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Abstract: This research aimed to the characteristics and influence factor of methane and coal dust
gas/solid two-phase mixture explosions by experiment. Through comparative analysis of flame
propagation characteristics, pressure, flame temperature and products, the characteristics of
gas/solid explosions and its influence factor were analyzed. And the influence mechanism was
also revealed. Results indicate that the coal dust parameter and methane concentration were
the important influence factor on mixture explosions. Explosion intensity could be indirectly
affected by influencing the flame propagation. Under the determined coal dust parameter, the
explosion parameter showed a change trend of increase firstly and then decrease as the methane
concentration increased. And it was the greatest at 6% methane concentration. However,
the concentration of coal dust corresponding to the maximum pressure was variable and
was decreased successively as the methane concentration increased. The corresponding dust
concentrations were 500 g/m3 and 200 g/m3 under 2% and 10% methane concentrations,
respectively. Meanwhile, the pressure all presented an increasing trend with the reduction of
coal dust diameter under five coal dust concentrations, and the explosion intensity was the
greatest at 300 g/m3 coal dust concentration. For 2% methane concentration, the explosion
would not occur as the dust concentration was less than 400 g/m3 . And the same phenomena
also appeared as the methane concentration exceeded 10%. The explosion parameter presented
the same change trend with the changes of methane concentration and coal dust parameters.
Besides, the thermal stability and decomposition oxidation characteristics of burned coal dust
were evidently changed compared with unburned coal dust. The weight loss rate and oxidation
reaction rate were decreased, and the corresponding temperature was increased. It indicates
that coal dust participated in gas/dust two-phase explosion reactions, and the pyrolysis reaction
of volatile matter led to an obvious reduction in the weight loss and oxidation reaction rate.
And the precipitation of volatile matter also resulted in an obvious pore structure on its surface.
The physical parameters and internal components of coal dust were important factors affecting
the reaction rates of gas/dust mixture explosions.

Keywords: gas/dust two phases; explosion characteristics; influence factor; flame temperature;
product analysis

1. Induction

The explosion accidents have become more frequent and severe with the expeditious
development of economy and ceaseless progress of social, and it is more prone to a
compound explosion consisting of two combustible substances, gas and dust [1–3]. The
mechanism of gas/dust two-phase mixture explosions become more complex and the
explosion power is greater, seriously causing the enormous economic loss and greatly
restricting the national economy development [4,5]. In view of the industrial disaster,
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the explosion characteristics of gas/dust two-phase mixture should be researched in-
depth [6–9]. Further, the effective protective method can be taken to avoid derivative
accidents and disasters [10–13].

Relevant scholars have conducted the study on the characteristics of gas/dust
two-phase mixture explosions. Kundu [14] proposed that the two-phase mixtures were
easier to ignite than any single component as methane and coal dust coexisted and
resulted in the more serious consequences. Benedetto [15] pointed out that the lower
explosive limit of coal dust could be obviously decreased after adding methane and its
flame propagation velocity was increased. Ji [16] also studied the influence of methane
content on the lower explosive limit and found that the value was evidently reduced
and the explosion intensity was enhanced after adding methane. Zhao [17] also pointed
out that the addition of methane could increase the explosion pressure of coal dust and
its reaction rate was also enhanced with the increase of methane content. Chen [18]
researched the effect of coal dust concentration on gas/dust mixture explosions and
proposed that the temperature and propagation velocity of explosion flame showed
a change trend of increase firstly and then decrease with the rise of coal dust content.
Jing [19] also proposed that the flame propagation velocity showed the same variation
law with the increase of coal dust content. And it was also pointed out that the higher
volatile content would result in the enhancement of mixture explosions. Cloney [20]
found that the particle size of coal dust had an important impact on the velocity history of
mixture explosions. And it was predicted by the model that the velocity was significantly
reduced as the coal dust particle size exceeded a critical value. Gao [21] found that the
lower explosive limit could be reduced as the coal dust particle size decreased, and the
explosion risk caused by coal dust was enhanced.

