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Abstract: Accidental hydrogen releases from pipelines pose significant risks, particularly with the
expanding deployment of hydrogen infrastructure. Despite this, there has been a lack of thorough
investigation into hydrogen leakage from pipelines, especially under complex real-world conditions.
This study addresses this gap by modeling hydrogen gas dispersion, jet fires, and explosions based
on practical scenarios. Various factors influencing accident consequences, such as leak hole size,
wind speed, wind direction, and trench presence, were systematically examined. The findings reveal
that both hydrogen dispersion distance and jet flame thermal radiation distance increase with leak
hole size and wind speed. Specifically, the longest dispersion and radiation distances occur when
the wind direction aligns with the trench, which is 110 m where the hydrogen concentration is 4%
and 76 m where the radiation is 15.8 kW/m2 in the case of a 325 mm leak hole and wind under
10 m/s. Meanwhile, pipelines lacking trenching exhibit the shortest distances, 0.17 m and 0.98 m,
at a hydrogen concentration of 4% and 15.8 kW/m2 radiation with a leak hole size of 3.25 mm and
no wind. Moreover, under relatively higher wind speeds, hydrogen concentration stratification
occurs. Notably, the low congestion surrounding the pipeline results in an explosion overpressure
too low to cause damage; namely, the highest overpressure is 8 kPa but this lasts less than 0.2 s.
This comprehensive numerical study of hydrogen pipeline leakage offers valuable quantitative
insights, serving as a vital reference for facility siting and design considerations to eliminate the risk
of fire incidents.

Keywords: hydrogen pipeline; jet fire; dispersion; explosion; risk assessment

1. Introduction

Hydrogen stands out as a clean and renewable resource crucial in the fight against
global warming. Hydrogen pipelines serve as a vital component in the industrial chain,
offering a cost-effective means of hydrogen transmission [1]. Numerous hydrogen pipelines
have been established worldwide, particularly in Europe, America, Asia, and even in China,
where pipelines like Jinling–Yangtze, Baling–Changling, and Jiyu-an–Luoyang have been
constructed. However, the low density and low ignition energy of hydrogen make leaks
from pipelines potentially hazardous, leading to risks including gas dispersion, jet fires,
and explosions [2]. Moreover, complicated boundary conditions include variables like
wind speed and wind direction, particularly in cases of elevated and buried pipelines,
which escalate the risks.

Considerable research efforts have been dedicated to pipeline safety, with a primary
focus on hydrogen refueling stations/plants and hydrogen-fuel-cell vehicles. For instance,
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Gao et al. studied hydrogen dispersion, jet fires, and explosions in a nuclear hydrogen
production system [3]. Liang et al. simulated leakage and explosion in renewable hydrogen
refueling stations [4]. Some models have been developed for high-pressure hydrogen
leakage consequences. For high-pressure hydrogen leakage, Birch et al. introduced a
notional nozzle model for hydrogen leakage and dispersion, assuming hydrogen leaking
from a virtual nozzle with characteristics mirroring those of a real nozzle [5–7]. Wang et al.
proposed a simplified model using the specific heat capacity of hydrogen to calculate jet
velocity and jet density based on the notional model [8]. Makarov et al. created models
predicting unignited releases and pressure peaking phenomena in still air [9]. In the realm
of jet fires, Ekoto et al. developed a numerical model for large-scale hydrogen jet fire
radiation [10]. Houf proposed models for visible hydrogen jet fires mainly based on the
flame’s Froude number [11]. Zhou et al. proposed a theoretical model for hydrogen flame
length and heat flux [12]. Regarding hydrogen explosion, the TNO model, BST model,
and TNT equivalent model have been applied [13]. Lowesmith et al. conducted a series of
large-scale methane/hydrogen mixture explosion experiments, and a modified version of
the Shell Global Solutions model was used to describe overpressure, agreeing well with
experimental results [14]. Some works have been conducted on the hydrogen pipeline
risk assessment method, but no quantitative results were revealed [2]. In addition, case
studies of hydrogen pipelines have been conducted. For dispersion, Wilkening conducted
computational fluid dynamics (CFD) simulations to analyze hydrogen leakage and disper-
sion processes under varying wind conditions [6]. For jet fires, Froeling et al. investigated
hydrogen jet fire events for hydrogen transported in natural gas transmission pipelines and
proposed comprehensive mathematical transformations of the geometric view factor [15].
Other works used the CFD method or PHAST to study fire length, radiation, and fire
damage [16–18]. Lowesmith conducted large-scale experiments, finding that, compared
to natural gas pipelines, pipelines conveying a natural gas/hydrogen mixture presented
a slightly lower hazard in terms of thermal dose [19,20]. For explosions, Russo used the
TNO model to assess hydrogen pipeline explosion damage to people and buildings [21].
Groethe et al. conducted large-scale deflagration and detonation experiments on hydrogen
and air mixtures, helping to validate numerical models [22]. CFD methods, such as FLACS,
have been used to simulate vented hydrogen deflagrations [23]. We can conclude that
most studies only focused on one or two consequences; no work has been carried out on
dispersion, jet fires, and explosions due to hydrogen pipeline leakage.

