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Abstract: In recent years, the influence of extreme weather patterns has led to an alarming increase in
the frequency and severity of sub-surface forest fires in boreal forests. The Ledum palustre-Larix gmelinii
forests of the Daxing’an Mountains of China have emerged as a hotspot for sub-surface fires, and
terrain slope has been recognized as a pivotal factor shaping forest fire behavior. The present study
was conducted to (1) study the effect of terrain slope on the smoldering temperature and spread rate
using simulated smoldering experiments and (2) establish occurrence probability prediction model of
the sub-surface fires’ smoldering with different slopes based on the random forest model. The results
showed that all the temperatures with different slopes were high, and the highest temperature was
947.91 ◦C. The spread rates in the horizontal direction were higher than those in the vertical direction,
and the difference increased as the slope increased. The influence of slope on the peak temperature
was greater than that of spread rate. The peak temperature was extremely positively correlated with
the slope, horizontal distance and vertical depth. The spread rate was extremely positively correlated
with the slope. The spread rate in the vertical direction was strongly positively correlated with the
depth, but was strongly negatively correlated with the horizontal distance; the horizontal spread
rate was opposite. The prediction equations for smoldering peak temperature and spread rate were
established based on slope, horizontal distance, and vertical depth, and the model had a good fit
(p < 0.01). Using random forest model, we established the occurrence prediction models for different
slopes based on horizontal distance, vertical depth, and combustion time. The models had a good
fit (AUC > 0.9) and high prediction accuracy (accuracy > 80%). The study proved the effect of slope
on the characteristics of sub-surface fire smoldering, explained the variation in peak temperature
and spread rate between different slopes, and established the occurrence prediction model based
on the random forest model. The selected models had a good fit, and prediction accuracy met the
requirement of the sub-surface fire prediction.

Keywords: boreal forests; Daxing’an Mountains; peak temperature; random forest model; slope;
spread rate; sub-surface fires

1. Introduction

Global warming and increased human activities in recent years have led to a rise in the
frequency and severity of forest fires within boreal ecosystems [1]. Forest fires encompass
surface fires, canopy fires, and sub-surface fires. Even though sub-surface fires occur less
frequently compared to canopy or surface fires, their impact is substantial [2]. Sub-surface
fires typically occur within the humus or peat layer [3]. These fires are characterized by
low temperatures, a lack of flames, and slow smoldering spread. The primary source of
fuel for sub-surface fires are plant roots and the organic carbon content within the soil;
thus, sub-surface fires can lead to adverse effects, including soil structure degradation,
widespread plant mortality, and the release of numerous particles and pollutant gases [4].
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The peat fires in Indonesia during 1997 and 1998 released 0.95 Gt of CO2, which was
equivalent to 15% of global human fossil carbon emission for the same period [5]. Conif-
erous forests located in boreal forests are a hot spot for sub-surface fires [6]. Prolonged
fire seasons and increased permafrost melting have significantly increased the risk of sub-
surface fires in boreal forests [7,8]. Therefore, the study of sub-surface fire occurrence
and fire behavior is important to predict the occurrence and spreading mechanism of
sub-surface fires. However, literature on sub-surface fires is scarce. Most of the studies in
this field are directed mainly towards peat fires [9–11], and only few studies are on fires
in humus layers [12,13]. Oxygen content, fuel density, moisture content of fuel, terrain,
and meteorological conditions are considered to be the important factors affecting the fire
behavior [14–17]. The slope of the terrain is a main topographic factor that can affect the
occurrence and spreading of sub-surface fires. The slope can affect the occurrence of forest
fires by influencing the distribution of fuel and moisture content [18,19]. Further, slope can
affect the spread of forest fire by changing the way of radiative and convective heat transfer
during the spread [20,21]. Studies on the effect of slope on forest fire behavior mainly focus
on the surface fire behavior [22–25]. However, due to differences in fuel types and heat
transfer modes, there are significant differences in the combustion temperature, spread
rate, and other fire behaviors between surface fire and sub-surface fire [17,26]. The effect of
slope on sub-surface fire behavior is rarely reported. Existing fire prediction models are
based on the indirect factors and traditional generalized linear models [27–29], and the
applicability and accuracy of these models are very low. In recent years, machine learning
has become the main method of forest fire occurrence prediction due to its high accuracy,
low overfitting risk, and high tolerance for data outliers [30]. The random forest model
in particular is widely used in forest fire occurrence prediction [31–34], mapping wildfire-
prone areas [35–37], and origin of fire and fire site identification [38–40]. Although the
research on sub-surface fires has been developing, the prediction mechanism of sub-surface
fire occurrence and the factors affecting of sub-surface fire behavior are still unclear.