Meanwhile, scholars also studied the impact of working condition on gas/dust
mixture explosions. Wang [22] pointed out that the ignition delay time had an evidently
effect on mixture explosions and the explosion intensity showed a trend of increase firstly
and then decrease with the rise of ignition delay time under 9.5% methane concentration.
Deng [23] found that ignition energy had also an evidently influence on the mixture
explosion pressures, and the influence of ignition energy was more obvious under the
smaller energy. Besides, Zhou [24] studied the impact of obstacles on the flame propa-
gation process of methane and coal dust mixture explosions, and found that obstacles
could significantly accelerate the flame propagation and increase its propagation velocity
inside a closed pipeline. And the obstacle with the sharper corner would cause more
violent explosion.

Totally, the research on gas/dust mixture explosion characteristics had been conducted,
and mainly focused on the explosion pressure and its influence factor [25,26]. Nevertheless,
it is rare to research the change law and influence mechanism under multi-parameter
conditions based on the combination of gas/dust mixture explosion parameter and flame
propagation characteristics. Especially for the changes in the flame temperature and prod-
ucts [27]. Comprehensive analysis of flame propagation and explosion parameters could
deeply reveal the gas/dust two-phase mixture explosion characteristics and its influence
mechanism. Hence, the main purpose of this experiment was to study the parameter of
methane and coal dust mixture explosions (the pressure peak (∆Pmax), pressure rising
rate (dP/dt), products and flame temperature (T)) and flame propagation characteristics
(especially for the changes in flame morphology and its propagation velocity (v)) under
multi-parameter operating conditions. According to the comprehensive analysis of ex-
plosion parameters, the characteristics of gas/dust mixture explosions and its influence
mechanism can be analyzed in depth.

2. Experimental Setup

Figure 1 shows a schematic diagram of experiment apparatus for studying the
characteristics and influence mechanism of gas/dust mixture explosions [28,29]. It
mainly included eight subsystems. The main structure had been introduced in the
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previous work [30], and only part of the structure was slightly modified. The powder
injection system consisted of a Hartmann powder spraying device, a globe valve and a
solenoid valve. The Hartmann powder spraying device was installed at the center of the
bottom flange through a threaded connection [31]. The premix tank was sequentially
connected with a globe valve and a solenoid valve by the bottom end tube bundle. The
coal dust was placed in the groove of the Hartmann powder spraying device. A bottom-
up vortex was formed as the high-speed premixed gas flow passed through the Hartmann
powder spraying device from the bottom tube bundle due to the obstruction of the
hemispherical “mushroom cap”, lifting the dust in the groove and forming a dust cloud.
The powder spraying method could achieve the relatively uniform dust cloud. The
mixture gas of methane (Purity: 99.99%) and air was prepared inside the premixed tank
by the partial pressure method and the determined vacuum degree inside the vessel was
achieved by a vacuum pump. The powder injection pressure and time were determined
by the calculation and ensured the methane concentration inside the vessel after power
spraying. And the initial pressure was normal. The ignition system was composed of
a high voltage converter, an AC contactor, a solid-state relay and an ignition electrode.
The ignition electrode was placed at a central position with 110 mm height distance
from the bottom flange (ignition voltage (U) = 8 kV). A high-speed camera (Photron
V1212 (Japan)) was adopted to collect the flame propagation process of gas/dust mixture
explosions. And flame propagation velocity history can be computed by the derivation of
flame front position over time. To ensure the accuracy of flame propagation velocity, the
acquisition frequency was set to 2000 fps. Namely, the change in flame front for 0.5 ms. A
high-frequency pressure transmitter (Accuracy: 0.5% FS; Acquisition frequency: 200 Hz)
and a high-speed thermocouple (S-type platinum rhodium; Range: 0–1800 ◦C) were
installed at the center of vessel sidewall to record the pressure and flame temperature
of mixture explosions [32]. The order of powder injection and ignition, as well as data
collection, were realized through a program control and data collection system with a
single channel of 2 M/s [33].
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Figure 1. Schematic diagram of gas/dust mixture explosion experiment apparatus.