Furthermore, in practical cases, the impact of complex boundary conditions, such as
wind speed and wind direction, on the evolution of gas dispersion, jet fires, and explosions
varies between elevated pipelines and buried pipelines. Leak hole size, wind speed, and
wind direction play crucial roles in gas leakage and dispersion, significantly influencing
incidents. This behavior is notably more intricate and needs to be explored. Hence, it is
imperative to conduct a comprehensive modeling study concerning the consequences of
hydrogen pipeline leakage, taking into account both elevated and buried pipelines.

In this study, the effects of leak hole size and various boundary conditions, including
wind speed, wind direction, and the presence of a trench, on hydrogen gas dispersion, jet
fires, and explosions were systematically investigated based on practical cases. A total
of 180 cases were studied using computational fluid dynamics (CFD) simulations. The
novelty of this work lies in uncovering the influences of leak hole size and boundary
conditions, such as wind speed, wind direction, and the presence of a trench, on the
hazardous consequences of hydrogen pipeline leaks. Additionally, the dispersion distance
and jet flame thermal radiation distance for different scenarios were determined, providing
essential insights into hydrogen pipeline facility siting and risk assessment.

2. Numerical Approach

In this study, we employed a computational fluid dynamics (CFD) method, FLACS,
to investigate three significant outcomes, which were hydrogen gas dispersion, jet fires,
and explosions resulting from accidental releases from hydrogen pipelines. Jet discharge
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and expansion were simulated using a widely employed pseudo-source model known as
the notional-nozzle model, which has been extensively used for modeling hydrocarbon
and hydrogen discharges under high-pressure conditions [5–7]. This model assumes no
mixing of hydrogen with air during the jet expansion, resulting in the determination of
the expanded jet (with a leak hole size typically 2–20 times larger than the discharge hole
size, depending on the discharge pressure) as the pseudo-source in the simulation. The k-ε
model was employed to capture turbulence effects.

For hydrogen combustion modeling, the EDC model assuming an infinite chemical
reaction rate was used and the radiation calculation used the discrete transfer radiation
(DTM) model [24]. Explosion overpressure was simulated using the Euler model. It is
essential to note that FLACS has been validated in real cases including leakage, dispersion,
hydrogen jet fires, and hydrogen explosions in previous studies [23–25].

