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Abstract: Grasslands are key to the Earth’s system and provide crucial ecosystem services. The
degradation of the grassland ecosystem in South Africa is increasing alarmingly, and fire is regarded
as one of the major culprits. Globally, anthropogenic climate changes have altered fire regimes in
the grassland biome. Integrated fire-risk assessment systems provide an integral approach to fire
prevention and mitigate the negative impacts of fire. However, fire risk-assessment is extremely
challenging, owing to the myriad of factors that influence fire ignition and behaviour. Most fire
danger systems do not consider fire causes; therefore, they are inadequate in validating the estimation
of fire danger. Thus, fire danger assessment models should comprise the potential causes of fire.
Understanding the key drivers of fire occurrence is key to the sustainable management of South
Africa’s grassland ecosystems. Therefore, this study explored six statistical and machine learning
models—the frequency ratio (FR), weight of evidence (WoE), logistic regression (LR), decision tree
(DT), random forest (RF), and support vector machine (SVM) in Google Earth Engine (GEE) to assess
fire danger in an Afromontane grassland protected area (PA). The area under the receiver operating
characteristic curve results (ROC/AUC) revealed that DT showed the highest precision on model fit
and success rate, while the WoE was used to record the highest prediction rate (AUC = 0.74). The WoE
model showed that 53% of the study area is susceptible to fire. The land surface temperature (LST) and
vegetation condition index (VCI) were the most influential factors. Corresponding analysis suggested
that the fire regime of the study area is fuel-dominated. Thus, fire danger management strategies
within the Golden Gate Highlands National Park (GGHNP) should include fuel management aiming
at correctly weighing the effects of fuel in fire ignition and spread.

Keywords: grassland fire; remote sensing; geographic information systems; machine learning;
statistical methods; MaxEnt; Golden Gate Highlands National Park

1. Introduction

Grasslands are the largest ecosystem in the world, representing 40% of the Earth’s
vegetation cover [1]. Therefore, grasslands are key to Earth’s system—they have crucial
ecosystem functions, including livestock grazing areas, water supply and regulation, biodi-
versity reserves, tourism sites, recreation areas, and religious sites [2,3]. Its other functions
are food sources, natural medicine sources, carbon storage and climate mitigation, pollina-
tion, and cultural services [2,3]. Grasslands are found mainly in tropical and subtropical
Africa and Australia, temperate and high mountain areas in China and Tibet, and in the
Middle East and North and South America [4]. However, the global degradation of grass-
land ecosystems is increasing at an alarming rate, and fire is regarded as one of the major
drivers of their degradation [5]. The grassland biome accounts for 80% of the global burnt
area [6]. Fire, a vital ecological phenomenon, has overtime allowed grasslands to retain
their health and vigour [7]. Fire shapes the grassland ecosystem landscape and the popu-
lation of the inhabiting species [8,9]. Thus, fire has been used as a principal management
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tool, e.g., in African and Australian grasslands. However, in the face of climate change, the
balance between wildfires and nature has been disturbed, leading to a rise in fire frequency,
longer fire seasons, and extensive and high-intensity fires [5,10]. Additionally, there will be
a rise in burnt areas, human causalities, and damage to infrastructure [11].

Increased fire frequency elevates the risk of fires and amplifies the negative economic,
environmental, and social impacts. For instance, in South Africa, the 2017 Knysna fire
resulted in the loss of lives and the destruction of property, leading to an economic loss
of ZAR 3036 million [12,13]. The April 2021 Table Mountain National Park fire affected
surrounding buildings, including the adjacent University of the Cape Town (UCT) library
and other historical buildings, burnt c. 600 ha of land, and injured several people [13].
According to Keeley and Pausas [14], the negative impacts of fire are not caused by fire per
se but rather perturbations of fire regime parameters, i.e., frequency, seasonality, spread
pattern, or intensity. Hence, it is crucial to accurately predict the occurrence of fire and
to understand the underlying driving factors of fire danger in order to mitigate and re-
duce these impacts on protected grassland ecosystems. The prevalence of fires across the
African continent has led to Africa being termed the “fire continent” [15]. In South Africa,
the grassland biome covers an area of 360,589 km2, comprising an extensive grassland
watershed [16]. However, grasslands are one of the most critically threatened in South
Africa’s ecosystems [17] and have relatively little national/international protection [18].

Four conditions, known as fire switches, must be met for the occurrence of fire in
vegetation: (i) there must be a continuous production of biomass—fuel, (ii) the fuel must
be adequately dry, (iii) the weather needs to meet conditions for fire ignition and spread,
and (iv) there must be a source of fire ignition [15,19,20]. These conditions are further influ-
enced by the biophysical (e.g., climatic, edaphic, topographic, and vegetation variations)
and anthropogenic factors (e.g., land management practices and population density) [19].
Therefore, understanding how fire is influenced by these factors is essential in bolstering
fire management efforts and anticipating the future trends in fire patterns. Previous studies
analysed key biophysical and anthropogenic factors of fire, independently or otherwise,
using conventional statistical techniques. But, the sensitivity of fire to the various factors
still remains unknown. Thus, the fire prediction models require understanding the potential
driving factors and their respective roles in influencing spatiotemporal fire patterns over a
landscape [15,19,21–23].

