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Abstract: The knowledge of the effects of fuel dryness on fire occurrence is critical for sound forest fire
management planning, particularly in a changing climate. This study aimed to analyze the monthly
distributions of MODIS active fire (AF) detections and their relationships with a fuel dryness index
(FDI) based on satellite-derived weather and vegetation greenness. Monthly AF distributions showed
unimodal distributions against FDI, which were described using generalized Weibull equations,
fitting a total of 19 vegetation types and ecoregions analyzed in Mexico. Monthly peaks of fire activity
occurred at lower FDI values (wetter fuels) in more hygrophytic ecosystems and ecoregions, such as
wet tropical forests, compared to higher fire activity in higher FDI values (drier fuels) for the more
arid ecosystems, such as desert shrublands. In addition, the range of fuel dryness at which most
monthly fire activity occurred was wider for wetter vegetation types and regions compared to a
narrower range of fuel dryness for higher monthly fire occurrence in the more arid vegetation types
and ecoregions. The results from the current study contribute towards improving our understanding
of the relationships between fuel dryness and fire occurrence in a variety of vegetation types and
regions in Mexico.

Keywords: forest fires; fire occurrence; fuel moisture; relative greenness; NDVI; hotspots

1. Introduction

Understanding the patterns of fire occurrence and its response to climate is vital to fire
risk mitigation and fuel management [1]. Prediction of forest fire ignition patterns may aid
in forest fire-prone areas surveillance and monitoring, in prioritizing forest fuel treatments,
and in fire suppression resources allocation planning [2–5]. Awareness of fire occurrence
can help mitigate the environmental and economic impact of fire events [6] by improving
decision making in strategic fire management planning (e.g., [7–9]). Under scenarios of
climate change and concomitant projected changes in fire regimes (e.g., [10–12]), it is vital
to count on reliable tools for monitoring the impact of changing weather on fuel dryness
conditions and expected fire occurrence patterns.
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Fuel moisture proxies have been found to have a strong influence on fire activity
(e.g., [13–15]). Consequently, several studies relating fire occurrence to climatic spatial
data (e.g., [16–18]) have provided useful information to orient long-term planning of fire
management as affected by climatic variables. Other studies have utilized weather variables
(e.g., [19–21]) or weather-based fire danger indices (e.g., [22–24]) to explain fire occurrence
under changing weather conditions.

In addition, because of the ability of satellite data to map live fuel moisture at finer
spatial scales (e.g., [25–27]), some studies have also utilized satellite measurements of fuel
greenness to analyze fire occurrence (e.g., [28–30]) or its influence on burn probability
(e.g., [31]). Furthermore, some studies have successfully combined both weather-based
dead fuel moisture estimates and satellite observations of live fuel greenness to characterize
fire occurrence risk (e.g., [32–34]). Several of these previous studies (e.g., [35–37]) have
highlighted the need to understand how the influence of fuel dryness on fire activity varies
under contrasting bioclimatic regions and fuel types. Nonetheless, further research is
required on the relationships of weather and satellite-based estimates of fuel moisture and
fire occurrence for a variety of vegetation types and climatic regions.

Due to its extension and its recognized vegetation megadiversity [38,39], Mexico pro-
vides an interesting opportunity for exploring the conjectural relationship between fire
occurrence and fuel dryness for a large variety of vegetation types and climatic conditions,
ranging from arid shrubland ecosystems to tropical rain forests (e.g., [40–42]). Previous
studies in Mexico, mainly at local to regional scales, have evaluated the role of weather
variables such as precipitation (e.g., [43–45]), temperature (e.g., [46–48]), relative mois-
ture [49], or satellite-based fuel greenness (e.g., [50,51]) on fire occurrence risk. In contrast,
at a national scale, studies relating to fire occurrence and fuel dryness are still very scarce
(e.g., [52–54]). These previous studies have highlighted the need to further understand the
variations in the relationships of fuel dryness and fire by region in the country (e.g., [52,54]).

