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Abstract: In the context of large-scale fire areas and complex forest environments, the task of
identifying the subtle features and aspects of fire can pose a significant challenge for the deep learning
model. As a result, to enhance the model’s ability to represent features and its precision in detection,
this study initially introduces ConvNeXtV2 and Conv2Former to the You Only Look Once version 7
(YOLOv7) algorithm, separately, and then compares the results with the original YOLOv7 algorithm
through experiments. After comprehensive comparison, the proposed ConvNeXtV2-YOLOv7 based
on ConvNeXtV2 exhibits a superior performance in detecting forest fires. Additionally, in order to
further focus the network on the crucial information in the task of detecting forest fires and minimize
irrelevant background interference, the efficient layer aggregation network (ELAN) structure in
the backbone network is enhanced by adding four attention mechanisms: the normalization-based
attention module (NAM), simple attention mechanism (SimAM), global attention mechanism (GAM),
and convolutional block attention module (CBAM). The experimental results, which demonstrate the
suitability of ELAN combined with the CBAM module for forest fire detection, lead to the proposal
of a new method for forest fire detection called CNTCB-YOLOv7. The CNTCB-YOLOv7 algorithm
outperforms the YOLOv7 algorithm, with an increase in accuracy of 2.39%, recall rate of 0.73%, and
average precision (AP) of 1.14%.

Keywords: forest fire recognition; ConvNeXtV2; YOLOv7; CBAM; ELAN-CBAM; CNTCB-YOLOv7

1. Introduction

Forests are a vital component of the Earth’s ecosystem, providing rich biodiversity
and habitats for numerous plants and animals. Their presence contributes to maintaining
ecological balance, promoting species interactions, and ensuring the stability of ecosys-
tems [1,2]. However, forest fires devastate habitats and biodiversity. They are categorized
by location into ground, surface, and crown fires, differing in behavior and impact. Their
size, measured by the area burned or heat release rate (HRR), evolving from growth to
decay phases, is influenced by environmental conditions and management. They can
swiftly engulf vegetation and trees, leaving many wildlife species without their homes.
Additionally, the significant carbon emissions released by forest fires exacerbate global
climate change [3,4]. This climate change, in turn, further increases the risk of forest fires,
creating a vicious cycle.

The early detection of forest fires allows for prompt action and emergency response.
This helps in quickly controlling the fire and reducing the damage and loss caused by the
fire [5–8]. At present, there are many ways to detect forest fires. Observation towers are a
common way to see if forest fires are happening [9,10]. With the development of satellite
remote sensing technology, people begin to observe forest fires by satellite [11,12]. The
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deployment of sensors to detect forest fires is also one of the common ways that real-time
forest environment detection can quickly discover the fire situation. Deep learning models
can perform real-time processing and analysis, enabling rapid detection and response to
forest fires [13–15]. This is crucial for emergency rescue and fire control, as it reduces the
response time and helps minimize the damage caused by fires to some extent [16–19]. As a
deep-learning-based object detection algorithm, YOLOv7 offers a high detection accuracy
and inference speed. It is currently widely applied in the field of forest fire detection.

In order to address the limitations of traditional methods and reduce false alarms and
complexity, Yar et al. proposed an improved YOLOv5s model that integrates a Stem module
in the backbone of YOLOv5, replaces the larger kernel with a smaller kernel in the neck,
and adds a P6 module in the head. Their model outperforms 12 other detection models
and contributes a medium-scale annotated fire dataset for future research [20]. Al-Smadi
et al. proposed a new framework that reduces the sensitivity of various YOLO detection
models. Different yolo models, such as YOLOv5 and YOLOv7, are compared with Fast
R-CNN (Region-based Convolutional Neural Network) and Faster R-CNN in detection
performance and speed. The results show that the proposed method achieves significantly
better results than the most advanced target detection algorithms while maintaining a
satisfactory level of performance under challenging environmental conditions [21]. Zhou
et al., based on the overall structure of YOLOv5 and MobileNetV3 as the backbone network,
used semi-supervised knowledge extraction (SSLD) for training, which improved the
convergence speed and accuracy of the model [22]. Dilli et al. used the target detection
library YOLO model based on DL to carry out early wildfire detection on UAV thermal
images, and used the significance graph integrated with thermal images to solve the
shortcomings of using thermal images. The proposed approach is considered capable of
providing technical support for night monitoring to reduce the catastrophic loss of forest
resources and human and animal life in the early stages of wild forest fires [23]. Zhang et al.
proposed a multi-scale convergent coordinated pyramid network with mixed attention
and fast Robust NMS (MMFNet) for the rapid detection of forest fire smoke [24]. Jin
et al. designed an enveloping self-focusing mechanism to solve the problem of identifying
bad fire sources, focusing on the characteristics of the channel and spatial direction, and
collecting contextual information as accurately as possible. In addition, a new feature
extraction module is constructed to improve the detection efficiency while preserving the
feature information [25]. In summary, these studies share a common focus on improving
fire detection performance using various modifications and enhancements to YOLO-based
models. They explore different techniques, such as integrating new modules, comparing
YOLO models with other detection algorithms, utilizing semi-supervised learning, and
incorporating attention mechanisms. Despite their promising results, these studies may still
face challenges in addressing specific issues, such as sensitivity to environmental conditions,
identification of bad fire sources, and efficient feature extraction. Further research and
development are needed to optimize these models and address their limitations.