The processing of explanatory data is the most challenging task in mapping fires in rel-
atively large areas due to multiple data sources and the inherent modelling complexity [24].
However, geographic information systems (GIS) have proven useful for fire-danger map-
ping. In addition, remote sensing (RS) is a popular method in fire modelling. RS is
used to classify land cover which is associated with fire-fuel characteristics [25], provide
elevation data [26], assess vegetation moisture content [7,27–29], assess soil moisture
content [10,30–32], and for active fire detection and burnt-area estimation [33–35]. With
the development of Google Earth Engine (GEE) and Cloud Engine (CE) [36], platforms
that reduce the requirement for expensive information technology infrastructure, the ac-
quiring and processing of RS datasets is rapidly improving the prediction of fire-danger
models [37].

Scholars have applied different methods for fire danger assessment modelling by
exploring the relationship between fire occurrence and the driving factors. For example,
several studies [38–40] assigned weights to independent variables using expert opinion
(EO) or judgement-adopting techniques like multi-criteria decision analysis (MCDA) and
analytic hierarchy process (AHP). However, the AHP technique cannot adequately depict
the effects of the respective fire conditioning factors on fire probability. Furthermore, AHP
is critically subjective and suffers from the deficiency of uncertainty due to using the nine-
point pairwise rating scale [41,42]. Also, statistical methods have been applied for fire
modelling, e.g., frequency ratio (FR) [43,44] and weight of evidence (WoE) [45–48]. The
authors of Hong, et al. [41] combined WoE and AHP to improve the fire susceptibility map
of Yuichang County in the south of Jiangxi Province, China. The authors of Arca, et al. [49]



Fire 2024, 7, 61 3 of 32

compared FR and MCDA for fire danger modelling in Karabük Province, Turkey—FR
and MCDA attained classification accuracies of 76.42% and 73.92%, respectively. The
authors of Abdo, et al. [50] used FR and AHP to map fire susceptibility in the western
region of Syria. Regression models have been intensively applied in fire-danger modelling
due to their ease and interpretation [51–54], logistic generalized additive models [55–57],
and geographical weighted logistic regression [7,58,59]. Simulation models have been
incorporated into applications, from simple to more advanced ones [60]. The most used
simulation models include BehavePlus [61], FARSITE [62], Flapmap [63,64], ForeFire [65],
Phoenix [66], Prometheus [67], Spark [68], and Wildfire Analyst [69]. Other simulation
approaches such as F-Sim, Burn-P3, and Burn-Pro have been used to compute fire ignition
and [66]. A variety of studies have employed machine learning (ML), e.g., decision trees
(DT), random forest (RF), and support vector machines (SVM) [70–74], as well as maximum
entropy (MaxEnt) [22,75,76].

A review by Chicas and Østergaard Nielsen [77] noted an increased use of fire danger
models since 2001. However, they observed fire-prone areas where this type of research
is not being implemented, especially in Africa and Latin America. Furthermore, previous
studies focused more on forest fires—grassland fires have been relatively overlooked.
Montane grasslands have long been known to be highly sensitive to the direct impact
of climatic warming and drying, so fires in these ecosystems are expected to increase
globally [78]. The South African montane grasslands are no exception. Fire regimes in
Afromontane grassland ecosystems are not well studied, and the conditions under which
fires occur in these landscapes still need to be fully understood. Therefore, this study
aimed to develop an integrated grassland fire-danger-assessment system for the Golden
Gate Highlands National Park, a montane grassland ecosystem, by exploring six statistical
and machine learning models, i.e., frequency ratio (FR), weight of evidence (WoE), logistic
regression (LR), decision tree (DT), random forest (RF), and support vector machines (SVM).

2. Materials and Methods
2.1. Study Area

The GGHNP was proclaimed as a national park in 1963. The GGHNP is situated in the
foothills of the Drakensberg (Maloti) Mountains in the eastern Free State Province, South
Africa (Figure 1). The provincial road R712 winds its way through the park.

Fire 2024, 7, x FOR PEER REVIEW 4 of 33 
 

 

 
Figure 1. Location of the Golden Gate Highlands National Park (GGHNP) in Free State Province, 
South Africa. 