2.1. 3-D Models and Boundary Conditions

Figure 1 illustrates the 3D model of a hydrogen pipeline, based on an actual hydrogen
pipeline in China, featuring an inner diameter of 325 mm and operating at an absolute
pressure of 40 bar; the concentration of the flowing hydrogen is 99.99% and the operation
temperature is 323 K. To account for typical operational scenarios, two models were
established: one representing leakages in an unconfined open space for elevated pipelines,
and the other simulating releases in a trench for pipelines buried or surrounded by obstacles.
The trench needs to be considered because when the high-pressure hydrogen pipeline leaks,
the momentum of leaking hydrogen impinges on nearby obstacles, forming a trench.
It is worth noting that, in assessing the risk of buried pipeline leakages, some studies
disregarded the impact of soil on the jet’s momentum, while others incorporated a trench
experiment considering the substantial momentum of hydrogen leakage jets [18]. For
buried pipelines, a trench with the dimensions of 2.5 m width, 5 m length, and 2 m depth
was assumed. Five leak hole sizes were designed, representing 0.01%, 0.1%, 1%, 10%, and
100% leakage areas relative to the pipeline’s cross-sectional area, translating to leak hole
sizes of 3.3 mm, 10.3 mm, 32.5 mm, 102.8 mm, and 325 mm. These sizes encompass typical
leakages, ranging from pinholes to pipeline ruptures, as defined by the European Gas
Pipeline Incident Data Group [26]. To evaluate wind interaction with the trench, two wind
directions—parallel and perpendicular to the trench—were considered. The leak direction
was set to be vertical considering that the high momentum of hydrogen forms a crater in
ground and then the jet is redirected to a vertical direction [27]. The analysis incorporated
four typical wind speeds: 0 m/s, 2 m/s, 6 m/s, and 10 m/s, noting that the annual average
wind speed is 6 m/s.
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2.2. Grid Sensitivity Study and Steady Conditions

Hydrogen gas dispersion was studied using grid sizes of 0.3 m, 0.5 m, and 1 m,
with grids stretched towards the far field and refined around the leak hole. Figure 2
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illustrates that a grid size of 1 m results in notably shorter dispersion distances compared
to 0.5 m and 0.3 m, whereas the outcomes for 0.5 m and 0.3 m grid sizes are very similar.
Hence, 0.5 m was chosen as the optimal grid size, balancing accuracy and efficiency.
Noting that the main domain of all cases is 300 m × 300 m × 300 m, the computational
grid was set as 0.5 m × 0.5 m × 0.5 m. For the domain around the leak hole, FLACS
automatically generates finer grids and smooths the gap between the finer grids and the set
grids (0.5 m × 0.5 m). The finer grids are small enough to simulate the smallest leak hole
(3.25 mm).
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Figure 2. Validation of grid sensitivity.

Typical hydrogen gas dispersion plumes are depicted in Figure 3. Red circles and
arrows in Figure 3 show that the gas concentrations of hydrogen jets reached steady states
within 14 s. Red lines in Figure 3 show that the lengths of the hydrogen jets reached stable
states in 14 s as well. In this study, gas concentrations were calculated by averaging over
these steady-state durations. For jet flames, characteristics such as far field radiation and
temperature were stabilized within 4 s and time-averaged values after stabilization were
used in further analysis. Given the swift evolution of explosions, overpressures were
monitored every 0.01 s for analysis.
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3. Results and Discussion
3.1. Hydrogen Gas Dispersion

For hydrogen gas dispersion, it is crucial to consider its flammability limits, which
range from 4% to 75.6% mole fraction, indicating the conditions under which it can lead
to jet fires or explosions under ambient conditions. Note that, as shown in Figure 4,
the dispersion distances L and the radiation distances Lr for different leak hole sizes
are essentially different, illustrating that the present computational grids are capable of
simulating leak hole sizes of 3.25–325 mm. In open spaces, significant hydrogen clouds
above 75.6% (the upper flammability limit, UFL) are less likely to form. Consequently,
in this study, the dispersion distance is defined as the horizontal distance from the leak
hole to the point where the hydrogen concentration reaches 4% (lower flammability limit).
Figure 4 compares dispersion distances (L) in unconfined open spaces and those with a
trench (under two different wind directions); the key findings are:

1. L increases significantly with leak hole size (d) due to the higher mass flow rates
associated with larger leak holes.

2. L moderately increases with wind speed (Uw). Higher wind speeds help gas cloud
dilution but also bend the hydrogen plume toward the ground, increasing horizontal
dispersion. Notably, when d = 3.3 mm and Uw = 0 m/s, L is the shortest at 0.17 m,
equivalent to the hydrogen plume radius. The most hazardous scenario occurs
at d = 325 mm and Uw = 10 m/s, resulting in the longest L at 110 m, serving as a
conservative reference for hydrogen pipeline design.