The previous study by Vega-Nieva et al. [40] developed a fuel dryness index (FDI) for
the Mexican vegetation types based on the fire potential index (FPI) of Burgan et al. [32].
The FPI, which combines weather and satellite information, has been largely utilized in
the USA (e.g., [6,34,55]) and Europe [35–37,56,57] for fire danger prediction and mapping.
The development of its adaptation for Mexico involved considering observed minimum
and maximum dead fuel moisture and NDVI values for the study area, as detailed by [40].
Based on this fuel dryness index, the previous study of [40] further developed temporal
models to predict the number of MODIS active fire detections for the main vegetation types
and climatic regions of Mexico. Whereas these temporal models are useful for predicting
the expected number of active fires at a given date for each vegetation type in Mexico, they
offer no information on the distribution of those active fires within these vegetation types.
Furthermore, they do not reveal how these distributions within vegetation types might
vary between dates with different fuel dryness conditions. In addition, there is no previous
national-scale study in Mexico that has attempted to analyze the temporal variations in
the distribution of active fires within vegetation types in relation to a satellite-derived fuel
dryness index.

The current study aimed to model the monthly distribution of MODIS active fire
detections from a fuel dryness index for the main vegetation types and regions in Mexico.
The specific goals were:

(1) To test simple distribution models for predicting the monthly distribution of active
fires (AF) from the fuel dryness index FDI for a total of 19 types of vegetation by regions of
the country in the period 2011–2015;

(2) To explore models with expanded coefficients to explain the variation in the shapes
of AF distributions by the FDI between months and years of varying fuel dryness conditions
for the vegetation types and regions analyzed.
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2. Materials and Methods
2.1. Study Area

The study area was Mexico. Vegetation types (Figure 1) were defined following Vega-
Nieva et al.’s [40] reclassification of the National Institute of Geography and Statistics (IN-
EGI in Spanish) land use and vegetation map (INEGI Land Use Map Series V, 1:25,000 URL:
http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/, accessed on 20 December
2023). Accordingly, five study regions were defined based on the North American level
3 ecoregions map (URL: https://www.epa.gov/eco-research/ecoregions-north-america,
accessed on 20 December 2023), taking into account the patterns of fire occurrence observed
in previous studies [40,54]. This resulted in a total of 19 vegetation and region units to be
analyzed (Figure 1).
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Figure 1. Map of vegetation types and regions. Source: INEGI Land Use Map Series V, 1:25,000.
Where: FOR: temperate forest; DTROPF: Dry Tropical Forest; WTROPF: Wet Tropical Forest; WET:
wetlands; CHAP: chaparral, DSHR: desert shrubby vegetation; NPAS: natural pastureland; AGR:
agriculture; POPUL: human populations; WATER: water bodies; NW, C, NE, NC, and S: Northwest,
Center, Northeast, North-Center, and South regions.

2.2. Fuel Dryness Index Inputs

Fuel dryness index inputs were daily images of moisture content of dead fuels of
100 h (H100) [58–60] and 10-day MODIS NDVI composites at 1 km of spatial resolution,
calculated by the National Commission for Knowledge and Use of Biodiversity (CONABIO)
following the methodology described by [40,60]. The period of study was 2011 to 2015,
defined by H100 availability from CONABIO at the time of the study. The inputs for
H100 images included daily temperature and relative humidity from MODIS atmospheric
profiles, together with precipitation from the TRMM satellite, as described in [60].

2.3. Fuel Dryness Index (FDI) Calculation

The fuel dryness index (FDI) [40] represents an integrated estimate of dead and live
fuel moisture, following the structure of the FPI [32]. The index considers relative dead
and live fuel moisture, scaled with reference to its historical minimum and maximum
values [40]. High FDI values represent dry fuels, reaching FDI values of up to 100, its

http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/
https://www.epa.gov/eco-research/ecoregions-north-america
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maximum historical fuel dryness level (i.e., minimum observed coarse dead fuel moisture
and live vegetation greenness for every pixel), while low FDI values (e.g., <30–40) represent
wet fuels with high live fuel greenness and high dead moisture conditions [32,40].