Before the experiment, the large coal block was pulverized by a grinder. And the
coal dust with different particle size range was obtained by changing the screen mesh
of different pore diameter. Three kinds of coal dust diameters (d50 = 35.6 µm, 76.6 µm
and 141.4 µm), five kinds of coal dust concentrations (q = 100 g/m3, 200 g/m3, 300 g/m3,
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400 g/m3 and 500 g/m3) and five kinds of methane concentrations (c = 2%, 4%, 6%, 8%
and 10%) were selected for studying mixture explosion experiments. Figure 2 shows the
columnar distribution and microstructure of three coal dust diameters. The morphology of
the three types of coal dusts presented a uniform state and their diameter histories were
approximately normal distribution [34]. Meanwhile, the component content of coal dust
was measured by industrial analysis (Mad = 8.8%, Aad = 6.3%, Vad = 42.8%, FCad = 42.1%).
Simultaneously, the pyrolysis characteristics of coal dust under the high temperature with
a heating rate of 10 K/min was tested. It underwent three stages: the heat absorption,
weight loss and stability. According to the comparison of explosion experiments under dif-
ferent powder injection pressures (Pst), the pressure was maximum as the Pst was 0.40 MPa.
Hence, 0.40 MPa was selected as the powder injection pressure during experiments. Each
condition was repeated 3–4 times to guarantee the experimental accuracy. The data devi-
ation was an important parameter characterizing experimental repeatability and it was
calculated by the ∆Pmax and the average value of repetitive experiments. During this
experiment, the deviation value of ∆Pmax was less than 5.5% through the data analysis.

Fire 2023, 6, x FOR PEER REVIEW 4 of 16 
 

 

by industrial analysis (Mad = 8.8%, Aad = 6.3%, Vad = 42.8%, FCad = 42.1%). Simultaneously, 
the pyrolysis characteristics of coal dust under the high temperature with a heating rate 
of 10 K/min was tested. It underwent three stages: the heat absorption, weight loss and 
stability. According to the comparison of explosion experiments under different powder 
injection pressures (Pst), the pressure was maximum as the Pst was 0.40 MPa. Hence, 0.40 
MPa was selected as the powder injection pressure during experiments. Each condition 
was repeated 3–4 times to guarantee the experimental accuracy. The data deviation was 
an important parameter characterizing experimental repeatability and it was calculated 
by the △Pmax and the average value of repetitive experiments. During this experiment, the 
deviation value of △Pmax was less than 5.5% through the data analysis. 

 
Figure 2. Columnar distribution of coal dust diameter. 

3. Results and Discussions 
3.1. Flame Propagation Characteristics 

Figure 3 shows the comparison of mixture explosion flame propagation processes 
under five coal dust concentrations (d50 = 76.6 µm; c = 8%). The height of flame front at the 
same moment showed a change trend of increase firstly and then decrease as the coal dust 
concentration increased. As q = 300 g/m3, the flame front was the highest and brightest. 
The initial flame exhibited an irregular structure [35]. Meanwhile, the flame got dark and 
the irregular flame became more significant with the increase and decrease of coal dust 
concentration. As 100 g/m3 < q < 300 g/m3, the quantity of coal dust per unit space was 
gradually increased. The heat released by methane explosion could be effectively ab-
sorbed by coal dust. Subsequently, the explosion intensity was increased due to the heat 
release from coal dust combustion. As the flame propagated, the flame front became the 
smooth and developed upward in an “elliptical” structure [36,37]. As q = 300 g/m3, the 
heat release of gas/dust two phase reactions after heat absorption resulted in that the ex-
plosion reaction was the most severe and the flame was the brightest. As 400 g/m3 < q < 
500 g/m3, the brightness was successively darkened and the flame began to become irreg-
ular. Especially the change was more significant as q = 500 g/m3. It was because that the 
reaction heat of methane explosion could be evidently aborted by the coal dust of higher 
concentration per unit space. And the coal dust could not sufficiently occur the explosion 
reaction due to the limited oxygen concentration inside the confined space. Meanwhile, 
the combustion products could greatly consume the explosion reaction heat, leading to an 
evident reduction in flame brightness. And the flame front exhibited an evident wrinkle 

Figure 2. Columnar distribution of coal dust diameter.