With the continuous advancement of the YOLO series algorithms, YOLOv7 has
emerged as a remarkable innovation, offering improved accuracy and faster processing
speeds compared to its predecessor, YOLOv5. The application of YOLOv7 in forest fire
detection holds great potential for enhancing the effectiveness of such detection efforts.
However, the task of detecting forest fires poses certain challenges, particularly in scenarios
where the fire area is extensive and the forest background is complex. In such cases, the
model may struggle to capture the intricate details and distinguishing features of the fire.

To address these challenges and bolster the applicability of the YOLOv7 algorithm in
forest fire detection, this research focuses on augmenting the model’s capabilities by incor-
porating ConvNextV2 and ConvFormer networks. ConvNeXtV2 integrates self-supervised
learning techniques along with Fully Convolutional Masked AutoEncoder (FCMAE) and
Global Response Normalization (GRN) layers, enhancing the model’s performance in
various recognition tasks. Conv2Former employs a simple convolutional modulation
layer instead of the self-attention mechanism, and compared with residual modules, the



Fire 2024, 7, 54 3 of 16

convolutional modulation operation in Conv2Former can also adapt to the content of the
input. Moreover, to enhance the model’s ability to discern crucial information amidst com-
plex forest backgrounds, an attention mechanism is introduced through the ELAN-CBAM
module, building upon the ELAN structure. This culmination of efforts gives rise to the
CNTCB-YOLOv7 algorithm for forest fire detection.

Compared with the standard YOLOv7 algorithm, the CNTCB-YOLOv7 algorithm
places greater emphasis on global information, effectively reducing false detection and
elevating both the detection accuracy and AP. Leveraging these improvements, the research
contributes to the study of forest fire behavior and the identification of key characteristics
that aid in the understanding and prediction of forest fire propagation. This, in turn, facili-
tates more proactive and targeted firefighting strategies, ultimately leading to improved
forest fire management and mitigation efforts. In addition, real-time monitoring and anal-
ysis of forest fire situations can collect a large amount of fire data, which is helpful for
studying the spread patterns and characteristics of forest fires under different environments
and conditions, such as the rate of fire spread. The improved model performance can also
support the establishment of more accurate forest fire risk prediction models, enhancing
the ability for early warning and forecasting. In conclusion, the proposed method in this
study provides technical support for in-depth research on forest fire behavior and forest
fire management.

2. Materials and Methods
2.1. Hyperparameter Settings and Dataset
2.1.1. Hyperparameter Settings

The hyperparameter settings in the experiments include the image size, epochs, batch
size, initial learning rate (Lr0), and optimizer. Image size determines the input size of the
model, usually measured in pixels, set to 640 × 640 pixels in our experiments. Epochs
determine the number of iterations the model goes through the entire dataset during
the training process, with 200 epochs set for this study. Batch size refers to the number
of samples used to update the model weights each time, and here it is set to 8. Initial
learning rate (Lr0) determines the initial learning speed of the model, which is set at 0.01 in
our case. The optimizer determines the optimization method used by the model to find
local optimal solutions, and in this study, stochastic gradient descent (SGD) is used as the
optimization method.

The aforementioned settings, which contribute to enhancing the training process
and the performance of the models, are derived from experimental trials and empirical
assessments. The optimal configurations of these hyperparameters are influenced by the
characteristics of the datasets and the architecture of the models. It is crucial to adjust these
values when conducting different experiments to ensure the best possible outcomes.