The FDI was calculated following the adaptation proposed by [40] for the Mexican
vegetation types of the FPI [32], based on Equations (1) to (5):

FDI = (1 − LR)·(1 − MR)·100 (1)

where
LR: live fuel ratio from 10-day composite NDVI images, following Equations (2) to (4).
MR: 100 h dead fuels moisture ratio, following Equation (5).
The calculation of the first component of the index, live ratio (LR), was performed

utilizing Equations (2) to (4), following [32,40]:

LR = RG·LRmax/100 (2)

where RG is relative greenness, following Equation (3):

RG = (NDVI0 − NDVImin)/(NDVImax − NDVImin)·100 (3)

where NDVI0 is the 10 days observed NDVI for every pixel, and NDVImin and NDVImax are
the historical minimum and maximum NDVI values calculated for every pixel, respectively.

LRmax is the maximum observed live ratio value for each pixel.
LRmax was calculated based on observed maximum NDVI values in Mexico following

Equation (4) [40]:

LRmax = 30 + 30·(NDVImax − 125)/(255 − 125) (4)

where NDVImax = maximum NDVI calculated for every pixel. The values 125 and are the
absolute minimum and maximum of the maximum NDVI values observed for Mexico [40].

The second component of the index, 100 h dead fuels moisture ratio (MR), was calcu-
lated following Equation (5) [40]:

MR = (H100 − Hmin)/(Hmax − Hmin) (5)

where H100 is the 100 h dead fuel moisture estimated value, and Hmax and Hmin are the
maximum and minimum H100 values for every pixel, respectively.

2.4. Observed Monthly Number and Percentage of Active Fires by FDI Values

MODIS active fires were downloaded in point shapefile format for the study period
from the Forest Fire Early Warning System of the National Commission for Knowledge and
Use of Biodiversity (CONABIO) (URL: http://incendios.conabio.gob.mx/, accessed on 20
December 2023) [60]. Active fire data from CONABIO were calculated based on the MODIS
fire detection algorithm by Giglio et al. [61], together with the false alarm filtering process
described by Cruz-López et al. [62]. This false alarm filtering involves considering local
thresholds for brightness temperature [62] to prevent active fire commission errors caused
by very high albedo or sunlight. In addition, various masks are also considered, including a
NDVI and vegetation mask to discard desert areas without vegetation together with a mask
of stable lights, the latter generated by the U.S. Air Force Defense Meteorological Satellite
Program (DMSP) Operational Linescan System (OLS) satellite images (URL: https://www.
ncei.noaa.gov/products/dmsp-operational-linescan-system, accessed on 20 December
2023), as described in [62].

http://incendios.conabio.gob.mx/
https://www.ncei.noaa.gov/products/dmsp-operational-linescan-system
https://www.ncei.noaa.gov/products/dmsp-operational-linescan-system
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We extracted the FDI value for each active fire on the corresponding day. The percent-
age of active fires observed for each i value of the FDI for each j month-year was calculated
for every vegetation type and region following Equation (6):

% AFij = Nij/NTj·100 (6)

where % AFij = observed percentage of active fires for each i value of FDI for each j month-
year, Nij: observed number of active fires for each i value of FDI for each j month-year, and
NTj: total number of observed active fires for each j month-year.

Based on % AFij values, the accumulated values of the percentage of active fires (Ac.%
AFij) were calculated for each i value of the FDI for each j month-year for every vegetation
type-region. Monthly % AFij and Ac.% AFij values were calculated for the main months of
the fire season in the study area (from January to May [40]) for the years of study.

