71]
YOLOv5,CA,ASFF
Swin transformer

Multi-scene
fire detection 2059 flame images mAP@0.5 (%) = 66.8

mAP@[0.5:0.95] (%) = 33.8

Huo et al. [72]
YOLOv4, SPP,

Depthwise-separable
convolution

Multi-scene
fire detection

9270 images, including
smoke and non-smoke

AR (%) = 97.8
FAR (%) = 1.7
F-m (%) = 97.9

Wu et al. [73] YOLO, background
subtraction

Multi-scene
fire detection 5075 flame images mAP@0.5 (%) = 60.4

Venâncio et al. [74] YOLOv5, TPT, AVT Multi-scene fire
detection D-Fire Dataset

mAP@0.5 (%) = 79.10 ± 0.36
APsmoke (%) = 85.88 ± 0.35
AP f ire (%) = 72.32 ± 0.52

Huo et al. [79]
YOLO layer, 3D

convolutional, SPP
Multi-scene fire

detection

14,700 images,
including smoke and

non-smoke

AR (%) = 99.54
FAR (%) = 1.11
FNR (%) = 0.14

Li et al. [81] DETR, NAM Multi-scene fire
detection

26,060 images
including fire, smoke
and two-object with
both smoke and fire

APsmoke (%) = 76.0
AP f ire (%) = 81.7

Yang et al. [83] MobileViT, SPP,
BiFPN, YOLO Head

Multi-scene
fire detection

3,717 images of the
early stages of the fire

mAP@0.5(%) = 80.71

4.3. Fire-Segmentation Methods

Semantic segmentation of fire is the most-granular classification task within fire detec-
tion. This task entails pixel-level classification of an image, where the goal is to separate the
fire targets and their intricate boundaries from the image itself, enabling fire recognition,
localization, and boundary delineation. Image-segmentation techniques prove effective
in identifying and tracking fire incidents, facilitating accurate predictions of fire spread
patterns, swift localization of specific areas, and subsequent measures [85]. For example,
the smoke-segmentation task can be regarded as a dense binary classification problem
on a per-pixel basis. Considering that most smoke can be perceived as inconspicuous
entities due to the small size and lack of prominence in the early stages of a fire, it often
exhibits traits such as translucency and low contrast, rendering smoke region segmentation
challenging. Traditional methods of fire semantic segmentation heavily rely on manually
designed features. However, with the advent of FCN [86], deep learning has gradually
been applied in the field of image semantic segmentation. Numerous novel semantic
segmentation network architectures have been developed for fire semantic segmentation,
such as U-Net [87–89], and DeepLab [90,91], among others.

Khan et al. [92] presented a deep-learning network for smoke detection and segmenta-
tion in hazy environments. The network utilizes an efficient lightweight CNN architecture
called EfficientNet and employs the DeepLabv3+ network for per-pixel smoke segmenta-
tion. The experimental results demonstrated that the network achieved a global accuracy
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of 91.34% and an mIoU of 77.86% on a custom dataset. Yuan et al. [93] proposed the
classification-assisted gated recurrent network (CGRNet), which incorporates attention-
embedding gated recurrent units (GRUs) to learn the spatial correlations of smoke and
long-range feature dependencies. The network employs the Xception network for fea-
ture extraction and utilizes a semantic segmentation module composed of four branches.
Multiple attention convolutional GRU units are stacked to construct a deep network. The
classification results are used to assist the segmentation process and enhance segmentation
accuracy. The experimental results demonstrated that this network performs favorably
in smoke semantic segmentation tasks. However, despite the improvement in detection
accuracy to some extent, the complex algorithmic architecture of the network increases
the requirements for device capabilities in practical applications. Due to the nature of
fire incidents, network models need to achieve real-time monitoring during the smoke-
segmentation process. However, accurate smoke semantic segmentation requires rich
spatial information and a larger receptive field. Shahid et al. [94] proposed using a self-
attention mechanism to augment spatial characteristics with temporal characteristics for
fire detection and segmentation, enabling the network to reduce reliance on spatial factors
such as shape or size while leveraging strong spatiotemporal dependencies. This approach
consists of two stages: in the first stage, region proposals are extracted using spatial–
temporal feature extraction to separate fire region features from the background; in the
second stage, each region proposal is classified as fire or non-fire. Yuan et al. [95] proposed
the cubic-cross-convolutional attention and count prior embedding network (CCENet)
to address the smoke-semantic-segmentation task by combining attention mechanisms
and global information from smoke pixel counts. It generated a cubic-cross-convolutional
kernel by fusing convolutional results along different axes and introduced a cubic-cross-
convolutional attention mechanism to handle long-range dependencies of smoke pixels.
The experimental results on synthetic and real smoke datasets confirmed that the proposed
module enhanced the segmentation task performance. Li et al. [96] proposed a dual-path
real-time smoke segmentation network based on BiSeNet [97]. This network utilizes spatial
path encoding to enrich spatial information details and leverages the contextual path struc-
ture, lightweight models, and global average pooling to provide a sufficient receptive field
for extracting fire smoke features, enhancing the ability to capture global information. The
experimental results demonstrated that this method achieved excellent performance while
reducing complexity, ensuring real-time segmentation speeds, and offering high practical
value.