2.1.2. Dataset

In order to obtain forest fire images required by model training, we employed various
data collection methods. Firstly, we downloaded traditional forest fire images and non-
forest fire images using web crawler technology. Secondly, we extracted a series of frames
from downloaded forest fire videos to serve as additional forest fire images. Moreover, we
utilized publicly available fire datasets, such as the BoWFireDataset [26]. The combined use
of these data sources contributes to enhancing the quality and effectiveness of the model
training. A total of 2590 images were obtained. Among the collected images, 2058 images
were positive sample images with forest fire, while the remaining 532 images were negative
sample images without forest fire. To ensure the compatibility of the input data with our
model’s requirements, all images were uniformly resized to a resolution of 640 × 640 pixels.
This standardization is crucial for maintaining consistency across the dataset and facilitating
efficient processing by the models employed in our study. Furthermore, considering the
specific context of detecting large-scale fires within complex forest environments, certain
images underwent cropping, aimed at enhancing the proportional representation of fire



Fire 2024, 7, 54 4 of 16

within these images. Finally, the prepared forest fire dataset was divided into the training
set and verification set according to the ratio of 8:2. Figure 1 shows some fire and non-fire
images included in the dataset.

(a) (b)

(c) (d)

Figure 1. Dateset of forest fires: (a,b,d) fire images; and (c) non-fire image.

2.1.3. Model Performance Evaluation Index

In this paper, the task of forest fire detection is classified as a binary problem, that
is, it is judged as fire or non-fire. For the forest fire category, fire is a positive sample
and non-fire is a negative sample. In the binary classification problem of forest fire, the
following four situations usually occur in the data sample, which are True Positive (TP),
the result predicted by the model is positive sample, and the actual number of samples
is positive sample, that is, the fire is predicted by the model, and the real picture is also
fire, respectively. If the example is True Negative (TN), the result predicted by the model
is negative samples, and the actual number of samples is negative samples; that is, it is
predicted by the model as non-fire, and the real picture is also non-fire. In the case of False
Positive (FP), the predicted result of the model is positive samples, but it is actually the
number of samples of negative samples, that is, the number of samples that are misjudged
as fire without fire. False Negative example (FN): The result predicted by the model is
negative samples, but it is actually the number of samples of positive samples; that is, the
number of samples that misjudge the fire as non-fire [27].

Precision is the proportion of true positive samples out of all the samples predicted as
positive by the model. The calculation method is shown as Equation (1) [28].

Precision =
TP

TP + FP
(1)

Recall is the proportion of true positive samples that are accurately predicted as
positive by the model, out of all the true positive samples. The calculation method is shown
as Equation (2) [29].

Recall =
TP

TP + FN
(2)
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Average precision (AP) is a metric that measures the average precision. It is obtained by
calculating the area under the Precision–Recall (P-R) curve generated by plotting precision
(P) on the x-axis and recall (R) on the y-axis. The calculation formula for AP is shown as
Equation (3) [30].

AP =
∫ 1

0
P(R)dR (3)

When calculating AP, the average precision values for different classes are weighted
and averaged to obtain the mean average precision (mAP) [31]. The calculation formula is
shown as Equation (4), where n represents the total number of classes and APi represents
the AP value for the i-th class.

mAP =
∑n

i=1 APi

n
(4)

mAP is commonly used to evaluate object detection algorithms. In this paper, we
focus on forest fire detection, a single class, so we use the AP metric with a 50% Intersection
Over Union (IOU) threshold, referred to as AP50 [32].

2.2. YOLOv7 Algorithm Structure

YOLOv7 is an object detection model known for its high accuracy, ease of training,
and deployment capabilities [33]. It has a faster network speed compared with the YOLOv5
model and achieves better results on the MS COCO (Microsoft Common Objects in Context)
dataset. The overall network structure of YOLOv7 is shown in Figure 2, which shares
similarities with the network structure of YOLOv5, with the main difference being the
internal network modules. At the input end, YOLOv7 uses the same Mosaic data augmen-
tation method as YOLOv5, as well as adaptive anchor box calculation and adaptive image
scaling. The main backbone network of YOLOv7 incorporates the Extended Efficient Layer
Aggregation Networks (E-ELAN) and Max Pooling (MP) modules, merging the model’s
Neck and Head layers into a unified Head layer. In Figure 2, MP1 and MP2 are two separate
MP modules used in the YOLOv7 backbone network.

As shown in the diagram, the CBS (Convolution-BatchNorm-Silu) module consists of
three components: a convolutional layer, a Batch Normalization layer, and a Silu (Sigmoid
Linear Unit) activation function. The ELAN (Effective Layer Aggregation Network) module
is an effective hierarchical aggregation network that employs a feature fusion technique
to enhance the model’s feature extraction capability and obtain stronger feature represen-
tations. The ELAN module has two main branches. One branch adjusts the number of
channels using a 1 × 1 convolutional kernel, while the other branch adjusts the number
of channels with a 1 × 1 convolutional kernel and then performs feature extraction using
four consecutive 1 × 1 convolutional kernels. The outputs of the four branches are then
concatenated to obtain the final output. The Efficient Layer Aggregation Networks-Higher
(ELAN-H) module is similar to the ELAN module in structure, but it differs in the number
of selected output features to be concatenated in the second branch, which is higher.