2.5. Modeling the Accumulated % AF from FDI Values

Two approaches were tested for modeling the observed monthly distributions of Ac.%
AFij by FDI values. In the first approach, the observed accumulated percentage of active
fires was modeled for every vegetation type with a single Weibull equation following
Equation (7):

Ac.% AFij = 1 − exp(−((FDIij/b)c)) (7)

where Ac.% AFij: observed monthly accumulated percentage of active fires for each i
value of FDI for each j month-year; FDIij: i observed fuel dryness index value for each j
month-year; and b and c are coefficients.

In the second approach, it was hypothesized that b and c coefficients from Equation (7)
would vary each month and year related to fuel dryness conditions, as reflected by
the average monthly FDI value observed for every vegetation type. In this approach,
Equation (7) was expanded to a generalized family of Weibull curves by expanding the b
and c coefficients from Equation (7) for each vegetation type and region. We tested lineal
(Equations (8) and (9)) or power expressions ((10) and (11)). For the lineal formulation, b
and c coefficients from Equation (7) were expanded as:

b = b1 + b2·FDImean (8)

c = c1 + c2·FDImean (9)

where b and c are the general Weibull model coefficients in Equation (7), b1, b2, c1, and
c2 are model coefficients, and FDImean: is the average FDI value for each vegetation type
each month.

For the power formulation:

b = b1·FDImean
b2 (10)

c = c1·FDImean
c2 (11)

where b and c are the general Weibull model coefficients in Equation (7), b1, b2, c1, and
c2 are model coefficients, and FDImean: is the average FDI value for each vegetation type
each month.

The candidate models were evaluated using the coefficient of determination for non-
linear regression (R2), together with root-mean-square error (RMSE) and model Bias as
statistical criteria [63].

3. Results
3.1. Observed % AF Distributions by FDI Value

The observed distributions of the accumulated percentage of active fires using the FDI
value varied by vegetation type, month, and year. Some illustrative examples for selected
vegetation types and regions for months 03–05 of years 2011 (example of dry year) and
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2014 (example of wet year) are shown in Figure 2. Differences in the observed Ac.% AF
distributions were visible between regions, with the driest regions, such as the temper-
ate forest of the NW region (Figure 2a), which receives comparatively less precipitation
(e.g., [40,54]), showing a family of curves with higher observed accumulated percentage
of active fires on the higher (drier) FDI values. In contrast, a higher percentage of active
fires was observed in lower (wetter) FDI values for the more humid regions and vegetation
types, such as temperate or tropical forests from the more humid South region (Figure 2c,d).
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Figure 2. Observed accumulated percentage of active fires by FDI value for the months 03 (March) to
05 (May) of years 2011 (dry year) and 2014 (wet year) for temperate forest of the NW (a) and S (b)
regions and for dry and wet tropical forest of the S region ((c) and (d), respectively). Where: FDI: fuel
dryness index; Ac.% AF: accumulated percentage of active fires by FDI value; FOR: temperate forest;
DTROPF: dry tropical forest; WTROPF: wet tropical forest; NW, S: Northwest and South regions;
OBS: observed values; 201x_0x: year_month.

For most vegetation types, contrasting differences were observed in the accumulated %
AF distributions between dry and wet years. For the dry year 2011 (lines in red and orange),
a higher percentage of active fires occurred in the higher (drier) FDI values, compared to a
higher percentage of active fires observed in the lower (wetter) FDI values for the more
humid year 2014 (curves in blue and green), as shown in Figure 2.

Differences in the shape of the observed Ac.% AF distributions occurred also between
months (Figure 2): for most vegetation types, the month 04 (April) showed the highest
observed percentage of AF of the year occurring in the driest (highest) FDI values, com-
pared to generally wetter months 03 and 05 (March and May). This trend varied between
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vegetation types and years (Figure 2), which might be due to differences in the dryness
conditions of each particular month between different years and vegetation types.