The grassland biome, of which the study area was comprised, was the second lowest 
protected biome within South Africa [79]. The GGHNP was established to protect a pris-
tine area, emphasising conserving the sandstone formation and the montane and Afro-
Alpine grassland biome [80]. The park is home to a broad spectrum of floral and faunal 
diversity [80]. The GGHNP is the province’s tourism hub, owing to its incredible scenery. 
The park features various soil types, i.e., shallow rocky soils (Glenrosa and Mispah), deep 
soils along drainage lines (Oakleaf), well-developed sandy soils (Hutton and Clovelly) 
and clayey soils (Milkwood and Tambakulu). The park is part of the most important water 
catchment in South Africa, called the Maloti Drakensberg catchment complex [80]. The 
southern parts of GGHNP drain into the Caledon River. The Caledon River delineates the 
park’s southwestern boundary and forms the border between South Africa and Lesotho 
[80]. In the northern section of the park, the Perskeboom and Klerspruit are tributaries 
which drain towards the Wilge River which is part of the Vaal River basin, which contrib-
utes to the water requirements of Gauteng, Mpumalanga, and north-west provinces 
[81,82]. The Little Caledon River flows about 8 km through the park and drains towards 
the Gariep Dam and Orange River [80]. 

According to Köppen–Geiger climate classification, the GGHNP falls under the sub-
tropical highland climate, also known as the Cwb climate subgroup [83]. The Cwb climate 
subgroup is temperate, with dry winters and warm summers. More than 80% of the pre-
cipitation occurs during the austral summer month from October until March, peaking in 
January with an average of 129 m, and is typically scarce in July in the middle of winter, 
with an average of 9 mm (Figure 2). Evapotranspiration rates are also high during this 
period, i.e., October–March (Figure Error! Reference source not found.a) due to the 
higher temperature (Figure Error! Reference source not found.b). Mean monthly mini-
mum and maximum temperatures range from −1.3 °C (July) to 24 °C (January and Febru-
ary). 

Figure 1. Location of the Golden Gate Highlands National Park (GGHNP) in Free State Province,
South Africa.



Fire 2024, 7, 61 4 of 32

The grassland biome, of which the study area was comprised, was the second lowest
protected biome within South Africa [79]. The GGHNP was established to protect a
pristine area, emphasising conserving the sandstone formation and the montane and Afro-
Alpine grassland biome [80]. The park is home to a broad spectrum of floral and faunal
diversity [80]. The GGHNP is the province’s tourism hub, owing to its incredible scenery.
The park features various soil types, i.e., shallow rocky soils (Glenrosa and Mispah), deep
soils along drainage lines (Oakleaf), well-developed sandy soils (Hutton and Clovelly) and
clayey soils (Milkwood and Tambakulu). The park is part of the most important water
catchment in South Africa, called the Maloti Drakensberg catchment complex [80]. The
southern parts of GGHNP drain into the Caledon River. The Caledon River delineates the
park’s southwestern boundary and forms the border between South Africa and Lesotho [80].
In the northern section of the park, the Perskeboom and Klerspruit are tributaries which
drain towards the Wilge River which is part of the Vaal River basin, which contributes to
the water requirements of Gauteng, Mpumalanga, and north-west provinces [81,82]. The
Little Caledon River flows about 8 km through the park and drains towards the Gariep
Dam and Orange River [80].

According to Köppen–Geiger climate classification, the GGHNP falls under the sub-
tropical highland climate, also known as the Cwb climate subgroup [83]. The Cwb climate
subgroup is temperate, with dry winters and warm summers. More than 80% of the pre-
cipitation occurs during the austral summer month from October until March, peaking in
January with an average of 129 m, and is typically scarce in July in the middle of winter,
with an average of 9 mm (Figure 2). Evapotranspiration rates are also high during this
period, i.e., October–March (Figure 2a) due to the higher temperature (Figure 2b). Mean
monthly minimum and maximum temperatures range from −1.3 ◦C (July) to 24 ◦C (January
and February).
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2.2. Data Acquisition
2.2.1. Historical Fires

Fire data for analysis was obtained from the visible infrared imaging radiometer
suite (VIIRS) 375 m thermal anomalies/active fire product, accessed through the Fire
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Information for Resource Management System (FIRMS) https://firms.modaps.eosdis.nasa.
gov/download/ (accessed on 22 March 2022). The VIIRS data, when compared to the
moderate resolution imaging spectroradiometer (MODIS), is particularly beneficial for
detecting smaller fires and improving the mapping of large fire parameters [85]. The
attribute information of each fire point contains latitude, longitude, acquisition date and
time, satellite instrument, confidence, version, brightness_T31, Fire Radiative Power (FRP),
and day/night. The confidence information is used to determine the quality of individual
hotspots or fire pixels, with values set at low (<15 K), nominal (>15 K, free of potential
sunlight contamination), and high (day or night-time saturated pixels) [85]. The data
became available in 2012; therefore, data spanning from 2012 to 2021 was utilized for
the study.

2.2.2. Grassland Fuel

Fuel moisture content, degree of curing (DOC), and health condition are crucial drivers
in grassland fires. DOC is the phenomenon of grass senescence, signifying the die-off
process and the transformation of live fuels into the dead fuel component [86]. The DOC is
a key driver of fire ignition and spread and has long been used in the Australia Fire Danger
Rating System [87]. A high percentage of curing is associated with high fuel flammability
and a high rate of fire spread. It was demonstrated that fire propagation can occur at curing
levels as low as 20% [88]. Vegetation moisture is one of the most essential indicators of
potential fire ignition and propagation; hence, several fuel moisture prediction models
have been developed for fire danger rating systems [89]. The authors of Ceccato, et al. [90]
developed the Global Vegetation Monitoring Index (GVMI) and demonstrated that the
index can directly measure vegetation moisture content regardless of species composition.
Wang, et al. [91] incorporated GVMI for fire-danger assessment. Higher fuel moisture may
decrease the likelihood of fuel ignition.