The MP module also consists of two main branches, as shown in Figure 3, and its main
purpose is to perform downsampling operations on the feature maps. One branch uses
max pooling followed by a 1 × 1 convolutional layer with a stride of 1 to adjust the number
of channels. The other branch adjusts the number of channels with a 1 × 1 convolutional
layer and then performs downsampling using a 3 × 3 convolutional layer with a stride of 2.
The outputs of the two branches are concatenated to obtain the final downsampling output.

The SPPCSPC module, as a component of the YOLOv7 structure, effectively extracts
image features and improves the detection accuracy of the model. The SPPCSPC module
consists of two parts: SPP (Spatial Pyramid Pooling) and CSP (Cross Stage Partial). The SPP
part is primarily responsible for performing feature pooling at different scales to extract
features of varying sizes. The CSP part aims to reduce the number of parameters and further
enhance the feature extraction capabilities. The structure of the SPPCSPC module is shown
in Figure 4, featuring multiple branches of max pooling. Each max pooling branch operates
at a different scale. The pooling operations at different scales have different receptive fields,
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allowing the model to better handle objects of varying sizes and ensuring the effectiveness
of the detection process.

Figure 2. YOLOv7 Model Architecture.

Figure 3. MP module.

Figure 4. SPPCSPC module.

2.3. Improving the Network Used by the YOLO7 Algorithm
2.3.1. ConvNeXtV2

The ConvNeXt model was proposed by leveraging the network structure of the
Swin Transformer and using the ResNet-50 architecture as a base, as described in [34].
The performance of the ConvNeXt model on COCO detection and ADE20K surpasses
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that of the Swin Transformer. The authors of the ConvNeXt model trained the ResNet-50
network model using ViTs’ strategy, which yielded better results compared with the original.
Building upon this baseline, a series of experiments were conducted. The ConvNeXt model
applies downsampling to the feature maps using a 4 × 4 convolutional kernel with the
same stride as the Swin Transformer system, resulting in a slight improvement in accuracy.
Various sizes of convolutional kernels were experimented with in the ConvNeXt model, and
the results indicate that the 7 × 7 kernel achieved the best performance and highest accuracy.

Modern convolutional neural networks, such as ConvNeXt, have demonstrated an
advanced performance in various scenarios, thanks to continuous improvements in rep-
resentation learning frameworks and architectures. Researchers attempted to combine
ConvNeXt with self-supervised learning techniques like masked autoencoders (MAE),
but the resulting performance was unsatisfactory. Therefore, it was proposed to add a
FCMAE and GRN layer to the structure of the previous version of ConvNeXt (ConvNeXt
V1) to enhance feature competition between channels. This new model, which incorpo-
rates both self-supervised learning techniques and architectural improvements, is referred
to as ConvNeXt V2 [35]. The block structures of the ConvNeXt V1 and ConvNeXt V2
are shown in Figure 5. Compared with ConvNeXt V1, the GRN layer was added after
the MLP (Multi-Layer Perceptron) layer and the redundant LayerScale was dropped in
ConvNeXt V2.

FCMAE is a novel self-supervised learning framework that comprises a ConvNeXt
encoder based on sparse convolution and a lightweight ConvNeXt block decoder. This
framework is capable of efficiently processing masked inputs and reduces the computa-
tional cost of pre-training. GRN is a normalization technique used in convolutional neural
networks to enhance contrast and selectivity between channels, with the main goal of
improving the model’s performance in recognition tasks. GRN consists of three steps:
global feature aggregation, feature normalization, and feature calibration. The ConvNeXt
V2 part in Figure 5 illustrates the structure of adding GRN to the ConvNeXt block. In the
ConvNeXt V2 model, the adoption of fully convolutional masked autoencoder and global
response normalization techniques further enhances the model’s performance in various
recognition tasks.

Figure 5. Block structures of ConvNeXt V1 and ConvNeXt V2. In ConvNeXt V2, the GRN layer (in
green) was added after the dimension-expansion MLP layer and the LayerScale (in red) was dropped.