3. Results and Discussion
3.1. Flame Propagation Characteristics

Figure 3 shows the comparison of mixture explosion flame propagation processes
under five coal dust concentrations (d50 = 76.6 µm; c = 8%). The height of flame front at the
same moment showed a change trend of increase firstly and then decrease as the coal dust
concentration increased. As q = 300 g/m3, the flame front was the highest and brightest.
The initial flame exhibited an irregular structure [35]. Meanwhile, the flame got dark and
the irregular flame became more significant with the increase and decrease of coal dust
concentration. As 100 g/m3 < q < 300 g/m3, the quantity of coal dust per unit space was
gradually increased. The heat released by methane explosion could be effectively absorbed
by coal dust. Subsequently, the explosion intensity was increased due to the heat release
from coal dust combustion. As the flame propagated, the flame front became the smooth
and developed upward in an “elliptical” structure [36,37]. As q = 300 g/m3, the heat release
of gas/dust two phase reactions after heat absorption resulted in that the explosion reaction
was the most severe and the flame was the brightest. As 400 g/m3 < q < 500 g/m3, the
brightness was successively darkened and the flame began to become irregular. Especially
the change was more significant as q = 500 g/m3. It was because that the reaction heat of
methane explosion could be evidently aborted by the coal dust of higher concentration per
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unit space. And the coal dust could not sufficiently occur the explosion reaction due to
the limited oxygen concentration inside the confined space. Meanwhile, the combustion
products could greatly consume the explosion reaction heat, leading to an evident reduction
in flame brightness. And the flame front exhibited an evident wrinkle and instability. This
explains that the dust concentration had a significant impact on the flame structure and its
propagation characteristics of gas/dust mixture explosions [38].
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Figure 3. Comparison of flame propagation processes under five coal dust concentrations
(a = 100 g/m3, b = 200 g/m3, c = 300 g/m3, d = 400 g/m3 and e = 500 g/m3).

Figure 4 shows the comparison of velocity histories under different coal dust concen-
trations (d50 = 76.6 µm; c = 8%). The velocity history and its rising rate appeared a change
trend of increase firstly and then decrease with the increase of coal dust concentration.
As q = 300 g/m3, the corresponding velocity value was largest and the required time
for reaching the top end was the shortest. The vmax was evidently reduced from 17.7
to 12.9 m/s and 14.6 m/s with the change of coal dust concentration. Especially vmax
was the smallest as q = 500 g/m3. Figure 5 presents the effect of coal dust diameter on
the velocity history of mixture explosions (c = 8%; q = 300 g/m3). The velocity history
was gradually reduced with the increase of coal dust diameter. In particular, vmax was
reduced from 20.1 to 17.1 m/s and its corresponding moment was also obviously de-
layed. It was because that the larger coal dust possessed a smaller specific surface area,
further resulting in a relatively smaller contact area with oxygen and exhibited a slower
explosion reaction rate and a darker flame structure [39].

Figure 6 illustrates the influence of methane concentration on the velocity history
of mixture explosions (d50 = 76.6 µm; q = 300 g/m3). As the methane concentration
increased, the velocity history was also appeared an alteration trend of increase firstly
and then decrease. Under 6% methane concentration, the velocity value was the maximal
(vmax = 21.5 m/s) and the corresponding moment of vmax was the smallest. With the
increase and decrease of methane concentration, the velocity history was evidently
reduced. In particular, the velocity history was smallest (vmax = 12.4 m/s) and the
corresponding moment of vmax was increased from 44 to 82 ms as c = 10%. This was
because that the methane and coal dust could not obtain sufficient oxygen during the
explosion reaction as the methane concentration was increased to 10%, resulting in the
inability of the heat released by the mixture system to maintain a high flame propagation
velocity. Based on the Figures 4–6, the methane concentration and coal dust parameters
could evidently affect the flame propagation characteristics of gas/dust two-phase
mixture explosions.
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3.2. Explosion Pressure