This study utilized the MODIS Terra MOD09A1 Version 6 product and Sentinel -2
satellite data. The MODIS Terra instrument was launched on 18 December 1999. The
MOD09A1 provides surface spectra reflectance of Terra MODIS Bands 1 through 7, and
it has been atmospherically corrected [92,93]. Also, it consists of two quality layers and
four observation bands with a temporal resolution of a day and a spatial resolution of
500 m [92]. The MODIS data have the advantages of higher spectral and temporal resolu-
tions. The European Space Agency developed Sentinel-2 with a constellation of identical
twin satellites, i.e., Sentinel-2A and Sentinel-2B, launched on 23 June 2015 and 7 March
2017, respectively. Sentinel-2 is equipped with an optical instrument payload that captures
data in 13 spectral bands. This includes four bands at a spatial resolution of 10 m, six bands
at 20 m, and three bands at 60 m. The satellite revisits the equator every 5 days. Each
satellite in the Sentinel-2 mission has a single payload called a Multi-Spectral Instrument
(MSI). Compared with MODIS data with a solid historical database, Sentinel-2 lacks that
quality. Nevertheless, it is more advantageous in spatial resolution and can integrate
imagery with compatible sensors [92]. All MODIS and Sentinel-2 satellite imageries were
used to compute the Normalized Difference Moisture Index (NDMI), Global Vegetation
Monitoring Index (GVMI), normalized difference vegetation index (NDVI), and vegetation
condition index (VCI) in GEE. The data spanning from 2007 to 2021 for June to October
was selected for the study. This period was selected because it reflects the region’s fire
season [94]. Google Earth Engine (GEE) operates a cloud-based computing platform that
gives convenient web-based access to numerous catalogues of satellite imagery and other
geospatial data in a format that is analysis-ready [36]. Distance from the watercourse is a
vital parameter as it affects the fuel moisture content [95] and can also act as a fire break.
Data on rivers was extracted from DEM (digital elevation model).

The VCI is good indicator of how dryness affects vegetation is was calculated following
Equation (1) [95,96]:

VCI =
(

NDVI − NDVImin
NDVImax − NDVImin

)
∗ 100 (1)

https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
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where
NDVI =

NIR − Red
NIR + Red

(2)

where VCI is the vegetation condition index, NDVI (Equation (2)) is the index of greenness,
and NDVImin is the index of minimum and NDVImax is the index of maximum greenness.
Lower values of VCI indicate severe dryness for vegetation or poor vegetation conditions.

In computing the global vegetation moisture index (GVMI), instead of using bands 6
and 11 of MODIS and Sentinel-2, respectively, this study used bands 7 and 12 reflectance.
The GVMI was calculated using Equation (3) [90]:

GVMI =
(NIR + 0.1)− (SWIR + 0.02)
(NIR + 0.1) + (SWIR + 0.02)

(3)

2.2.3. Topographic Data

Elevation is the vertical distance above sea level at a location on the ground. Lightning
strikes are frequent at high elevations, which may increase the likelihood of lightning
ignition [95]. Vegetation in high elevations has a higher humidity and a lower temperature
and density; hence, it is associated with few fire occurrences. National Aeronautics and
Space Administration (NASA, Washington, DC, USA) Shuttle Radar Topography Mission
(STRM) 30 m DEM data was downloaded from the USGS (United States Geological Sur-
vey, Baltimore, MD, USA) EarthExplorer (http://earthexplorer.usg.gov, accessed on 15
December 2023). Slope, aspect, topographic wetness index (TWI), topographic ruggedness
index (TRI), and topographic position index (TPI) data were extracted from the DEM. These
variables were selected due to their known influence on fuel type, load, and moisture,
particularly when topography interacts with microclimates [97]. Slope is the degree of
inclination or steepness of an area [23]. Fires are more likely to spread uphill due to con-
vection, and steeper slopes lead to more fuel preheating [98]. Aspect is defined as the
compass direction that the slope faces [23,99]. The aspect facing the sun has lower humidity
and, as a result, increases the dryness of combustible materials, leading to low fuel mois-
ture, which increases ignition likelihood [95]. The TPI is calculated using the following
Equation (4) [100]:

TPI = M0 − ∑n
n=0

(
Mn

n

)
(4)

where M0 represents the elevation of the model point being assessed, Mn denotes the
elevation of the grid, and n indicates the total number of surrounding points considered in
the evaluation.