Sub-surface fires mainly spread by radiation heat transfer and can occur with low
oxygen content [26]. Therefore, the existing mechanism explaining the influence of slope on
the surface fire behavior cannot be used to describe the sub-surface fire behavior. According
to occurrence and spread characteristics, determining the location of sub-surface fires and
the use of large machinery or manual excavation of inclined trench-shaped fire belts to cut
off the fire line are important methods to prevent and extinguish sub-surface fires [4,41,42].

In recent years, many countries have reported the occurrence and harm of forest
sub-surface fires. Based on the research on the behavior and influencing factors of sub-
surface fires, establishing prediction models for the occurrence of sub-surface fires can more
accurately determine the location and spread trend of sub-surface fires, and then develop
targeted monitoring and suppression plans. This can not only effectively block the spread
path of sub-surface fires, but also ensure the safety of firefighters [41,43]. This research is
focused on the Ledum palustre-Larix gmelinii forest in the Daxing’an Mountains, which is
prone to sub-surface fires. The objectives of the present study were to: (1) quantify the
characteristics of sub-surface fire behavior under different slopes; (2) identify the influence
of slope on sub-surface fire behavior; and (3) establish an occurrence prediction model of
sub-surface fires through simulated smoldering experiments, in order to explain the factors
affecting sub-surface fire behavior.

2. Materials and Methods
2.1. Study Site

The study area was located in Huzhong National Nature Reserve (HNNR) in the Daxi-
ing’an Mountains, China (122◦42′14′′–123◦18′05′′ E, 51◦17′42′′–51◦56′31′′ N). This region
has a cold temperate continental monsoon climate, with an annual average temperature
of −4 ◦C and annual precipitation of 395–688 mm. The forest vegetation type is cold and
warm coniferous forest, which is a continuation of the southward distribution of the bright
coniferous forests of Siberia. Larix gmelinii is the dominant species, and the main tree
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species include Betula platyphylla, Populus davidiana, Pinus sylvestris var. mongolica, and
Chosenia arbutifolia. The main understory vegetation includes Ledum palustre, Rhododendron
dauricum, and Pinus pumila. Sub-surface forest fires in this region (Figure 1) are mostly
caused by surface fires from lightning [44]. Thus, frequent lightning fires in HNNR create
conditions for sub-surface fires.

Figure 1. Sub-surface fires in Huzhong National Nature Reserve: (a) smoldering phenomenon of
sub-surface fires; (b) trees affected in sub-surface fires.

2.2. Sampling and Processing of Humus

The study is focused on the Ledum palustre-Larix gmelinii forest which is the hotspot
for sub-surface fires in HNNR. Three sample plots were randomly selected, and three sets
of 50 cm × 50 cm quadrats each were established diagonally on the 3 sample plots. All the
ground fuels of the quadrats were collected and transported to the laboratory (Figure 2).
Samples of humus were placed in archival paper bags and dried at 105 ◦C for 48 h in a
drying oven. Moisture contents were measured from 3 samples prior to the smoldering
experiment using a rapid moisture monitor, with the average value being used as the
experimental moisture content of the samples.

Figure 2. Sampling site: (a) Ledum palustre-Larix gmelinii forest vegetation; (b) 50 cm × 50 cm pit with
exposed humus layer.