3. Under the same wind speed, L is the longest when the wind blows towards the longer
side of the trench and is the shortest in unconfined cases. In trench scenarios, wind
blowing towards the longer side results in a longer wind effect length, reducing wind
dilution. Defining L as the ratio of the longest L and the shortest L of the same leak
hole size under the same wind speed, the average value for L is 1.1, offering a valuable
safety design reference. Notably, these ratios vary with the trench shape, a topic
deserving future research.

4. At relatively high wind speeds (6 m/s, 10 m/s), hydrogen attaches to the ground,
causing concentration stratifications. The red circles in Figure 5 denote hydrogen
concentration stratification. The Conada effect and fluid viscosity lead to ground
attachment, particularly evident at high wind speeds, which enhance the Conada
effect. This stratification poses safety risks due to potential ground-level ignition
sources, including friction-induced static electricity and the tendency for flames to de-
velop along the ground post-ignition. This phenomenon necessitates comprehensive
exploration in future hydrogen pipeline leakage studies.
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3.2. Jet Fire

Jet fires occur when the hydrogen is ignited immediately after the leakage. In Figure 6,
the radiation contours of hydrogen jet fires are depicted. The illustration reveals that as
wind speed (Uw) increases, the inertial force of the wind (ρaU2

w, where ρa represents the
density of ambient air) makes the flame bend towards the ground [28]. Consequently,
with higher wind speeds, the flame centerline deviates further from the vertical direction.
Note that no large-scale vertical hydrogen jet flame under the influence of wind has been
reported. However, wind has been considered as an essential factor in many works [13].
The interaction of wind and jet flames is mainly the interaction of the inertial forces brought
by the wind and the momentum of high-pressure hydrogen leakage. The inertial force
brought by the wind, Finertial , can be calculated as Finertial = A f ireρaU2

w [28], where A f ire is
the area of fire facing the wind, ρa is the ambient density, and Uw is the wind speed. Further
simplifying, the vertical jet fire can be understood as two isosceles triangles with the same
base. The flame length and flame width can be calculated following previous work [11].
Finertial is calculated as 123,311.1 kgms−2 under a wind speed of 10 m/s. The momentum of
high-pressure hydrogen leakage (M) is calculated as M = ρj

π
4 u2

0d, where ρj is the density
of jet flow at the leak hole exit, u0 is the gas release rate at the leak hole exit, and d is the
leak area. In addition, ρj and u0 can be calculated following Wang’s work based on the
notional nozzle model [8]. Therefore, ρj is calculated as 1.89 kg/m3, u0 is calculated as
1158.48 m/s, and M is calculated as 210,243.6 kgms−2 when the leak hole size is 325 mm.
The inertial force of wind is unneglectable compared with the momentum of high-pressure
hydrogen leakage, which demonstrates that a wind speed of 10 m/s could have an impact
on the hydrogen flame. Note that Finertial and M are calculated with simplified models only
to show the influence of wind on the hydrogen flame.
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Radiation serves as a fundamental thermal parameter in jet fires and is commonly
utilized as a safety assessment criterion. In this study, the discrete transfer radiation (DTM)
model was employed for radiation simulation. This model solves radiation distribution
within three-dimensional complex geometries by calculating the rays emitted from bound-
aries and solids within the domain [24]. To trace the rays before they strike a solid surface
in each direction within the radiation space, Equation (1) is proposed. Here, In represents
ray intensity at the entry of the control volume, In+1 represents ray intensity at the exit of
the control volume, β is the extinction coefficient, and S is the source function. It is worth
noting that β and S remain constant within the interval χlen.

In+1 = Ine(−β,χlen) + S
[
1 − e(−β,χlen)

]
, (1)

For a finite solid angle δΩ, the incident radiative heat flux and emitted flux can be
obtained by Equations (2) and (3), where εω is emissivity and σ is absorption efficiency, θk
is the polar angle, and ϕk is the azimuthal angle. Thus, the net surface heat flux is shown in
Equation (4).