To meet the requirements of real-time fire segmentation on computationally con-
strained devices, Song et al. [98] proposed the squeezed fire binary segmentation net-
work (SFBSNet). This model utilizes an encoder–decoder architecture and achieves real-
time, efficiency, and high-precision fire segmentation by introducing confusion blocks and
depthwise-separable convolutions. The experimental results demonstrated that SFBSNet
achieved an IoU of 90.76% on the Corsican Fire Dataset. Furthermore, the proposed method
was successfully ported to embedded devices, yielding favorable results. Yuan et al. [99]
presented a lightweight real-time smoke-segmentation network, as shown in Figure 5.
This network enhances the feature-encoding capability while reducing computation by
designing a channel split and shuffle attention module (CSSAM). The experimental results
showed this method’s excellent performance on synthetic and real smoke datasets, with
the network parameters being less than 1 million.



Fire 2023, 6, 315 19 of 27

Figure 5. Overview of the proposed architecture from the original paper [99]. It consists of an
attentional feature-extraction encoder and a feature-fusion decoder.

For forest fire scenarios, aerial images obtained from UAVs differ from ground images,
offering advantages such as comprehensive coverage and high resolution. Utilizing UAV
imagery for forest fire detection presents unique advantages and challenges, particularly
for early-stage wildfire detection [100]. Barmpoutis et al. [91] introduced a novel remote-
sensing system for early-stage fire detection. They employed an RGB 360-degree camera
mounted on a UAV for early forest fire detection, utilizing two Deeplab V3+ models to iden-
tify candidate fire regions and perform flame and smoke segmentation tasks. Given that
the RGB 360-degree camera provides precise horizon segmentation, the authors proposed a
novel adaptive approach using the Karcher mean algorithm. This approach compares re-
gion proposal blocks with designated blocks of natural objects, such as clouds and sunlight,
to reduce false positive detections. The experimental results demonstrated an F1-score of
0.946 for this method. Due to the typically large resolution of aerial images, directly slicing
these high-resolution images for segmenting small fire areas can affect real-time detection.
Guan et al. [101] proposed an improved instance segmentation model called MaskSU
R-CNN for forest fire detection and segmentation in aerial images. By introducing new
attention mechanisms and utilizing a U-Net to reconstruct the MaskIoU branch of Mask
R-CNN, they achieved an accuracy of 91.85% and an F1-score of 0.903. Perrolas et al. [102]
proposed a method based on the quad-tree search to achieve the localization and segmen-
tation of fires at different scales. The quad-tree search approach can adaptively work at
different scales, achieving high computational efficiency. The experimental results demon-
strated an accuracy of 95.8% for the proposed method, showcasing its ability to segment
small fire areas in high-resolution aerial images. Ghali et al. [103] developed an ensem-
ble learning approach combining the EfficientNet-B5 and DenseNet-201 models to detect
wildfires in aerial images. The authors utilized two Transformer-based models, TransUNet
and TransFire, and a deep-CNN-based model called EfficientSeg for wildfire-segmentation
tasks. The experimental results demonstrated 85.12% accuracy and an F1-score of 0.8477
for the recognition task. For the segmentation task, TransUNet achieved 99.90% accuracy
and an F1-score of 0.999.

For a more-detailed overview of fire-semantic-segmentation methods, please refer
to Table 4.
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Table 4. The main methods of fire segmentation based on deep learning.