2.3.2. Conv2Former

The self-attention mechanism in transformers can model global pairwise dependen-
cies and provide a more efficient way of encoding spatial information. However, when
processing high-resolution images, self-attention can be computationally expensive. Con-
vNext, by borrowing the design and training approach from transformers, achieves a better
performance than some common transformers. To date, how to effectively construct more
powerful models using convolutions remains a hot research topic.
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In Conv2Former, when processing high-resolution input images, a simple convolu-
tional modulation layer is used instead of self-attention, which can save memory con-
sumption compared with self-attention. Moreover, compared with residual modules, the
convolutional modulation operation in Conv2Former can also adapt to the content of the
input [36]. As shown in Figure 6, on the left is the self-attention operation, where the output
of each pixel is obtained by taking the weighted sum of all the positions. Similarly, this
process can be simulated by the convolutional modulation operation on the right side of the
figure, which calculates the output of a large kernel convolution and performs a Hadamard
product with the value representation. The results show that using convolution to obtain
the weight matrix can also achieve good results.

Figure 6. Self attention mechanism and convolutional modulation operation.

2.4. Improved Strategy for YOLOv7

In order to improve feature extraction and information fusion for forest fire detec-
tion in larger and more complex scenarios, and to enhance the detection accuracy of the
YOLOv7 algorithm, this study modifies the backbone network and the Head layer of
the YOLOv7 algorithm. Specifically, high-performance ConvNeXtV2, Transformer-style
Conv2Former, introduced in the previous chapter, are used to replace the first and last
ELAN modules in the backbone network, as well as all ELAN-H modules in the head layer.
As a result, multiple improved versions of the YOLOv7 algorithm are obtained, namely
ConNeXtV2-YOLOv7 and ConvFormer-YOLOv7. As the overall network architecture is
similar, this study only presents the network structure of ConNeXtV2-YOLOv7, as shown
in the Figure 7.

2.4.1. Backbone and Head Improvement

To enhance the performance of convolutional neural network(CNN) models, a com-
mon approach is to introduce attention mechanisms. Attention mechanisms can suppress
irrelevant noise information and allow CNN models to focus more on useful information,
thereby improving the model’s expressive power to handle different visual tasks. Addition-
ally, attention mechanisms can select and compress feature maps, suppressing non-essential
information and reducing the dimensionality of feature maps, thereby reducing computa-
tional complexity. Attention mechanisms can improve the model’s robustness to factors
such as occlusion and noise, making the model more robust. Furthermore, the introduction
of attention mechanisms provides interpretability and visualizability, making the model’s
outputs more intuitive and understandable. To further improve the performance of the
YOLOv7 algorithm and make the network pay more attention to important information
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in the current forest fire detection task, attention mechanisms are introduced to aggregate
local information of feature maps. Specifically, improvements are made to the remaining
ELAN module in the backbone network, as indicated by the “Attention” label in Figure 8.
Four types of attention mechanisms are experimented with individually.

Figure 7. The network structure of ConNeXtV2-YOLOv7.

Figure 8. The structure of introducing the attention mechanism for ELAN.

2.4.2. ELAN Structures That Introduce Attention Mechanisms

Normality-based Attention Module (NAM), as a lightweight and efficient attention
module based on normalization , is often used in image classification and target detection
tasks in deep learning. NAM proposed an attentional calculation method that can be
weighted for input feature graphs [37]. The importance of weights is expressed by the
normalized scaling factor, so as to suppress irrelevant channels and pixel information in
images. In this way, differences between input values can be better distinguished, allowing
the network to focus more on the features that are most useful for the task at hand.

Attention mechanisms are commonly used in various computer vision tasks to improve
model performance and have received widespread attention. However, the importance of
preserving both channel and spatial information for enhancing cross-dimensional interactions
is often overlooked. Therefore, a Global Attention Mechanism (GAM) is proposed, which aims
to improve the performance of deep neural networks by reducing information redundancy and
amplifying global interaction representations [38]. GAM draws inspiration from the sequential
channel attention mechanism of CBAM and redesigns the sub-modules.To maintain cross-
dimensional information, the channel attention sub-module in GAM uses a 3D arrangement
and employs a multi-layer perceptron to amplify spatial dependencies across dimensions.
Additionally, in the spatial attention sub-module, the concentration of spatial information
is achieved through the use of two convolutional layers. Experimental results on image
classification tasks such as CIFAR-100 and ImageNet-1k demonstrate that this attention
mechanism exhibits an excellent performance in models like ResNet and MobileNet.
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The Convolutional Block Attention Module (CBAM) is an attention mechanism that
combines both spatial and channel attention to aggregate the local information of feature
maps. The channel attention module and spatial attention module are two independent sub-
modules of CBAM, allowing the network to focus more strongly on important information
and perform weighted attention on both spatial and channel dimensions, achieving a
plug-and-play effect [39]. When a feature map is input to CBAM, it first goes through the
channel attention module. In the channel attention module, the feature map undergoes two
parallel operations: max pooling and average pooling, which compress the feature map
into two one-dimensional feature vectors. These vectors are then passed through a shared
fully connected layer, and the results are added together. Finally, the sigmoid activation
function is applied to obtain the channel attention features.The channel attention features
are multiplied with the input features to obtain the input features for the spatial attention
module. This process also includes max pooling and average pooling operations. After
pooling, the results are concatenated based on channels and passed through a convolutional
layer to adjust the channels to 1. The sigmoid activation function is applied to obtain the
spatial attention feature map.The spatial attention feature map is multiplied with the input
of this module to obtain the final generated feature map.