Figure 7 shows the comparison of mixture explosion pressure histories under five
coal dust concentrations (d50 = 76.6 µm; c = 8%). The ∆Pmax appeared a change trend of
increase firstly and then decrease with the increase of coal dust concentration. The pressure
history was maximal as q = 300 g/m3 (∆Pmax = 0.61 MPa). With the increase and decrease
of coal dust concentration, the pressure was significantly decreased. In particular, the
∆Pmax was respectively reduced to 0.57 MPa and 0.52 MPa as q = 100 g/m3 and 500 g/m3.
Meanwhile, the concentration of coal dust corresponding to the maximum pressure was
decreased in turn as the methane concentration was increased. As c = 2% and 10%, the
concentrations of coal dust corresponding to the maximum pressure were 500 g/m3 and
200 g/m3, respectively. Especially for 2% methane concentration, the mixture explosions
would not occur as q < 400 g/m3. This indicates that the coal dust content in the premixed
gas of methane/air had a significant influence on the intensity of gas/dust two-phase
mixture explosions.
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Figure 8 presents the comparison of mixture explosion pressure histories under three
coal dust diameters (q = 300 g/m3; c = 8%). The pressure was evidently reduced as the
coal dust diameter increased. In particular, ∆Pmax was decreased by 3.17% and 11.11%,
respectively. As d50 = 141.4 µm, the pressure value was the smallest (∆Pmax = 0.56 MPa).
Meanwhile, ∆Pmax all appeared a decrease change trend as the coal dust diameter increased.
Besides, the intensity of mixture explosions was maximal as q = 300 g/m3. It also indicates
that not only the concentration of coal dust could affect the explosion intensity, but also its
specific surface area also could evidently affect the gas/dust two-phase mixture explosions.
Figure 9 presents the comparison of mixture explosion pressure histories under different
methane concentrations (q = 300 g/m3; d50 = 76.6 µm). The pressure history also showed
a trend of increase firstly and then decrease as the methane concentration increased. As
c = 6%, ∆Pmax was the maximal (∆Pmax = 0.63 MPa). With the increase and decrease of
methane concentration, ∆Pmax presented an obvious decrease trend. And the pressure
all showed the same change trend under five coal dust concentrations. Especially for 2%
methane concentration, the mixture explosions would not occur as q < 400 g/m3. And
the same phenomenon also occurred as c > 10%. It explains that the concentrations of
combustible gas and dust could evidently affect the explosive limit of gas/dust two phases.
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3.3. Explosion Pressure Rising Rate

Figure 10 illustrates the comparison of (dP/dt) histories under five coal dust concen-
trations (c = 8%; d50 = 76.6 µm). It clear that the (dP/dt) history exhibited the same change
trend as the pressure history. As the coal dust concentration increased, (dP/dt) history
of mixture explosions also showed a change trend of increase firstly and then decrease.
Meanwhile, the (dP/dt) history appeared two peaks (I and II peaks) and the I peak value
was larger ((dP/dt)max). The two peak values were maximal as q = 300 g/m3. With the
decrease and increase of coal dust concentration, the two peak values showed a decrease
trend and the decrease degree of II peak value was more significant. Besides, the coal
dust concentration corresponding to (dP/dt)max of mixture explosions was decreased
sequentially as the methane concentration increased under the determined coal dust
diameter. As c = 4% and 10%, the corresponding coal dust concentrations were 500 g/m3

and 200 g/m3 ((dP/dt)max = 8.4 MPa/s−1 and 6.1 MPa/s−1), respectively.
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Figure 11 presents the comparison of mixture explosion (dP/dt) histories under three
coal dust diameters (c = 8%; q = 300 g/m3). As the coal dust diameter increased, the I and
II peak values of (dP/dt) history presented an obvious decrease trend. In particular, the
decrease extent of the II peak value was more significant and it was reduced by 30.39%.
Meanwhile, (dP/dt)max all appeared a decrease trend and the maximum reduction extent
reached 46.74% with the increase of coal dust diameter as c = 8%. Figure 12 shows the
comparison of mixture explosion (dP/dt) histories under different methane concentrations
(q = 300 g/m3; d50 = 76.6 µm). It clear that the two peak values of (dP/dt) history showed
a trend of increase firstly and then decrease as the methane concentration was raised. As
c = 6%, the pressure rising rate was maximal. In addition, the (dP/dt)max were decreased
by 25.49% and 33.33% under 4% and 6% methane concentrations. As d50 = 76.6 µm,
the pressure rising rates corresponding to 6% and 10% methane concentrations were the
maximal and minimal values, respectively. The above explains that the reaction rate of
gas/dust two-phase mixture explosions could be evidently affected by the methane content,
coal dust diameter and its concentration, thereby affecting the explosion intensity.
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3.4. Flame Temperature