2.3. Simulating Smoldering Experiment

Simulating smoldering experiments were conducted using a self-assembled sub-
surface fire temperature acquisition system consisting of a smoldering furnace, thermo-
couple, data acquisition module, far-infrared heating plate, and laptop. The smoldering
furnace was cuboid in shape and made of aluminosilicate fiber material, which provided
good insulation. The data acquisition module comprised a 16-channel NI9213 voltage
acquisition board and a DAQ-9174 chassis (4 card slots), both produced by NI Corporation
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in the United States. This module was capable of achieving real-time synchronous data
transmission with a temperature measurement accuracy of <0.25 ◦C. The data collection
software utilized LabVIEW 2018, which could directly convert electrical signals into temper-
ature data. Forty-five holes (5 vertical and 9 horizontal) with a diameter of 2 mm each were
drilled with 3 cm gaps on the side of the cuboid furnace. As the majority of the Daxiing’an
Mountains are gentle slopes [45], three slope angles (0◦, 10◦and 20◦) were selected. Fuels
were put into the smoldering furnace separately. A type K thermocouple was inserted into
the middle of the humus through the drilled holes. One side of the furnace was lifted, and
the slopes were set using an inclinometer. The far-infrared heating plate was placed over
the smoldering furnace, and the heating temperature was set at 500 ◦C. The power supply
was disconnected after heating for 0.5 h. The thermocouples and data acquisition module
were connected by compensation wires, and the temperature variation data of the humus
combustion were transmitted back to the laptop at 1 min intervals. The experiment was
repeated 3 times for each slope (Figure 3).

Figure 3. The simulating smoldering experimental setup: (a) schematic diagram of the experimental
setup; (b) the simulating ignition experimental; (c) the ground fuel smoldering.

2.4. Data Processing and Analysis

The spread rates in the vertical direction (depth of the thermocouple/combustion time
to the peak temperature) and horizontal direction (distance of the thermocouple/combustion
time to the peak temperature) were recorded and analyzed. The effects of slope on the peak
temperature and spreading rate in the vertical and horizontal directions were analyzed
by the variance analysis method. Multiple comparisons were carried out using the least
significant difference (LSD) test. Correlation analysis and regression analysis were used to
analyze the relationship between peak temperature, spread rate, and slope, vertical depth,
horizontal distance, and prediction models were established.

Using the horizontal distance, vertical depth, and combustion time of smoldering as
independent variables, the occurrence probability prediction models on different slopes
were established based on a random forest model. These models obtained ‘m’ sample sets
by randomly conducting ‘m’ number of random replacement samplings from the training
samples and building the tree predictors. The final classification results were divided by
multi-tree voting.

When the combustion temperature of sub-surface fires is higher than 300 ◦C, obvious
smoldering will occur, and carbon will be pyrolyzed [46]. Therefore, when the smoldering
temperature was ≥300 ◦C, it was recorded as 1; otherwise, it was regarded as not smoldering
and recorded as 0. The respective occurrence probability prediction models of different
slopes were established. Before establishing the models, the data were divided into 60%
training samples and 40% validation samples. The training samples were used to establish the
prediction models, and the validation samples were used to verify the accuracy of the models.
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The area value (AUC) under the receiver operating characteristic (ROC) curve was
used as the evaluation criterion of the fitting degree. The Youden index was calculated ac-
cording to the abscissa (1-specificity) and ordinate (sensitivity) of the ROC curve. The larger
the Youden index, the higher the true positive rate and true negative rate of the model, and
the more accurate the model’s prediction. The cut-off value of the model was determined
according to the maximum of the Youden index of the training samples, and the accuracy
of the validation samples was calculated. The Youden index is as follows:

Youden index = sensitivity + specificity − 1

3. Results
3.1. Characteristics of Sub-Surface Fire Smoldering under Different Slopes

The sub-surface fire smoldering of the Ledum palustre-Larix gmelinii forest under dif-
ferent slopes was slow (Figure 4). In the early period of the smoldering, the smoldering
temperatures were relatively low. With the development of sub-surface fire, smoldering
gradually stabilized and temperatures gradually increased. Higher temperatures were
mainly concentrated in the later period, and the temperatures in deep layers were signifi-
cantly higher than those near the surface layer. When the slope was 0◦, the temperatures
mainly ranged from 220 to 620 ◦C, and the highest temperature reached 769.02 ◦C. When
the slope was 10◦, the temperatures mainly ranged from 420 to 720 ◦C, and the highest
temperature reached 880.69 ◦C. When the slope was 20◦, the temperatures were much
higher than those at 0◦ and 10◦, the highest temperature reached 947.91 ◦C. The spread
rates of sub-surface fires in the horizontal direction were higher than those in the vertical
direction with different slopes. As the slope increased, the difference between the vertical
and horizontal spread rates gradually increased. The fastest spread rates were recorded
at 20◦ of slope with 6.50 cm/h in the vertical direction and 10.41 cm/h in the horizontal
direction. When the slope was 0◦, the vertical spread rate was 3.42 cm/h, and the horizontal
spread rate was 5.94 cm/h.

Figure 4. The characteristics of sub-surface fire smoldering under different slopes: (a) 0◦ slope;
(b) 10◦ slope; (c) 20◦ slope; (d) Spread rate vs. slope.

3.2. Effect of Slope on Sub-Surface Fire Smoldering

The slope affected the peak smoldering temperature and spread rate in the vertical
direction with different horizontal distances. With horizontal distances of 3–15 cm, the
slopes had a significant influence on the peak smoldering temperature in the vertical
direction (Figure 5a). The peak temperature of the 20◦ slope was significantly higher than
the other two slopes. Within the horizontal distances of 18–27 cm, there was no difference
between the peak temperatures of 10◦ and 20◦ slopes, but both were significantly higher
than that of a 0◦ slope. The spread rates in the vertical direction had no significant difference
with a horizontal distance of 3 cm. The spread rate of the 20◦ slope was the fastest with
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the horizontal distance of 6–24 cm and showed a highly significant difference (p < 0.01)
from that of the 0◦ slope (Figure 5b). The difference between 0◦ and 20◦ was less with a
horizontal distance of 27 cm but still showed a significant difference (p < 0.05). The spread
rate of the 10◦ slope had no significant difference from those of the 0◦ and 20◦ slopes.

Figure 5. The influence of slope on (a) peak temperature and (b) spread rate of sub-surface fire
smoldering in the vertical direction. Single asterisk (*) represents significant differences between
treatments at p < 0.05; double asterisks (**) represent highly significant differences between treatments
at p < 0.01. The dots in the figure represent data points of different treatments, and the red line
represents the average value of the data points.

Slope had a significant influence on the peak temperature at all depths, and the
peak temperature of the 20◦ slope was the highest, followed by the 10◦ slope, and that
of the 0◦ slope was the lowest (Figure 6a). There were significant differences in peak
temperatures among the three slopes (except for 12 cm), and the difference between the
peak temperatures of the 20◦ and 10◦ slopes was lower than that of the 10◦ and 0◦ slopes
at depths of 3–12 cm. The spread rate was the highest with the 20◦ slope, which was
significantly higher than the other two slopes (except for the 3 cm depth) (Figure 6b).
At the vertical depth of 3 cm, there were slight differences between the spread rates for
different slopes. As the depth increased, the difference of the spread rates for different
slopes increased in general. At the depth of 15 cm, there were significant differences among
the three slopes.

Figure 6. The influence of slope on (a) peak temperature and (b) spread rate of sub-surface fires in
the horizontal direction. Single asterisk (*) represents significant differences between treatments at
p < 0.05; double asterisks (**) represent highly significant differences between treatments at p < 0.01.
The dots in the figure represent data points of different treatments, and the red line represents the
average value of the data points.
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The peak temperature had a significantly strong positive correlation with slope, ver-
tical depth, and horizontal distance, indicating that the higher the slope, the greater the
vertical depth, and the farther the horizontal spreading distance, the higher the smoldering
temperature (Table 1). Spread rates in both the vertical and horizontal directions were
positively correlated with slope. The spread rate in the vertical direction was positively
correlated with the vertical depth and negatively correlated with the horizontal distance.
The spread rate in the horizontal direction was negatively correlated with the vertical depth
and positively correlated with the horizontal distance.

Table 1. Correlation analysis of smoldering characteristics of sub-surface fire with slope, vertical depth,
and horizontal distance. Single asterisk (*) represents significant correlation between treatments at
p < 0.05; double asterisks (**) represent highly significant correlation between treatments at p < 0.01.