Currently, attention modules usually suffer from two problems. First, they can only refine
features along the channel or spatial dimension, thus limiting the flexibility of learning their
attention weights across channels as well as spatial variations. In addition, their structures
such as pooling need to be composed of a complex set of elements. Therefore, based on
neuroscience theory, the SimAM module is proposed for solving these problems. After
considering the spatial and channel dimensions, the 3D weights are inferred from the current
neurons, and then the neurons are refined, allowing the network to learn more discriminative
neurons.SimAM, as a conceptually simple but effective attention module , is able to infer
feature maps in a layer without adding parameters to the original network compared with
common spatial as well as channel attention module 3D weights [40]. In addition, an optimized
energy function is proposed so as to derive the importance of each neuron. On the CIFAR-10
and CIFAR-100 datasets, the SimAM module has a better performance in terms of accuracy
compared with common attention modules such as SE and ECA.

3. Results
3.1. Comparison of Multiple Model Results

In this section, we consider applying various structures to the YOLOv7 algorithm
and compare the performance of the models to find a better model for forest fire detection.
Table 1 shows a comparison of the experimental results for different models. Conv2Former
has a better performance than traditional CNN-based models [36], and in order to further
improve the model’s performance, the Conv2Former-YOLOv7 algorithm was proposed.
However, according to the results, applying Conv2Former-YOLOv7 to forest fire detec-
tion did not achieve the expected performance in terms of accuracy, recall rate, and AP.
ConvNeXtV2 can enhance channel-wise feature competition and has shown a superior
performance in various visual tasks by using fully convolutional mask autoencoders and
global response normalization techniques. Therefore, the ConvNeXtV2-YOLOv7 algo-
rithm was proposed. The experimental results showed that compared with the YOLOv7
algorithm, the ConvNeXtV2-YOLOv7 algorithm achieved an accuracy of 85.81% and an
increase of 2.02%. It also improved the recall rate by 0.59% and the AP by 0.61%. After
comprehensive comparison of overall performance, the ConvNeXtV2-YOLOv7 algorithm
is more suitable for forest fire detection.

3.2. An Experimental Comparison of Attentional Mechanisms

In order to further enhance the model’s generalization ability, suppress irrelevant
features and pixel information in forest fire images, and better distinguish the differences
between input values, the network should pay more attention to the most useful features for
the current task. Therefore, in this section of the experiment, based on the performance of
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the ConNeXtV2-YOLOv7 algorithm, attempts were made to embed NAM, SimAM, GAM,
and CBAM modules in the ELAN structure of its backbone network. In order to verify the
feasibility of the method, comparative experiments were conducted between the attention-
mechanism-integrated ConvNeXtV2-YOLOv7 algorithm and YOLOv7 and ConvNeXtV2-
YOLOv7 algorithms. As shown in Table 2, it can be observed that compared with the
ConNeXtV2-YOLOv7 algorithm, the introduction of SimAM and GAM attention modules
did not effectively improve the model’s performance; instead, there was a slight decline.
However, by introducing the NAM and CBAM attention modules, there was a certain
improvement in accuracy. Specifically, the introduction of the NAM attention module led
to a decrease of 3.81% in the recall rate, while the introduction of the CBAM attention
module showed a slight improvement. Additionally, both models showed varying degrees
of improvement in AP, with the introduction of the CBAM attention module showing a
more significant improvement. In terms of parameter count, the introduction of the GAM
attention module increased the parameter count to 50.1 million (M), while the algorithms
incorporating the NAM, SimAM, and CBAM modules all showed a decrease in parameter
count compared with the YOLOv7 algorithm, and the parameter count was relatively close.

Table 1. Comparison of experimental results of different models.

Model P, % R, % AP, %

YOLOv7 83.79 81.12 87.22
Conv2Former-YOLOv7 83.17 80.43 87.22
ConvNeXtV2-YOLOv7 85.81 81.71 87.83

Table 2. Experimental comparison of adding different attention mechanisms.