Figure 13 is the comparison of flame temperature histories under five coal dust con-
centrations (c = 8%; d50 = 76.6 µm). The temperature also showed the same change trend
as the pressure history with the increase of coal dust concentration. Especially the flame
temperature was the highest and Tmax reached 1687 ◦C as q = 300 g/m3. For 100 g/m3 and
500 g/m3 methane concentrations, Tmax were respectively reduced to 1315 ◦C and 1438 ◦C
and their decrease extent were 22.05% and 14.76%. As c = 8%, Tmax of mixture explosions
all occurred at q = 300 g/m3 under three dust diameters. Meanwhile, Tmax presented an
obvious decrease trend with the decrease and increase of coal dust concentration. Figure 14
presents the comparison of mixture explosion flame temperature histories under three coal
dust diameters (c = 8%; q = 300 g/m3). Tmax presented an obvious decrease trend (from
1781 to 1569 ◦C) and the slope of temperature history was also decreased as the coal dust
diameter was increased. In addition, the influence of coal dust diameter on Tmax all showed
a same change trend under five coal dust concentrations.
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Figure 14. Comparison of temperature histories under different coal dust diameters (c = 8%;
q = 300 g/m3).

Figure 15 presents the comparison of mixture explosion flame temperature histories
under different methane concentrations (q = 300 g/m3; d50 = 76.6 µm). Tmax of 6% methane
concentration was the highest. With the change of methane concentration, the temperature
history and its slope were decreased successively. Especially for 4% and 10% methane
concentrations, Tmax was decreased by 22.19% and 44.85%, respectively. Besides, the coal
dust concentration corresponding to the highest flame temperature was also successively
reduced with the increase of methane concentration under 76.6 µm coal dust diameter.
Especially, the coal dust concentration corresponding to the highest flame temperature
was 200 g/m3 as c = 10%. This indicates that the combustion degree and heat release of
gas/dust two-phase could be evidently affected by the combustion gas concentration, the
dust diameter and its concentration.
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4. Product Analysis

The DSC and TG histories of coal dust could intuitively reflect its thermal stabil-
ity and decomposition oxidation characteristics after being heated. Figures 16 and 17
illustrate the TG and DSC histories of burned and unburned coal dusts in an oxygen
atmosphere with the increase of temperature at a heating rate of 10 K/min, respec-
tively [40,41]. The coal dust all presented three stages of the temperature rise, weight
loss and stability after being heated, but there were the significant differences between
the burned and unburned coal dust. It clear that from Figure 16, TG history of unburned
coal dust occurred a slight change with the increase of temperature within the range of
0~263 ◦C. This was caused by the evaporation of moisture in coal dust after heating. At
263 ◦C, the coal dust occurred the pyrolysis. And TG history started to decline and the
weight loss rate was gradually increased. The weight loss rate was the fastest and the
corresponding DTG history reached a peak value (1.25%/◦C) at 446 ◦C. This process
was considered the acceleration weightlessness stage of coal dust. Meanwhile, the slope
of coal dust DSC history was rapidly increased at this stage, indicating that the coal
dust experienced a violent oxidation reaction and the heat release was continuously
increased. During the whole thermal decomposition process (263 ◦C < T < 612 ◦C),
there were two exothermic peaks on the DSC history at 446 ◦C and 484 ◦C, and the first
peak (34.91 mW/mg) was significantly greater than the second peak (13.25 mW/mg).
The appearance of the second exothermic peak resulted from the pyrolysis of stable
aromatic rings inside the coal dust [42]. After the first peak value, the weight loss rate
was rapidly decreased. As the temperature increased to 612 ◦C, the weight loss did not
occur anymore and reached the thermal stability stage.
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Compared with unburned coal dust, the thermal stability and decomposition oxidation
of burned coal dust occurred an obvious change, as shown in Figure 17. At 274 ◦C, the
burned coal dust appeared the pyrolysis and the corresponding temperature was slightly
increased. After that, the coal dust entered the accelerated weight loss stage, but the weight
loss rate was obviously decreased. Especially the peak value of weight loss rate (0.78%/◦C)
was evidently reduced and the corresponding temperature was increased (T = 479 ◦C).
Meanwhile, the slope of DSC history during the accelerated weightlessness stage was also
significantly decreased. Especially the exothermic peak value (18.18 mW/mg) of coal dust
oxidation reaction was also significantly decreased and the corresponding temperature
was evidently increased. Although the DSC history also appeared a small second peak, it
was obviously reduced and the corresponding temperature was prolonged compared with
the unburned coal dust. Besides, the temperature of coal dust reaching the stable stage
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was also increased. It indicates that the content of stable aromatic rings in coal dust was
significantly decreased after the combustion, but there was still a small pyrolysis reaction
of remaining stable aromatic rings at the high temperature.
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The above indicates that coal dust participated in the gas/dust two-phase explosion
reactions and the pyrolysis reaction of volatile matter resulted in an evident reduction in
the weight loss and oxidation reaction rate of coal dust. It can be seen by the SEM that the
unburned coal dust presented a blocky structure with sharp edges and corners [43]. Un-
der the action of a high temperature flame, the volatile matter in coal dust continuously
occurred the pyrolysis reaction. The macromolecular chemical bonds were decomposed
into gaseous state (CH4, CO, CO2, N2 and O2, etc.) and small molecular liquids (hydro-
carbons) [44], resulting in a continuous decrease in the functional groups involved in the
oxidation reaction. Besides, the volatile matter gradually accumulated and expanded
inside the coal dust, resulting in an obvious increase of coal dust volume [45]. Subse-
quently, the volatile substances were released from its surface after reaching a certain
pressure, resulting in the numerous pore structure on the coal dust surface [46,47], as
can be seen from Figure 17. The volatile gas generated by coal dust would promote the
gas phase explosion reaction and heat transfer to the coal dust, further promoting the
pyrolysis reaction of coal dust [48].