Factors
Peak Temperature Spread Rate in Vertical Direction Spread Rate in Horizontal Direction

Correlation Coefficient Sig. Correlation Coefficient Sig. Correlation Coefficient Sig.

Slope 0.511 ** <0.01 0.374 ** <0.01 0.351 ** <0.01
Vertical depth 0.444 ** <0.01 0.497 ** <0.01 −0.153 ** <0.01

Horizontal distance 0.339 ** <0.01 −0.239 ** <0.01 0.649 ** <0.01

The prediction equations of peak temperature and spread rate were established based
on slope, vertical depth, and horizontal distance (Table 2). The three independent variables
were highly significant (p < 0.01); thus the equation showed a good fit.

Table 2. The prediction models of the peak temperature and spread rate of the sub-surface fire smoldering.

Parameter Independent Variable Standard Error Sig. p-Value Equation

Peak temperature

Constant 10.554 <0.01

<0.01
y = 445.87 + 6.17x1 + 10.31x2

+ 4.31x3

Slope 0.394 <0.01
Vertical depth 0.759 <0.01

Horizontal distance 0.416 <0.01

Spread rate in the
vertical direction

Constant 0.412 0.01

<0.01
y = 1.423 + 0.154x1 + 0.394x2

− 0.104x3

Slope 0.015 <0.01
Vertical depth 0.030 <0.01

Horizontal distance 0.016 <0.01

Spread rate in
Horizontal distance

Constant 0.558 <0.01

<0.01
y = 0.882 + 0.223x1 −

0.187x2 + 0.434x3

Slope 0.021 <0.01
Vertical depth 0.040 <0.01

Horizontal distance 0.022 <0.01

x1: Slope; x2: vertical depth; x3: horizontal distance.

3.3. The Occurrence Probability Prediction of Sub-Surface Fire Smoldering at Different Slopes

The random forest occurrence probability prediction models of sub-surface fire smol-
dering of different slopes were established based on the 3 independent variables, i.e.,
horizontal distance, vertical depth and combustion time, using the randomForest function
in the R4.2.1 software program randomForest. The importance of the independent variable
was calculated using the importance function. The variable importance of the 3 indepen-
dent variables changed significantly with slopes (Table 3). The occurrence probability was
most affected by the combustion time. This influence decreased with the increase in slope;
however, the influence was still important overall. The second influential factor affecting
the occurrence probability was horizontal distance. With increasing slope, the influence of
the horizontal distance also increased. With a 20◦ slope, the horizontal distance was the
most important variable instead of the combustion time. The third influential factor was
vertical depth, and the effect of vertical depth decreased with increasing slope.
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Table 3. The variable importance in the occurrence probability prediction models of sub-surface fire
smoldering at different slopes.

Independent Variable 0◦ 10◦ 20◦

Horizontal distance 32.91% 38.46% 53.80%
Vertical depth 32.12% 19.91% 14.02%

Combustion time 68.38% 51.98% 50.64%

The occurrence probability of the training and validation samples were calculated
respectively by the predict function, and the ROC curves of prediction models for different
slopes were drawn. The fitting effect of the 3 models was good, and the AUC values of the
training sample and the validation sample could reach more than 0.9 (Figure 7). The fitting
degree for 10◦ was the highest, and it was similar for 20◦and 0◦.

Figure 7. The ROC curves of the occurrence probability prediction models of different slopes.

Based on the Youden index, the cut-off values of the models selected for 0◦, 10◦and
20◦ slopes were 0.685, 0.605, and 0.235, respectively. The total accuracy of validation sample
of the models of different slopes were >80% (Figure 8 and Table 4). The true negative rate
of the models for 0◦ and 10◦ were above 90%, and the true positive rate of the models
for 20◦ was above 90%. The accuracy sequence of the validation samples of the 3 models
was 10◦model > 0◦model > 20◦model, and the total accuracy was 91.54%, 85.95%, and
83.17%, respectively.
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Figure 8. The accuracy evaluation of the occurrence probability prediction models of sub-surface fire
smoldering for different slopes.