Model P, % R, % AP, % Parameter, M

YOLOv7 83.79 81.12 87.22 37.2
ConNeXtV2-YOLOv7 85.81 81.71 87.83 34.48

ConNeXtV2-YOLOv7 + NAM 86.03 77.9 88.07 33.71
ConNeXtV2-YOLOv7 + SimAM 83.75 81.46 87.67 33.71
ConNeXtV2-YOLOv7 + GAM 84.82 79.92 87.05 50.1

ConNeXtV2-YOLOv7 + CBAM 86.18 81.85 88.36 33.73

Through comprehensive comparison, the performance of the ConNeXtV2-YOLOv7
algorithm was improved by incorporating the CBAM attention mechanism, leading to
the proposal of the CNTCB-YOLOv7 forest fire detection method. Building upon the
ConNeXtV2-YOLOv7 algorithm, embedding the CBAM module in the ELAN structure of
the backbone network effectively improved the model’s accuracy. Figure 9 illustrates the
structure of ELAN-CBAM, which enhances global interactions while preserving channel
and spatial information, thereby improving the performance and detection effectiveness of
the network model.

Furthermore, as shown in Table 3, compared with the YOLOv7 algorithm, the CNTCB-
YOLOv7 algorithm achieved an accuracy of 86.18%, an improvement of 2.39%. The recall
rate and AP were also improved by 0.73% and 1.14%, respectively. Additionally, in terms of
model lightweightness, the CNTCB-YOLOv7 algorithm only requires 33.73 M, a reduction
of 3.47 M compared with the YOLOv7 algorithm. This reduction in computational resource
usage helps improve the inference speed of the model.
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Figure 9. ELAN-CBAM structure.

Table 3. Experimental results of YOLOv7 and CNTCB-YOLOv7.

Model P, % R, % AP, % Parameter, M

YOLOv7 83.79 81.12 87.22 37.2
CNTCB-YOLOv7 86.18 81.85 88.36 33.73

In addition, the YOLOv7 algorithm and the proposed CNTCB-YOLOv7 algorithm were
tested on a dataset of test images, and partial test results are shown in Figures 10 and 11.

Figure 10 shows the test results for large-scale forest fires. In Figure 10a,c, we can see
the test results of the YOLOv7 algorithm, while Figure 10b,d show the test results of the
CNTCB-YOLOv7 algorithm. From Figure 10a,b, it can be observed that when the forest
fire image represents a large-scale crown fire, the CNTCB-YOLOv7 algorithm performs
better in terms of detection compared with the YOLOv7 algorithm. Furthermore, from
Figure 10c,d, it can be seen that when the forest fire image represents a large-scale surface
fire, the YOLOv7 algorithm only detects a portion of the fire area in the image, while
the CNTCB-YOLOv7 algorithm is able to detect all fire areas in the image. The CNTCB-
YOLOv7 algorithm pays more attention to the global information of forest fires compared
with the YOLOv7 algorithm, resulting in a better detection performance.

(a) (b)

(c) (d)

Figure 10. Test image results with a large range of forest fires: (a,c) YOLOv7 algorithm; and
(b,d) CNTCB-YOLOv7 algorithm.
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Figure 11 show the test results for complex forest backgrounds. In Figure 11a,c, we
can see the test results of the YOLOv7 algorithm, while Figure 11b,d show the test results
of the CNTCB-YOLOv7 algorithm. From Figure 11a,b, it can be observed that when there is
background interference similar to the color of the fire in the image, both the YOLOv7 and
CNTCB-YOLOv7 algorithms did not produce false detections. Additionally, the detection
performance of the CNTCB-YOLOv7 algorithm is superior to that of the YOLOv7 algorithm.
Furthermore, as shown in Figure 11c,d, when there are images with colors and textures
similar to the fire, the YOLOv7 algorithm might have result in false detections, while the
CNTCB-YOLOv7 algorithm did not lead to such occurrences.

(a) (b)

(c) (d)

Figure 11. Test image results with a complex forest background: (a,c) YOLOv7 algorithm; and
(b,d) CNTCB-YOLOv7 algorithm.