5. Conclusions

The characteristics and influence factor of gas/dust two-phase mixture explosions
were studied experimentally. Based on the qualitative analysis of flame propagation,
explosion intensity, flame temperature and products, the effects of methane and coal dust
physical parameters on mixture explosion parameter were obtained. And the influence
factor and its mechanism were analyzed deeply. Conclusions are summarized as follows:

First, the flame propagation of mixture explosions could be evidently affected by
the coal dust parameters and methane concentration. The height of flame front at the
same moment showed a change trend of increase firstly and then decrease with the rise
of coal dust concentration. The vmax also presented the same change trend. In particular,
the flame front was the highest and the brightness was the strongest as q = 300 g/m3.
With the increase and decrease of coal dust concentration, the flame brightness was
gradually darkened and the irregular flame front was more significant. The velocity
history also appeared the same change trend as the methane concentration increased.
And the maximal velocity value appeared at 6% methane concentration. However, the
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time for reaching the vessel end was increased and vmax was gradually decreased as the
coal dust dimeter increased.

Second, ∆Pmax all appeared a change trend of increase firstly and then decrease
with the increases of methane and coal dust concentrations. The coal dust concentration
corresponding to the maximum pressure existed difference and was decreased in turn
with the rise of methane concentration. As c = 2% and 10%, the corresponding coal
dust concentrations were 500 g/m3 and 200 g/m3, respectively. However, ∆Pmax was
obviously reduced with the rise of coal dust diameter. The (dP/dt) history also showed
the similar changing trend to the pressure with the changes of methane and coal dust
concentrations and appeared two peak values. With the rise of coal dust diameter, the
two peak values all showed a decrease trend. And the reduction extent of second peak
value was more significant.

Third, Tmax presented the similar changing trend to the pressure with the increases
of methane and coal dust concentrations (increase firstly and then decrease). However,
Tmax showed a decreasing change trend as the coal dust diameter raised. Besides, the
coal dust participated in the gas/dust two-phase explosion reaction at high temperature.
The thermal stability and decomposition oxidation characteristics of burned coal dust
appeared an obvious change compared with the unburned coal dust. The pyrolysis
reaction of volatile matter led to an obvious reduction in the weight loss and oxidation
reaction rate. And the precipitation of volatile matter also resulted in an obvious pore
structure on its surface.

For better prevention of gas/dust two-phase mixture explosions, three suggestions
are proposed: (1) The coal dust concentration corresponding to the maximum pressure was
different with the change of methane concentration. In practice, the mixture concentration
should be kept away from the concentration corresponding to the maximum mixture
explosion pressures. (2) Enterprises involved in powder production should avoid the
presence of small size dust as much as possible and the mixture of the two should exceed
its explosion limit. (3) The space where dust existed should be sprayed with fine water
mist to decrease the precipitation of volatile matter inside the dust and its combustion rate.
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