For a finite solid angle Ω, the incident radiative heat flux and emitted flux can be
determined using Equations (2) and (3), where εω represents emissivity, σ is the absorption



Fire 2024, 7, 8 8 of 12

efficiency, θk is the polar angle, and ϕk is the azimuthal angle. Consequently, the net surface
heat flux is expressed as shown in Equation (4).

qi
(
γp

)
=

Nrays

∑
k=1

Ii,k cos θk sin θk sin dθkdϕk (2)

q0 = (1 − εω)qi + εωσT4
ω (3)

qs = q0 − qi (4)

Furthermore, the energy of a ray passing through a volume n is given by Equation (5),
where An represents the area of the surface element from which the ray is emitted.

Qgn = (In+1 − In)An cos θn sin θn sin dθdϕ (5)

The divergence of radiative heat flux ∇.qR is calculated by adding the energy source
divided by volume, Vn, as in Equation (6). Then, the source function in Equation (1) is
obtained with Equation (7) for the isotopically scattering medium, where IB is the black
body intensity and ω is albedo. In addition, the finite solid angle δΩi is calculated by
angular subdivision as in Equation (8).

The divergence of radiative heat flux ∇.qR is computed by adding the energy source
divided by the volume Vn, as shown in Equation (6). Subsequently, the source function
in Equation (1) is determined as presented in Equation (7) for an isotopically scattering
medium, where IB represents the black body intensity and ω is the albedo. Addition-
ally, the finite solid angle δΩi is calculated through angular subdivision, as described in
Equation (8).

∇.qR =
Ncells

∑
n=1

Qgn

Vn
(6)

S = (1 − ω)IB[T] + 4
ω

π

Ncells

∑
n=1

(
Iavg

)
nδΩn (7)

δΩi = 2 sin θi sin
(

δθ

2

)
δϕ (8)

Table 1 outlines various radiation heat flux (
.

Qrad) criteria for analyzing the thermal
behavior of jet fires. Figure 6 displays the radiation heat flux for different leak hole sizes,
wind speeds, wind directions, and confined/unconfined spaces as calculated by the DTM
model. An illustration of the influential factors on jet fires is presented in Figure 7. The
main findings are as follows:

1. An increase in leak hole size leads to a greater jet flame thermal radiation distance
(Lr). This is attributed to higher mass burning rates for hydrogen, as well as increased
jet momentum and pure plume momentum under the assumption of stoichiometric
combustion.

2. Higher wind speeds result in an increase in Lr. Figure 7 illustrates four types of
momentum contributing to the thermal plume: pure buoyancy momentum from

the hydrogen plume (
.

Qg
ρacpTa

, where
.

Q is the heat release rate (kW), g is gravitational

acceleration (m/s2), ρa is the ambient density (kg/m3), cp is the specific heat of air
at constant pressure (kJkg−1K−1), and Ta is the ambient temperature (K)), thermal
plume momentum from jet fire combustion (

(
ρ f − ρa

)
g, where ρ f is the flame density

(kg/m3)), jet momentum due to high-pressure leaks (ρj
π
4 u2

0d, where ρj is hydrogen
density at the leak hole exit (kg/m3), u0 is the hydrogen flow velocity at the leak hole
exit (m/s), and d is the leak hole diameter (m)), and wind momentum proportional to
wind speed

(
ρaU2

w
)

[28]. Winds not only bring hydrogen downward but also intensify
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turbulence and combustion. Higher wind momentum drives the thermal plume in
the downwind direction, enhancing combustion and leading to an increase in Lr. For
instance, when d = 325 mm, Uw = 10 m/s, and wind blows along the x-direction, Lr
is the longest. Conversely, for d = 3.3 mm and Uw =0 m/s in an unconfined open
space, Lr is the smallest. The radiation criterion of 15.8 kW/m2 is widely used to
denote radiation hazard as the threshold causing 1% fatality and doing no harm to
buildings [27]. In present cases, the greatest distance where radiation is 15.8 kW/m2

is 76 m, offering valuable guidelines for safety design.
3. In confined trench spaces, Lr is greater when winds blow along the x-direction com-

pared to the y-direction as a result of a larger area being directly influenced by the
wind. Overall, for the same leak hole size and wind speed, Lr in unconfined open
space is smaller than Lr in confined trench spaces. It is important to note that hydro-
gen dispersion distribution, crucial in determining jet fire thermal behaviors, also
factors into wind speed and direction. The largest ratio of Lr in a confined trench
space with wind along the x-direction to Lr in an unconfined open space is 2, serving
as a conservative reference for hydrogen pipeline design.