Table 4. The total accuracy of the validation samples of the occurrence probability prediction models
of sub-surface fire smoldering for different slopes.

Slope Smoldering/No Smoldering Correct Forecast Sample Size Total Accuracy

0◦
No smoldering 3336 3682

85.95%Smoldering 5461 6553

10◦
No smoldering 2806 3034

91.54%Smoldering 3187 3513

20◦
No smoldering 2093 2792

83.17%Smoldering 2089 2236

4. Discussion

In this study, the characteristics of sub-surface fire smoldering of different slopes in the
boreal forests of China were explained through ex situ simulated smoldering experiments.
Compared with previous studies based on microscopic or small-scale experiments [15,47],
the experimental scale of this study was larger. The sub-surface fire could spread both
horizontally and vertically [48], while most studies have been carried out only in the
vertical direction [13,17,49]. The present study simultaneously monitored and recorded
the smoldering process in both the vertical and horizontal directions with an experimental
cuboid furnace. Therefore, the three-dimensional smoldering process of the actual sub-
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surface fire could be reflected accurately. The purpose of the simulation experiment was
to get as close to a real fire as possible, and the larger the experiment scale, the more
representative the data. Although the data of the smoldering process in this study are
complex, and there might be some uncertainties in the experiment, the results will be useful
for research on influential factors of sub-surface fire behavior and would also provide
references for larger scale smoldering experiments.

The present study found that while the smoldering processes of different slopes were
almost the same, the early smoldering was unstable, and the smoldering temperatures
were relatively low. With the development of the sub-surface fire, the smoldering gradually
stabilized, and the temperatures also gradually increased. When the slope was 20◦, the
highest temperature could reach 947.91 ◦C, while the peak temperatures in peat smoldering
experiments were reported to be about 450–700 ◦C [50,51]. This indicated that the humus
smoldering was different from the peat smoldering, and the damage to vegetation and
the risk during fire extinguishing could be higher. The temperatures near the surface
layers were lower than those in deep layers, as the sub-surface fires were sustained by
the heat released from smoldering [52]. The heat in the surface layers was lost quickly, so
the smoldering temperature was low. This would also lead to inadequate combustion in
the surface layers. During the experiment, we found that, although smoldering had been
sustained for a long time, the humus in the surface had not changed much. This may have
been due to the insufficient smoldering in the surface layers. Therefore, there would have
been a period for an overhanging phenomenon, which was consistent with Huang et al. [2].
This also reflects the hidden danger of sub-surface fires. The spread rates of the sub-surface
fire of different slopes were faster in the horizontal direction, which was consistent with
Graham et al. [53], indicating that the spread of smoldering first took place horizontally
and then in a downward direction. A reasonable explanation for this phenomenon is that,
although flame is absent in sub-surface fires, the surface temperature above the smoldering
zone is higher. When there is no slope, heat is dissipated upwards. However, when the
slope increases, it causes hot air to flow upwards along the surface of the fuel, thereby
accelerating the drying and preheating process of the unburned fuel. This creates more
favorable spreading conditions, leading to an increase in the horizontal spread rate. With
the increase of the slope, the difference between spread rates in horizontal and vertical
directions also increases. Therefore, it could be inferred that when a slope is steeper, the
spread rate in the horizontal direction might be higher, and the fire is more likely to spread
to the surface. However, this hypothesis must be further studied and verified.

Slope was considered an important factor affecting surface fire behavior [54], and
this study found that slope also affects sub-surface fire behavior. The sub-surface fire
behavior in the vertical direction was greatly affected by slope at the initial stage, and the
dividing point of peak temperature was 15 cm in the horizontal direction. Davies [41] and
Marcotte et al. [13] also indicated the critical conditions in the smoldering process. With the
increase of horizontal distance during smoldering, the difference of peak temperatures and
spread rates between different slopes decreased. With an 18 cm horizontal spread, there was
no difference between the peak temperatures on 10◦ and 20◦ slopes. At different horizontal
distances, there was no difference in spread rate between 10◦ and 20◦ slopes. This shows
that once sub-surface fire smoldering begins, external conditions have difficulty influencing
fire behavior. At different depths, the influence of slope on the peak temperature and spread
rate in the horizontal direction were basically the same. There was a significant difference in
peak temperatures between different slopes (except for 12 cm), and the difference between
0◦ and 10◦ was relatively smaller, but both were significantly lower than that of the 20◦ slope.
Thus, the peak temperature was more affected by slope than the spread rate in both the
vertical and horizontal directions. Pimont et al. [55] also found that the spread rate of
surface fire changed weakly with the change of slope under low slope conditions.