If each square represents a grid cell on a DEM, then TRI is calculated following
Equation (5) [101]:

TRI = Y
[
∑

(
xij− x00)

2
]0.5

(5)

where xij is the elevation of each neighbour cell to cell (0,0).
The topographic ruggedness index (TPI) and topographic position index (TPI) were

derived from the DEM using Raster analysis GDAL TPI and the TRI tool of QGIS version
3.28.5. The TPI gauges the slope position of the topography by determining the difference
from the mean elevation of cells within a specified neighbourhood [101]. Positive TPI
values indicate a ridge, negative values indicate a valley, and values around zero indicate
a relatively flat landscape [102]. Lightning is prevalent on ridges, which may increase
the likelihood of ignition [95]. Ridges or canyons can change prevailing wind patterns by
funnelling air, increasing wind speed, and thereby accelerating fire [103]. The TRI measures
heterogeneity of topography, computed as the sum of elevation changes between a grid cell
and its eight neighbouring grid cells [104]. Lower values of TRI indicate smooth surfaces
or level areas, which are classified as having a very high danger of fire [105].

http://earthexplorer.usg.gov
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The topographic wetness index (TWI) characterises the propensity of a cell to accu-
mulate water [106]. Hence, it has been used as a proxy for soil moisture. The TWI was
computed following Equation (6) [106]:

TWI = In
(

∝
tanβ

)
(6)

where α represents the cumulative upslope drainage area through a point, and tan β denotes
the slope angle. The higher the TWI values, the wetter the surface, thereby increasing soil
moisture. High soil moisture makes the surrounding vegetation harder to ignite [107].

2.2.4. Soil Properties Data

Soil moisture, texture, and soil hydraulic properties such as fractional available water
capacity (FAW) or profile available water (PAW) are important indirect drivers of fire
ignition and propagation. The relationship between soil and vegetation governs soil’s
influence on fire occurrence; some soils support more vegetation than others. Wildfires
occur in soils with high sand contents and relatively low clay and silt contents [108]. Sandy
soils are known to have low available water capacity, so vegetation on soils with low
available water capacity is susceptible to water stress [109]. The higher the sand content,
the lower the available water capacity, increasing the likelihood of fire ignition. Relatively
high clay and silt content is associated with high soil water retention and available water
capacity; thus, less vegetation stress and decreased likelihood of fire ignition. Tanveera,
et al. [110] have shown a positive correlation between sand content and soil bulk density;
therefore, high bulk density leads to high vegetation water stress. Bulk density serves as an
indicator of soil compactness, calculated as the ratio of dry soil mass per unit volume, and
it provides insights into soil quality [111]. Wildfire tends to occur less on smaller particle
sizes than large particles; the higher the coarse soil content, the higher the likelihood of an
increase in fire occurrence. Clay, silt, and sand content and coarse fragments, as well as soil
bulk density images, were extracted using the extent of the study area.

Comprehending the structure of ecosystems relies significantly on the study of bare
soil, which has emerged as a fundamental influence on ecological functioning [112]. Bare
soil can be used as a barrier, can limit the direction and rate of spread, and is an indicator of
fuel continuity and load [99]. The bare soil index (BSI) has been employed for distinguishing
bare soil from other land use and land cover (LULC) classes [113] and is not widely used as
a driving factor for fire danger assessment. The BSI values increase as vegetation density
decreases and ground exposure increases [38]. This study adopted the Modified Bare Soil
Index (MBI), proposed by Nguyen, et al. [114], as shown in Equation (7):

MBI =
SWIR1 − SWIR2 − NIR
SWIR1 + SWIR2 + NIR

+ f (7)

where SWIR1 and SWIR2 refer to bands 6 and 7 for MODIS and bands 11 and 12 for
Sentinel-2 in the shortwave infrared spectrum, with an additional factor denoted as f
(where f equals 0.5).

Soil moisture data from June to October for the period of 2007 to 2021 from Terra-
Climate with a spatial resolution of 4000 m was downloaded from Climate Engine (CE)
https://app.climateengine.org/climateEngine (accessed on 22 March 2022) [115]. Soil phys-
ical properties, including soil bulk density, coarse fragments, and clay, coarse, sand, and
silt contents were acquired from the International Soil Reference and Information Centre
(ISRIC) https://soilgrids.org/ (22 March 2022) at 250 m spatial resolution [116]. The total
plant available water-holding capacity (TAWCP) was downloaded from African SoilGrids
of ISRIC World Soil Information http://africasoils.net/services/data/soil-databases/ (22
March 2022).

https://app.climateengine.org/climateEngine
https://soilgrids.org/
http://africasoils.net/services/data/soil-databases/
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2.2.5. Climatic/Weather Data

An increase in land surface temperature (LST) indicates a reduction in fuel moisture
content, thus increasing the likelihood of fire ignition. Hence, LST has been used as a
driver for fire-danger assessment in numerous studies, e.g., [37,91,117–119]. The LST was
extracted from MODIS MOD11A2 version 6.1. product (2007–2021) using GEE at a spatial
resolution of 1000 m. Wind is known to be one of the most important factors in determining
fire dynamics [120,121]. Because of the fanning effect, wind significantly affects the fire
ignition and spread [122]. Wind accelerates fuel preheating, reducing fuel moisture and
resulting in drier fuel, thus increasing the likelihood of fire ignition and spread. Wind
speed data from June to October 2007 to 2021 from TerraClimate with a spatial resolution
of 4000 m was downloaded from CE.