Table 1. Radiation heat flux criteria.

.
Qrad (kW/m2) Damage to Equipment Damage to Humans

35 Failure of operation of equipment 1% fatality (10 s), 100% fatality (60 s)

25 The lowest energy for wood burning
under radiation with no flame

Serious burn (10 s), 100% fatality
(60 s), 1% fatality (10 s)

12.5 The lowest energy for wood burning
under radiation with flame

1% fatality (60 s), first degree burn
(10 s)

6.3 No effect Influencing escape route
4.7 No effect Influencing safety zone

1.58 No effect No effect
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3.3. Explosion

Two critical values, 48.3 kPa and 17 kPa, are widely used as overpressure criteria to
assess hydrogen explosions. Additionally, lethal distance/area, denoting the space between
the leakage point and the area where pressure equals to 48.3 kPa (causing 100% mortality),
is defined. Similarly, harmful distance/area, representing the space between the leakage
point and the area where pressure equals 17 kPa (leading to 1% mortality), is established [3].
In this study, explosion simulations were carried out. Leakages with hole sizes of 3.3 mm
and 10.3 mm did not result in explosions due to the limited volume of the hydrogen gas
cloud and the low congestion.

For leak hole sizes of 32.5 mm, 102.8 mm, and 325 mm, larger leak hole sizes leading
to larger-volume hydrogen gas clouds, explosions occurred. In these cases, owing to low
congestion, the whole process of explosion lasted for 0.15 s, 0.16 s, and 0.19 s, respectively.
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During the process, overpressure first increased to the maximum value then decayed to
the atmospheric pressure. The maximum overpressure in all cases was 8 kPa. Moreover,
the impulse, which is the integral of the duration of the explosion and overpressure, is
insufficient to cause damage owing to the low congestion around the hydrogen pipeline
investigated in the present work.

Consequently, the likelihood of hydrogen pipeline explosions in low-congestion re-
gions is minimal. It is worth noting that a previous study conducted hydrogen explosion
experiments at refueling stations using plastic film enclosures. In empty spaces within the
plastic film, the maximum measured overpressure was 7 kPa, which is too low to cause
significant damage. This aligns with our findings, indicating that relatively spacious areas
pose a low risk of explosion [3]. However, it is important to acknowledge that explosion
hazards in hydrogen refueling stations with high congestion are significant due to the
added congestion from facilities [3].

In summary, this study provides a comprehensive analysis of hydrogen leaks, con-
sidering gas dispersion, jet fires, and explosions, and quantitatively delineates the scope
of potential hazards, shedding lights on consequence evolution under complex boundary
conditions for hydrogen pipelines. These insights benefit the design and risk assessment of
hydrogen pipeline systems.

4. Conclusions

This study investigated the consequences of hydrogen gas dispersion, jet fires, and
explosions resulting from hydrogen pipeline leaks. Using practical case simulations with
computational fluid dynamics (CFD), the study explored five leak hole sizes, four wind
speeds, two wind directions, and both unconfined and confined trench spaces. The main
findings are:

1. Dispersion distances increase with leak hole size and wind speed. Moreover, the
dispersion distance is greater under winds in the x-direction compared to the y-
direction, and the dispersion distance in unconfined open spaces is the smallest.
The maximum dispersion distance observed was 110 m. Additionally, hydrogen
concentration stratifications occur under relatively high wind speeds due to the
Conada effect.

2. Jet flame thermal radiation distances, calculated using the DTM model, increase with
leak hole size and wind speed. The radiation distance is the largest under winds in
the x-direction and the smallest in unconfined open spaces. The longest radiation
distance where the radiation is 15.8 kW/2 is 76 m.

3. Explosion overpressures resulting from larger leak hole sizes in the present simulated
pipelines are insufficient to cause damage. Leaks from smaller hole sizes, such as
10 mm or lower, pose minimal explosion hazards.
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