4. Discussion

In order to improve the feature representation capability and detection accuracy of
the model, and to make the network pay more attention to the most useful features for
the current task, further enhancing the model’s generalization ability, we made corre-
sponding improvements to the YOLOv7 algorithm. The experimental results show that
the proposed CNTCB-YOLOv7 algorithm surpassed the YOLOv7 algorithm in terms of
precision, recall, and mean average precision, and it had a lower parameter count and
faster inference speed. We first introduced the ConvNeXtV2 and Conv2Former network
structures, replacing parts of the ELAN modules in the YOLOv7 algorithm to enhance the
model’s feature representation ability and detection accuracy. Comparative experiments
revealed that the ConvNeXtV2-YOLOv7 algorithm was more suited for forest fire detection
tasks, thus it was chosen as the base model for further improvements. On this founda-
tion, we introduced an attention mechanism by embedding the CBAM module within the
backbone network’s ELAN structure, achieving the aggregation of local information in
feature maps. This enabled the network to focus more on critical information in forest
fire detection tasks, leading to the development of the CNTCB-YOLOv7 algorithm. The
introduction of the CBAM module significantly improved the model performance, while
reducing the parameter count, which is advantageous for enhancing the inference speed.
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This methodology offers technical support for in-depth research on forest fire behavior and
management. Early high-precision detection can shorten response times, helping to quickly
controlling the spread of fires and mitigate losses. Real-time monitoring and analysis of
forest fires can collect extensive fire data, aiding in the study of fire spread patterns and
characteristics under different environments and conditions, such as the rate of fire spread.
The improved model performance also supports the development of more accurate forest
fire risk prediction models, enhancing early warning and forecasting capabilities.

The CNTCB-YOLOv7 algorithm, characterized by a superior detection accuracy, can
contribute significantly to an enhanced comprehension of fire behavior. This, in turn,
facilitates the implementation of more proactive firefighting strategies, thereby bolstering
the overall management and mitigation of forest fires.

However, there may be potential limitations in the model’s generalization ability
to different environments and conditions, which could be addressed in future work by
exploring more diverse datasets and incorporating additional attention mechanisms. While
our model demonstrates performance improvements over YOLOv7, it lacks comparative
analysis with other prevalent models like Faster R-CNN, SSD, or RetinaNet.

In current study, the evaluation of our model primarily relied on metrics such as
Precision, Recall, AP, and mAP. These metrics were selected due to their direct relevance to
the performance goals of our classification task, especially in the context of our uniquely
self-collected dataset. However, our analysis lacks crucial statistical measures that are
essential for understanding the variability and reliability of the model’s performance across
different scenarios. This absence might limit the depth of our findings in terms of statistical
consistency and reliability.

In future work, we plan to enhance our model through further refinement by incor-
porating additional attention mechanisms, conducting comprehensive comparisons with
other prevalent models, and expanding our evaluation criteria. This expansion includes
introducing standard deviations and confidence intervals in our analysis to provide a more
comprehensive statistical understanding of our model’s performance. Additionally, we
aim to test and validate our model on a broader range of datasets. This expansion will not
only enhance the generalizability of our findings, but also allow us to assess the model’s
performance under different scenarios and conditions. In addition, we will explore the
applicability of our model in diverse domains by considering additional data types, such
as LiDAR (Light detection and ranging) data [41,42]. This broader range of datasets will
enable us to thoroughly test and validate the robustness and versatility of our model across
various fields.

Furthermore, future research could focus on optimizing the model’s inference speed
and reducing computational resource utilization, making it more suitable for real-time
monitoring and analysis of forest fires. Furthermore, we plan to investigate how the
enhanced model could support more accurate forest fire risk prediction models, thereby
aiding in forest fire management and mitigation efforts.

5. Conclusions

This article presents a forest fire detection model based on ConvNeXtV2 and CBAM,
named CNTCB-YOLOv7, designed to enhance the feature extraction and information fu-
sion capabilities of the YOLOv7 algorithm to address challenges in large-scale fire areas and
complex forest backgrounds. Firstly, we introduced networks such as ConvNeXtV2 and
Conv2Former into the structure of YOLOv7 to find the best-performing network model.
Then, we improved the ELAN structure in the backbone network using attention mecha-
nisms and proposed the ELAN-CBAM structure. Based on the comparison of experimental
results, we proposed a CNTCB-YOLOv7 Forest fire detection method. Compared with
the YOLOv7 algorithm, the CNTCB-YOLOv7 algorithm achieved a 2.39% improvement
in accuracy, and the recall rate and AP were improved by 0.73% and 1.14%, respectively.
Additionally, the parameter count of CNTCB-YOLOv7 decreased by 3.47 M compared with
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the YOLOv7 algorithm, reducing the utilization of computational resources and helping to
improve the model’s inference speed.

Our future work includes refining the model with additional attention mechanisms,
conducting thorough comparisons, and expanding the evaluation criteria. We aim to
validate its performance on diverse datasets, optimize inference speed for real-time moni-
toring of forest fires, and explore its potential to support risk prediction models for better
forest management.
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