3.2. Predicted % AF Distributions

The best model fits were obtained for all vegetation types with approach 2, utilizing a
linear expression for expanding factor b (Equation (8)) and a power model for expanding
coefficient c (Equation (11)). The best fit coefficients and goodness of fit values using these
expressions are shown in Table 1. The R2 values using the best fit models were higher
than 0.95 for 13 and RMSE values lower than 0.1 for 12 of the 19 modeled vegetation types
(Table 1). The fits with lower R2 (0.74–0.88) and higher RMSE values (0.11–0.17) were found
for temperate forests of the NC region, tropical forests of the NE, wetlands, and shrubby
vegetation, although they were better than with approach 1 in all cases.

Table 1. Coefficients and goodness of fit statistics for the best fit models for predicting the accumu-
lated percentage of active fires by vegetation type and region. Where: Veg_reg: vegetation type and
region; b1, b2, c1, and c2 are the best fit coefficients for Equation (7). with expanded coefficients using
Equations (8) and (10) for b and d, respectively; RMSE: root-mean-square error, R2

adj: adjusted coeffi-
cient of determination; FOR: temperate forest; CHAP: chaparral, DSHR: desert shrubby vegetation;
DTROPF: dry tropical forest; NATPAS: natural pastureland; WET: wetlands; WTROPF: wet tropical
forest; AGR: agriculture; NW, NC, NE, C, and S: Northwest, North-Center, Northeast, Center, and
South regions.

Best Fit Coefficients Goodness of Fit

Veg_reg b1 b2 c1 c2 RMSE R2
adj

FOR_C 0.79 23.17 0.085 1.059 0.06 0.972
FOR_S 0.80 18.78 0.134 0.829 0.05 0.977
FOR_NC 0.35 51.98 0.077 1.150 0.13 0.862
FOR_NE 0.84 14.40 0.091 0.978 0.10 0.917
FOR_NW 0.83 15.88 0.104 1.055 0.06 0.968
D&W_TROPF_S 0.81 20.47 0.621 0.510 0.08 0.954
DTROPF_C 0.95 11.27 0.385 0.726 0.11 0.902
DTROPF_NW 0.90 11.22 0.083 1.173 0.09 0.935
DTROPF_NE 0.77 20.78 0.581 0.564 0.11 0.880
CHAP__NW 0.08 69.27 0.159 0.842 0.09 0.928
AGR_C 0.85 19.66 0.050 1.190 0.10 0.919
AGR_S 0.96 10.03 0.283 0.664 0.06 0.977
AGR_NE 1.03 3.88 0.129 0.920 0.06 0.967
AGR_NW 0.48 46.05 0.714 0.587 0.09 0.929
AGR_NC 0.88 14.77 0.092 1.080 0.07 0.945
WET_S 1.07 3.24 0.048 1.202 0.13 0.863
DSHR_&NPAS 0.68 31.35 0.039 1.258 0.17 0.741

The first modeling approach—e.g., utilizing a single Weibull equation for each vege-
tation and region for explaining all the monthly observed % AF distributions—provided
lower R2 and RMSE values two to three times higher compared to the second modeling
approach—expanding the Weibull coefficients as functions of the observed monthly mean
FDI value for each vegetation type.

An example of the comparison of these two modeling approaches can be seen in
Figure 3 for two contrasting vegetation types, temperate forest of the NW (Figure 3a,b) and
wet tropical forest of the S (Figure 3c,d). It can be seen that whereas modeling strategy 1
with a single Weibull distribution by vegetation type provides an acceptable fit to the
average tendency of the observed AF distributions (Figure 3a,c), modeling strategy 2,
expanding the Weibull coefficients into a family of Weibull distributions (Figure 3b,d),
shows more potential for capturing the monthly variations in the shapes and inflection
points of the observed monthly AF distributions.
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Figure 3. Scatterplot of observed and predicted percentage of active fires for all the months and years
of study for temperate forest of the NW region (a,b) and for wet tropical forest of the S region (c,d).
Predicted values are shown with approach 1 (PRED 1)—utilizing (Equation (7)) (a,c) compared with
approach 2 (PRED 2)—expanding coefficients of Equation (7) following Equations (8) and (10)—(b,d).
Where: FDI: fuel dryness index; Ac.% AF: accumulated percentage of active fires by FDI value; FOR:
temperate forest; DTROPF: WTROPF: wet tropical forest; NW, S: Northwest and South regions. OBS:
observed values; PRED: predicted values.