Method Technique Application Scenario Dataset Evaluate

Khan et al. [92]
EfficientNet,
DeepLabv3+

Smoke detection in
fog scenes

Fog smoke dataset for
252 images

mAR (%) = 93.33
mIoU (%) = 77.86
F-m (%) = 50.76

Yuan et al. [93] Xception, GRU,
CCL, PPM

Smoke detection in
complex scenes

Synthetic smoke image
dataset and a real smoke

image dataset
mIoU (%) = 82.18
mMSE = 0.2212

Shahid et al. [94] 3D convolution,
UNet++, self-attention

Fire detection
in surveillance
video scenes

1033 videos of which 559
contain fire and 434 contain

normal scenes
F-m (%) = 84.80

Yuan et al. [95]
Cubic-cross-
convolution,
PPM, CPA

Multi-scene
smoke detection

A synthetic smoke dataset
consisting of 70,632 images

mIoU (%) = 76.01

Li et al. [96] BiSeNet, PPM, ECA Multi-scene
smoke detection

8280 actual scenes of
smoke images

AR (%) = 98.0
mIoU (%) = 80.9

Song et al. [98]
FusionNet,

depthwise-separable
convolution

Multi-scene
fire detection Corsican Fire Database mIoU (%) = 90.76

Yuan et al. [99] CSSAM, CA, SE Multi-scene
smoke detection

A synthetic smoke dataset
consisting of 70,632 images

mIoU (%) = 74.2

Barmpoutis et al. [91] DeepLab V3+,
post-validation adaptive

Forest fire
smoke detection

Fire detection
360-degree dataset

mIoU (%) = 77.1
F-m (%) = 94.6

Guan et al. [101] MS R-CNN,
UNet, FPN

Forest fire
smoke detection FLAME mIoU (%) = 82.31

F-m (%) = 90.30

Perrolas et al. [102]
SqueezeNet,
Deeplabv3+,

Quadtree search,

Forest fire
smoke detection Corsican Fire Database F-m (%) = 90.30

mIoU-fire (%) = 88.51

Ghali et al. [103] EfficientSeg,
Transformer

Forest fire
smoke detection FLAME F-m (%) = 99.9

5. Discussion

In recent years, the domain of video fire detection, based on deep learning, has
witnessed rapid advancement. Leveraging its formidable capabilities in representation
learning and generalization, it has demonstrated superior performance to conventional
methods in enhancing fire-detection accuracy, reducing false alarms, and minimizing
instances of missed detection. Nonetheless, it is important to note that these techniques
are still in the developmental stage. Within the realm of deep-learning-based video fire
detection applications, several pressing issues and challenges demand resolution. Through
a thorough analysis, this paper proposes potential recommendations for improving the
current methodologies:

(1) Establishing a high-quality fire dataset:
In the domain of fire-detection research, the significant improvement of fire-detection
models relies on the construction of a large-scale dataset comprising high-dimensional
images. Such a dataset enables the models to extract diverse and rich features. How-
ever, the field currently faces challenges such as limited samples, sample imbalance,
and a lack of diversity in the background, resulting in the absence of an authori-
tative standard dataset. The limited availability of publicly accessible fire videos
and image datasets further restricts the models’ generalization capabilities. It is
recommended that researchers construct a high-quality dataset encompassing a wide
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range of scenes, including public buildings, forests, and industrial areas. This dataset
should incorporate various modalities of data, such as visible light and infrared,
while considering different environmental conditions such as indoor settings, haze,
and nighttime scenarios. To address the aforementioned issues, the utilization of
generative adversarial networks (GANs) can aid in generating realistic fire images.
Moreover, 3D computer graphics software can simulate highly controlled smoke
and flame effects, integrating them with existing background image datasets to
create synthetic data. By expanding the dataset, not only can the issue of sample
imbalance be effectively alleviated, but it can also enhance the detection performance
of fire-detection methods. Hence, it is advisable to prioritize the construction of
high-quality fire datasets in video fire detection research, enabling a comprehensive
exploration and evaluation of fire detection algorithms’ performance and application
capabilities.

(2) Exploring information fusion and utilization with multiple features:
In the context of fire detection in various scenarios, such as chemical industrial parks,
forests, and urban buildings, the morphology of smoke and flames exhibits diversity,
accompanied by a wide range of scale variations and significant feature changes.
Deep-learning-based video-fire-detection models still have room for improvement
in effectively extracting the essential characteristics of fires. Furthermore, in video-
based fire detection, limited research addresses the utilization of information between
consecutive video frames to capture the correlation between static features and
dynamic changes. Therefore, it is recommended that researchers fully exploit the
color, texture, flicker, and other characteristics of flames and smoke. Additionally, it is
essential to consider the temporal and spatial information within the video sequence
to effectively reduce the false negative and false positive rates of fire detection models.