The peak temperature of sub-surface fire smoldering indicated a strong positive
correlation with slope, horizontal distance, and vertical depth. Huang et al. [2] also
found that as smoldering spread progressed, the peak temperature increased. Steep slope
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angles, high humus content in the upper soil layer, large collapse area, introducing a large
amount of oxygen to deep layers, and high oxygen content could make smoldering more
severe [15], resulting in high peak temperatures. With the increase of vertical combustion
depth and horizontal distance, the vertical smoldering temperature was more stable due
to the obstruction of surface fuel, resulting in the accumulation of heat in the horizontal
direction. As mentioned above, smoldering was sustained by the heat that it released itself,
so the peak temperature was positively correlated with both vertical depth and horizontal
distance. The spread rates in the horizontal and vertical directions were strongly and
positively correlated with the slope. Liu [56] and Rossa et al. [22] also pointed out that the
spread rate of surface fire increased with the increasing slope, and extreme fire behavior
would occur when the slope was too high. The role of sub-surface fire on extreme fire
behavior with steeper slope conditions must be further studied in future research.

The prediction equations of the peak temperature and spread rate had good fitting
with high prediction accuracy based on slope, vertical depth, and horizontal distance
(p < 0.01), which would be helpful for sub-surface fire monitoring and warning. In recent
years, with the development of computer technology, machine learning models such
as random forest have been gradually employed in the study of forest fire occurrence
prediction, and the prediction accuracy of these models has been shown to be higher than
that of the traditional generalized linear models [57–59]. In this study, the random forest
model was used in the occurrence probability prediction of sub-surface fire smoldering
for the first time. According to the results, it could be inferred that the combustion time
had a great influence on the occurrence probability. Strengthening the monitoring and
warning ability regarding sub-surface fires and predicting or detecting the occurrence of
sub-surface fire as early as possible is an important method to reduce sub-surface fire and
forest resource loss. The influence of horizontal distance on the occurrence probability
increased with the increase of slope, while the influence of vertical depth decreased with the
increase of slope. It could be seen that the ability of smoldering to overcome the resistance
caused by slope and to continue to spread forward is the key in determining whether
sub-surface fires will occur or not. Due to the strong concealment of sub-surface fires, the
research on the occurrence prediction are scarce. According to our study, it was shown that
random forest model could be applied to the occurrence prediction of sub-surface fires.
The machine learning methods also include support vector machine, neural networks, and
other methods [60,61]. In the follow-up study, we are planning on using more algorithms
and variables to improve the research about the prediction of sub-surface fires.

5. Conclusions

This study determined the influence of slope on the characteristics of sub-surface
smoldering, and established the occurrence probability prediction model. The smoldering
temperature was higher under different slopes, especially in the deep layers. The maximum
smoldering temperature could reach 947.91 ◦C when the slope was 20◦. The spread rate in
the horizontal direction was higher than the vertical direction, and the difference increased
with the increase of the slope. The influence of slope on the peak temperature of sub-
surface smoldering was greater than the spread rate. The peak temperature showed a
strong positive correlation with slope, horizontal distance, and vertical depth. The spread
rates in the horizontal and vertical directions showed a strong positive correlation with
slope. The spread rate in the vertical direction showed a strong positive correlation with the
vertical depth and negatively correlated with the horizontal distance, while the horizontal
spread rate was opposite. The prediction models based on the random forest model had
good fitting effect (AUC > 0.9), and high accuracy. The total prediction accuracy of the
validation sample was above 80%. The findings of this study expanded the factors known
to contribute to sub-surface fire smoldering, and supported the research on prediction
models for sub-surface fire occurrence.
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