The b parameter, obtained from Equation (8) from b1 and b2 coefficients (Table 1),
corresponds to the value of the FDI where the inflection points of the accumulated % AF
distribution occur. In the corresponding de-accumulated % AF distribution, this inflection
point defined by the b value represents the value of the FDI where the maximum percentage
of active fires occurs. This is illustrated in Figure 4, which shows the predicted accumu-
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lated % AF distribution (Figure 4a,c) and the corresponding predicted % AF distribution
(Figure 4b,d, respectively) for two contrasting vegetation types (temperate forest of the
NW and wet tropical forest of the S region) for the main fire season months of two years:
the dry year 2011 and the wet year 2014. For the temperate forest of the NW (Figure 4a,b),
the predicted inflection points given by the b coefficient (maximum values in Figure 4b)
ranged from 82 to 87 for the dry 2011 year, and they ranged from 75 to 78 for the wetter
year 2014 (Figure 4b). In the case of the more humid tropical forest of the S (Figure 4c,d),
the predicted maximum values of the % AF curves occurred at lower (wetter) FDI values of
68–72 for the dry year 2011 and of 51–61 for the wetter year 2014 (Figure 4d).
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Figure 4. Predicted percentage of active fires by FDI value for the months 03 to 05 of years 2011
(dry year) and 2014 (wet year) for the temperate forest of the NW region (a,b) and wet tropical forest
of the S region (c,d). Figures on the left (a,c) show the accumulated percentage, and figures on the
right (b,d) show the corresponding percentage of active fires by FDI value. Where: FDI: fuel dryness
index; Ac.% AF: accumulated percentage of active fires by FDI value; % AF: percentage of active fires
by FDI value; FOR: temperate forest; WTROPF: wet tropical forest; NW, S: Northwest, and South
regions; PRED: predicted values; 201x_0x: year_month.

The c parameter from Equation (7), as derived from c1 and c2 (Equation (11)), explains
the shape of the AF curve, with higher c values corresponding to steeper curves—e.g., more
active fires were found to be occurring on a narrower range of fuel dryness FDI values
around the maximum value of the % AF curve—and lower c values representing more flat
curves—e.g., active fires are occurring on a higher range of fuel dryness values. Thus, the
best fit c1 and c2 coefficients (Table 1) may offer information about how narrow the range
of FDI values is where fires occur between vegetation types and regions. For example, in
the case of the vegetation type temperate forest (FOR), the highest c1 and c2 values were
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obtained for the drier NC, NW, and C regions (with best fit values of c2 of 1.15 for NC and
1.05 for NW and C), followed by the more humid NE region (with a best fit c2 value of
0.987), and lower values (c2 of 0.83) were obtained for the temperate forest of the south
region, which is the area of highest precipitation in the country. The lowest c2 coefficient
values were obtained for the tropical forest of the south (c2 of 0.51), and the highest values
were obtained for the most arid vegetation type, desert shrubby vegetation (DSHR), with
a c2 value of 1.26 (Table 1). These differences in the c1 and c2 coefficients (Equation (11))
between vegetation types and regions resulted in higher predicted c values (Equation (7))
(i.e., steeper curves) for drier vegetation types and regions (e.g., shrubs, agriculture, and
temperate forest of the NC, NW, and C regions) and lower predicted c values (i.e., flatter
curves) for the more humid vegetation types and regions such as temperate and tropical
forest of the south.