(3) Building lightweight models for edge computing devices:
In recent years, deep learning has achieved significant success in fire detection.
However, the inference process of deep learning models heavily relies on high-
performance computing devices, particularly in complex environments where long-
distance data transmission and centralized processing negatively impact efficiency.
As a distributed computing architecture, edge computing places computational ca-
pabilities closer to the end devices to meet the high computational and low-latency
requirements of deep learning [104]. Due to edge computing devices’ limited comput-
ing and storage capacities, real-time performance is compromised for deep learning
models with large network parameters and computational complexity. Thus, im-
mature challenges persist in combining deep-learning-based fire-detection methods
with low-power small-scale edge computing devices. To adapt to the resource limi-
tations and real-time requirements of edge computing devices, it is recommended
that researchers focus on studying lightweight fire-detection methods to enhance
the detection efficiency of the models. Research on model compression primarily
focuses on techniques such as quantization, pruning, and knowledge distillation.
These methods compress the model’s size and computational load by reducing the
data precision, parameter compression, and knowledge transfer [105]. Additionally,
designing efficient and lightweight backbone network architectures is an important
research direction.

(4) Conducting research on fire scene reconstruction and propagation trends based
on video:
By utilizing surveillance devices installed in the vicinity of fire scenes, such as build-
ings and lookout towers, we can gather abundant information about the fire. This
fire-related information can be utilized to infer the physical parameters of the fire
and assess the trends in fire spread. This provides vital auxiliary support for fire
management and emergency response, including fire propagation prediction, intelli-
gent graded response, and handling accidents and disasters. However, the current
research in this field, specifically deep learning methods based on fire scene video
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data, remains inadequate. It is recommended that researchers combine theoretical
models from fire dynamics and heat transfer and utilize a vast amount of real fire
data from various scenarios for their studies. Through the analysis of fire scene video
data, it is possible to infer the physical parameters of the fire, such as the fire size and
flame heat release rate (HRR). Furthermore, it is essential to investigate fire situation
analysis based on video features and the actual conditions of the hazard-formative
environment and the hazard-affected bodies to infer the fire’s propagation trends.
This will significantly contribute to enabling emergency rescue personnel to conduct
rescue operations based on the fire situation. Therefore, it is advisable to carry out
research on fire scene reconstruction and propagation trends based on video in order
to provide more-effective decision support for fire management and emergency
response.

(5) Research on fire detection methods for unmanned emergency rescue equipment:
In recent years, the development of unmanned emergency rescue equipment has
emerged as a prominent focus within the field of emergency response. When con-
fronted with complex and extreme emergency scenarios, the utilization of unmanned
rescue equipment enhances the efficiency and safety of fire rescue operations, thereby
reducing casualties and property losses. Consequently, the study of fire-detection
methods holds paramount importance in researching unmanned emergency rescue
equipment, serving as a crucial technology for achieving equipment control and
decision autonomy. For instance, the application of unmanned aerial drones in
firefighting and rescue operations can encompass a wide range of emergency inspec-
tion tasks, thereby facilitating precise fire scene management. Unmanned drones
equipped with visible light and infrared sensors can detect potential fire hazards
day and night, thus enhancing real-time situational awareness for firefighting and
rescue efforts. Furthermore, by integrating fire-detection methods with intelligent
firefighting and rescue equipment, coupled with the utilization of unmanned auto-
mated firefighting vehicles, it becomes possible to identify areas affected by flames
and to automatically respond by implementing appropriate extinguishing measures.
Consequently, it is recommended to conduct research on fire-detection methods
tailored explicitly for unmanned emergency rescue equipment, thereby promoting
the intelligent and integrated development of such equipment and enhancing the
efficiency of emergency response operations.

6. Conclusions

Fire safety is a crucial component within the modernization of the national emergency
management system and capabilities. Accurate, effective, and timely fire detection plays a
vital role in the initial stages of firefighting. Traditional fire-detection methods primarily
rely on sensor-based technologies, but have limitations and shortcomings. In recent years,
with the advancements in computer vision technology, researchers have widely applied
deep learning in fire detection. By utilizing deep learning methods, remarkable results have
been achieved in fire detection, surpassing traditional methods under certain conditions.
Therefore, this study focused on the research status of video-based fire monitoring methods
based on deep learning, explicitly exploring three aspects: recognition, object detection,
and segmentation. The article presented an overview of the architectures of fire-detection
methods developed in recent years, discussing their advantages and limitations in relevant
fire-detection tasks. Commonly used datasets and evaluation metrics for these tasks were
also introduced. Finally, the article further discussed the significant challenges and future
research directions in applying deep-learning-based fire-detection methods in this field.
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