2.2.6. Fire Ignition Data

Fire ignition sources can either be caused by humans or natural causes. Natural igni-
tion source includes lightning strikes. Cloud-to-ground (CG) lightning data was acquired
from the Southern African Lightning Detection Network (SALDN), operated by the South
African Weather Services (SAWS). The improved 2015 network consists of 25 Vaisala CG
lightning sensors capable of detecting all CG lightning discharges with a 90% efficiency
measure [123]. The SALDN exhibits a lightning detection capability with a location ac-
curacy of ~0.005 degrees, encompassing South Africa, Lesotho, and Swaziland [124,125].
Following the recommendation of the International Electrotechnical Commission Stan-
dards (IEC 62858), a minimum of ten years of lightning data is essential to account for
short-term scale variations in lightning parameters attributed to diverse meteorological
oscillations [126]. Consequently, this study employed lightning strike data spanning
11 years, from January 2007 to December 2017. Anthropogenic ignition sources are related
to human presences and activities, such as distance from the road, tourist infrastructure,
or housing density—a vector road and infrastructure map was attained from the South
African National Parks (SANParks) Scientific Service Department. As a support, Open
Street Map data (OSM) was used to download the road, infrastructure, and building
maps https://download.geofabrik.de/africa/south-africa.html (accessed on 10 June 2018).
Roads may increase the likelihood of intentional “arson” ignition, especially that far from
the road and accidental ignition near the road through the discarding of cigarette butts.
Other infrastructure and buildings, such as tourist facilities, offices, and staff dwellings, are
associated with an increased population, which may increase the likelihood of accidental
ignition. Roads not only serve as the source of fire ignition, but roads can also act as barriers
or fire breaks and can aid in containing the fire as the roads increase the accessibility,
allowing the fire control or firefighters easier access to the fire [38]. The data used in this
study are listed in Table 1.

2.3. Wildfire Detection

Firstly, a regular shape file with cell sizes of 0.0001 degrees was created using the
fishnet tool in ArcMap 10.7 to create study area polygons. An extract-multiple-values-to-
point data tool was applied to extract values of all environmental drivers of fire to a point
layer. Fire point data were then joined using Spatial Join Analysis tool with delineated
study area polygons to create a binary layer (10 m) indicating the presence and absence of
fire polygons. All the polygons with null values for latitude, longitude, and acquisition
date were treated as non-fire polygons and denoted a value of 0 for the newly created
field name “Fire occurrence” and “1” for the presence of a fire polygon. A binary layer
attribute table with associated drivers’ values was then converted into an “XLS” format.
The “Fire_Occurrence” field was a dependent variable, and all drivers are independent
variables for models and statistical analysis.

https://download.geofabrik.de/africa/south-africa.html
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Table 1. List of data type, satellite sensor or product, spatial resolution, and data source.

Category Driving Factor Sensor/Product Resolution Data Download Source (Accessed
on 15 December 2023)

Fire Fire Points VIIRS-NPP 350 m https://firms.modaps.eosdis.nasa.
gov/download/

Topographic

Elevation (m)

DEM 30 m

https://earthexplorer.usgs.gov/

Aspect (degrees)

Slope

Topographic position index (TPI)

Topographic ruggedness index (TRI)

Topographic wetness index (TWI)

Fuel

Grass curing index (GCI)

MOD09A1;
Sentinel-2

500 m
10 m

https://developers.google.com/
earth-engine/datasetsGlobal vegetation moisture index

(GVMI)

Vegetation condition index (VCI)

Proximity from river (prox_river) (m) DEM https://earthexplorer.usgs.gov/

Soil

Bare Soil Index (BSI) Sentinel-2 10 m https://developers.google.com/
earth-engine/datasets

Soil bulk density (BD) (cg/kg)

International Soil Reference
and Information Centre

(ISRIC), SoilGrids
250 m

https://soilgrids.org/
Clay content (g/kg)

Coarse fragments (cm3/dm3)

Sand (g/kg)

Silt (g/kg)

Soil Moisture Content (SMC) (mm) TerraClimate 4000 m https://app.climateengine.org/
climateEngine

Total Plant Available Water-Holding
Capacity (TAWCP)

African SoilGrids of ISRIC
World Soil Information 1000 m http://africasoils.net/services/

data/soil-databases

Weather

Land Surface Temperature (LST) (◦C) MODIS MOD11A2 100 m https://developers.google.com/
earth-engine/datasets

Lightning South African Weather
Services 500 m

Wind speed (m/s) TerraClimate 4000 m https://app.climateengine.org/
climateEngine

Anthropogenic

Proximity from road (prox_road) (m)

Open Street Map; SANParks

https://download.geofabrik.de/
africa/south-africa.html

Proximity from other infrastructure
(built Environment, tourist facilities)

(Prox_structure) (m)

2.4. Multicollinearity Analysis

Multicollinearity assessment is the test predominately used for the detection of spatial
correlation among independent variables (driving factors) used to model the response
variable (fire danger) occurrence [127]. This study used the variance inflation factor (VIF)
as a diagnostic tool for the multicollinearity assessment of ordinary least squares (OLS)
linear regression analysis. The VIF provides insights into the extent to which the variances
of the estimated regression coefficient are increased as a result of correlation among the
predictors in the model [128]. The purpose of these analyses was to verify the precision and
dependability of the data prior to the modelling process. The OLS analysis was executed
using the OLS Modelling Spatial Relationship tool of ArcMap 10.