4. Discussion

The observed variations in the FDI and AF between regions support the observations
from other studies relating the FPI (e.g., [56,57]) or other fire indices (e.g., [64–66]) to fire
occurrence across ecoregions, where separated relationships were observed for different
climatic and vegetation types. The best fit parameters shown in Table 1 seem to have the
potential to capture differences in the shape and inflection points of different vegetation
types under varying fuel dryness conditions. The goodness of fit of the monthly active fire
spatial distributions utilizing the expanded Weibull model was high for most vegetation
types. The lowest R2 values were obtained for vegetation types that either cover relatively
small areas and/or have a relatively low number of fires. Perhaps expanding the period
of observations in future studies might allow us to improve the models presented in this
work for these areas with lower fire occurrence.

The variations in the predicted c-shape coefficients seem to suggest a narrower range
of FDI values for observed fire occurrence on the driest vegetation types and regions and,
conversely, a wider FDI range for fire activity on the more humid vegetation types and
regions. Fires in these latter wetter tropical landscapes are largely altered by agricultural
burns (e.g., [42,67,68]), resulting in the possibility of ignitions occurring under wetter
conditions because of human ignition.

In general, the predicted inflection points at peaks of fire activity determined by the b
coefficient were found at higher FDI values for drier vegetation types. Thus, the predicted
maximum fire occurrence was observed at values of up to a FDI of 85–90 for the most
arid vegetation types, such as desert shrubs, temperate forests, and agriculture of the NC,
NW, and C regions. In contrast, lower maximum values of up to 70–75 were found for
the more humid vegetation types, such as temperate and tropical forests of the S. These
results suggest that in such more humid regions, more fires occur at lower fuel dryness
levels. In addition to the above-mentioned hypothesis of a larger fire occurrence under
moist conditions in areas with higher human activity [42], the presence of different fuel
types, with different responses to fuel moisture, between contrasting ecosystems might
also be influential. In particular, this can be related to previously reported higher mois-
ture thresholds for fire occurrence for more hygrophyte fuels (e.g., [32,69]). For example,
Burgan et al. [32] considered a higher extinction moisture (10 h dead fuels moisture thresh-
old for fire occurrence) of 25% for more humid fuels such as short-needle conifers or black
spruce. Conversely, fuels in more arid climates, such as chaparral, brush, and grass fuels,
were assigned an extinction moisture of 15% by [32]. Similarly, the analysis of fire occur-
rence in an aridity gradient in Spain by [69] also found that higher dryness thresholds for
fire occurrence were required in more arid areas and highlighted the need to account for
fuel-specific variations in the relationships between fuel dryness and fire occurrence. For
the FDI, these results are consistent with previous temporal analysis of fire occurrence
by [40], which also found fire occurrence to be sustained at relatively lower FDI values in
wetter ecosystems. They also support the previous relationship between active fires and
precipitation reported for the period 2000–2007 by [70] and the previous analysis by [45,71]
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between fire emissions and precipitation (2011–2014) in three ecoregions in Mexico. Fur-
thermore, these results support the findings with a FPI between four ecoregions in Europe
by Sebastian-Lopez et al. [56], where the FPI threshold value at which 75% of the fires
occurred was higher for the driest bioclimatic region, compared to the lower FPI threshold
values for the wettest regions

Within each vegetation type, our study found that the predicted values of the b
parameter varied markedly by month and year, reaching values of the FDI lower than
60 in the wettest months and years. This suggests a strong interannual variability in the
spatial distribution of fire ignitions. This observed variation in the relationships between
fuel dryness and fire occurrence between different dates agrees with the results of other
studies where this relationship differed between months (e.g., [64,72,73]) and between
years (e.g., [17,74,75]).

The observed humped shape of the AF distributions against the FDI supports previous
analysis of the FPI in other locations (e.g., [6,32,76]), where fire occurrence has also been
found to peak at certain FPI values and then decrease above this peak value. These
observed humped relationships between fire activity and fuel dryness might be related to a
combination of fuel and moisture limitations on fire occurrence, supporting the previous
hypothesis of fire occurrence constraints (e.g., [71,77,78]). For the lower range of fuel
dryness, decreased fire occurrence might be explained by fuel moisture limitations on
fire ignition and spread. This might be related to observations from previous studies
that have explored proxies of fuel availability against fire activity (e.g., [18,41,42]). In
Mexico, refs. [41,42] found limitations to fire activity in denser and possibly wetter forests,
which are also expected to be dominated by timber litter fuels, with lower shrub and grass
loads. In this sense, the first results from the current exploratory characterization study
relating fuel moisture to fire activity, together with the mentioned previous analysis of
fuel availability [41], should be expanded in future predictive studies aiming at formally
evaluating the separate contributions of fuel loads and fuel moisture on the occurrence and
intensity of active fires.