2.5. Fire-Danger-Assessment Techniques

Fire-danger-assessment modelling was created using QGIS’s susceptibility zoning (SZ)
plugin, which was developed for landslide zoning [129]. Nonetheless, it can be utilized

https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
https://earthexplorer.usgs.gov/
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://earthexplorer.usgs.gov/
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://soilgrids.org/
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
http://africasoils.net/services/data/soil-databases
http://africasoils.net/services/data/soil-databases
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://download.geofabrik.de/africa/south-africa.html
https://download.geofabrik.de/africa/south-africa.html


Fire 2024, 7, 61 10 of 32

to map any kind of danger zoning. The SZ plugin was selected because of its usability, its
collector of QGIS processing scripts in Python, which runs as a part of the GIS platform,
and its ability to predict and validate fire danger using six (6) built-in different models [130].
Hence, this study utilized all these methods for fire-danger mapping.

2.5.1. Weight of Evidence (WoE)

The weight of evidence (WoE) is a quantitative data-driven approach based on
Bayesian principles to integrate spatial datasets [44] and to estimate the relative importance
of independent variables on a dependant variable (occurrence). It utilized conditional
probabilities statistics to determine weight values of geographic evidence layers that are
closely associated with the predicted events [43,44]. These weight values are then used
to calculate the probability of events within a given area by superimposing the weight
value of each evidence layer that represent the contribution of corresponding evidence
factors to event occurrences [131]. Hence, it is based on the concepts of prior and posterior
probability [43,46]. The weights were determined using Equations (8) and (9) [44].

Wi+ = In
(

Npix1
Npix1 + Npix2

/
Npix3

Npix3 + Npix4

)
(8)

Wi− = In
(

Npix2
Npix1 + Npix2

/
Npix4

Npix3 + Npix4

)
(9)

where Wi
+ signifies the presence of a driving factor at the fire site, and the magnitude of

this weight reflects the correlation between that factor and fire occurrence. On the other
hand, Wi

− denotes the absence of the relevant factor at the fire’s location, indicating an
inverse correlation level. The variables Npix1, Npix2, Npix3, and Npix4 are defined as follows:
Npix1 represents the number of pixels with fire in the specified class, Npix2 is the total pixels
with fire in the entire map minus pixels with fire in the class, Npix3 is the total pixels in the
class minus the pixels with fire in the class, and Npix4 is the total pixels in the map minus
the pixel with fire in the class.

The contrast in weight (Wf), which measures the magnitude of the spatial relationship
between the driving factor and the occurrence of fire, is determined through Equation (10).

W f = W+ − W+ (10)

2.5.2. Frequency Ratio (FR)

FR is a binary statistical model based on the favourability function [47]. Like WoE, FR
describes the importance of classes for each driving factor in relation to the occurrence of fire.
However, FR defines the ratio of the probability of fire occurrence to the probability of non-
occurrence fire for a given fire driving factors [24,45]. The authors of Mohajane, et al. [24]
and Xie, et al. [42] fully explained the calculation of the FR model.

2.5.3. Logistic Regression (LR)

Logistic regression (LR) is a modelling technique that is part of the family of general-
ized linear models [132] and is one of the popular statistical models utilized effectively to
predict fire occurrence and examine the driving factors for fire ignition and propagation.
In a regression model, an equation for predicting the value of the dependant variable
based on one or more independent predictor variables is developed [133]. In the context of
fire-danger-assessment modelling, the goal of LR is to find the best fitting model that can
describe the relationship between the existence (1) or absence (0) of fire (i.e., dependent
variable) and a set of independent variables (fire-driving factors) [41,133]. The authors of
Hong, et al. [41] provide the general form of LR equation.
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2.5.4. Decision Tree (DT)

Decision Tree (DT) is a non-parametric, supervised learning approach utilized for
classification and prediction. Its easy interpretability and simplicity make DT more trans-
parent for application in decision-support systems [72], and it has a Boolean function (if
each decision is binary, i.e., true or false) [42]. DT is based on humanly understandable tree
rules (If/Then rules) to extract predictive information. A tree-like structure is designed that
kick-starts with all training samples and selects the variable that best fit the class and to
make subdirectories [134]. The tree branches are constructed from the test performed at
each step by the algorithm on the middle nodes. At each split in the tree, all input attributes
are evaluated for their influence on the predictable attribute [135,136]. Predictions of the
model are found at the leaves of the tree, also known as final nodes. A detailed description
of the DT algorithms for wildfire predictions and classification has been described [71].