In addition, for the higher fuel dryness values, it is possible that fuel availability,
particularly for the most arid ecosystems, where extremely dry conditions might result in
reduced fine fuel load and continuity, might be limiting fire occurrence and propagation
(e.g., [20]). This could be related to previous observations of lower fire activity after
precedent periods of low precipitation in grass- and shrub-dominated ecosystems, which
have been attributed to reduced fine fuel load (e.g., [20]). To corroborate this, a formal
evaluation of the effect of antecedent periods of precipitation on fine fuel load accumulation
and its effect on fire occurrence could be performed in future studies.

The observed variation in the AF distributions against the FDI between the vegetation
types and ecoregions analyzed agrees with the contrasting distributions found in the
literature for a similar FPI. For example, the observed AF distributions for the temperate
forests of the NW region (Figure 4b) have relatively similar behavior to the fire activity
distributions by FPI values from the studies of Burgan et al. [32] or Schneider et al. [6] in
California, where fire activity peaked at FPI values of approximately 70–80. In contrast,
the higher fire activity observed in wet tropical forests of the S region at lower FDI values
(Figure 4c,d) is relatively similar to the observations by Yunhao et al. [76] in tropical forests
in Malaysia, where more than 90% of the cumulative MODIS active fire percentage was
observed at a FPI value of 60.

The generalized expanded Weibull formulation proposed in the current study seems
to offer the potential to capture the variation in the relationships between fuel dryness and
the distributions of fire occurrence, observed both between months and years of different
fuel moisture levels and between different vegetation types and regions and could be
tested elsewhere. The current study is the first analysis of monthly active fire distributions
against a satellite-retrieved fuel dryness index in Mexico. Although it represents a useful
first step in improving our understanding of the influence of fuel dryness on the spatial
distributions of fire activity for a variety of vegetation types and regions in the country,
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it should be expanded in future studies. In particular, future studies could build on this
analysis and previous temporal analysis of fire occurrence (e.g., [40]), possibly integrating
the role of anthropogenic and fuel variables of fire ignition (e.g., [41,42]) to further develop
spatio-temporal forecasts of fire occurrence (e.g., [34,79,80]) from both fuel dryness, human
factors (e.g., [81]) and fuel availability.

5. Conclusions

This study analyzed the monthly distributions of MODIS active fire occurrence against
a satellite fuel dryness index for a total of 19 vegetation types and regions in Mexico. Active
fire monthly distributions showed unimodal (i.e., humped) relationships with fuel dryness,
which varied between months, years, and vegetation types. The observed variations in
the monthly distribution of active fires could be described using generalized Weibull
models fitted for every vegetation type and region. Narrower ranges of fuel dryness for
fire occurrence were observed for the drier vegetation types and regions, whereas higher
fire occurrence in a wider range of fuel moisture conditions was observed for the wetter
vegetation types and regions.

The current study is a first step towards improving our understanding of the relation-
ships between fuel moisture and the patterns of fire occurrence for the main vegetation
types and regions in Mexico. Our observed differentiated patterns of fire occurrence be-
tween vegetation types and climatic ecoregions might be related to varying fuel and climatic
limitations and might very possibly also be influenced by anthropogenic ignitions, a point
that deserves further analysis. Future studies will focus on analyzing the spatio-temporal
effects of both fuel dryness and human factors in fire activity to enhance our understanding
of the complex relationships between fuel, weather, and human drivers of fire occurrence.
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