2.5.5. Random Forest (RF)

For mapping and modelling wildfires, RF is one of the most effective non-parametric
ensemble learning techniques proposed by Breiman in 2001 as an inheritance and improve-
ment of the traditional DT [137]. The efficiency of RF is influenced by two parameters: the
number of trees in the forest (ntree) and the number of random variables per split node
(mtry) [138,139]. Sharma, et al. [26] thoroughly explained the RF algorithm for the RF
classification and regression algorithms.

2.5.6. Support Vector Machine (SVM)

Based on structural risk reduction approaches and statistical learning theory, SVM is
one of the most reliable supervised ML techniques for creating a linear hyperplane to divide
two classes, e.g., fire and non-fire [70]. The core idea of the SVM model is to establish the
classification hyperplane as a decision surface to maximize the isolation edge between posi-
tive and negative examples by providing a high generalization performance [140]. The SVM
can solve quite well high dimensional and non-linear pattern recognition problems [42]
by using its kernel functions. Kernel functions can map the original input space to a new
feature space, making samples that are otherwise linearly indistinguishable potentially
distinguishable in the kernel space [139].

2.6. The Development of Fire-Danger Maps

A variety of techniques have been applied to categorize fire-danger classes into discrete
classes. For example, Eskandari, et al. [141] used natural breaks to classify the Golestan
fire-danger map into four classes. Gholamnia, et al. [136] also used the natural breaks as
a classifier method for the fire susceptibility map of Amol County in Iran. In this study,
receiver operating character (ROC) curves were used to produce a robust classification of the
fire-danger map [142]. SZ plugin consists of a new genetic algorithm (GA)-based classifier
which is an iterative meta-heuristic method based on the numerical replication of Charles
Darwin’s natural selection theory [130]. This study applied this GA-based classifier using
the “classify vector by ROC” tool of SZ plugin to develop the fire-danger index (FDI) into
five classes. The classifier is based on the quantile classification method; Bustillo Sánchez,
et al. [143] applied the method for the spatial assessment of wildfire susceptibility in Santa
Cruz, Bolivia. The FDI values were normalized to the range of 0–1 using geomorphometry
and Gradient Metric Toolbox. After normalization, each data layer was classified and
assigned a numerical rating value ranging between 1 and 5 guided by the fire-danger
rating system of the South Africa Department of Agriculture, Forestry and Fisheries, with
five classes ranging low (insignificant) to extremely dangerous (extremely high) as shown
in Table 2 [144]. Finally, the fire-danger maps of each model were constructed. A zonal
statistic tool in ArcMap was used to determine the area coverage of each fire-danger class.
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Table 2. Fire-danger maps classified into five classes and their descriptions.

Normalized FDI Value Numerical Rating Fire-Danger Class Fire-Danger Rating

0–0.2 1 Low Insignificant
0.2–0.35 2 Moderate Low
0.35–0.5 3 Dangerous Moderate
0.5–0.7 4 Very dangerous High
0.7–1 5 Extremely dangerous Extremely High

2.7. Model Performance Assessment

The evaluation criteria are key factors in assessing the performance and validation
of prediction models [74,145]. Cross-validation is one of the common techniques used
for model performance and validation. A simple model fit and a random split in test
methods were used for this study as embedded in the SZ plugin. The ability of the fire
danger assessment models to predict the spatial distribution of fire and to evaluate the
robustness of the model-fitting capacity was achieved using the ROC/AUC curves [37,145].
A useful way to illustrate the effectiveness of the probability maps that specific models
predict is to use the ROC/AUC technique [146]. The ROC curve portrays the trade-offs
or relation between true positive rates and false positives (FPs), rather than arbitrarily
selecting a particular threshold [145]—the SZ plugin plots ROC curves through following
Equation (11) [142].

TPrates =
TP

TP + FN
FPrates =

FP
FP + TN

(11)

where TPrates stands for sensitivity, TP for true positive, FN for false negative, FRrates for
specificity, and FP for false positive.

The dataset was randomly split into two datasets, i.e., 70% and 30% to train and vali-
date the model, respectively [142]. The success and prediction rate curves were displayed
in both datasets [146]. How well the modelling outputs fit the training dataset is indicated
by the success rate. The prediction rate of the validation dataset indicates how well the
model predicts future fires across the landscape of the Golden Gate Highland National Park
(GGHNP) [70]. The ROC/AUC values of less than 0.6 indicate poor model performance,
while 0.6–0.7 is moderate and 0.7–0.8 is good model performance. ROC/AUC values in the
range 0.8–0.9 are very good and greater than 0.9 indicates excellent model performance [70].

2.8. The Importance and Contribution of Driving Factors in Fire-Danger Modelling

Like the GEE classifier, the SZ plugin suffers from the limitation of variable importance
analysis. The relative importance and contribution of each driving factor for predicting
fire-danger models were determined by using the maximum entropy (MaxEnt) Version 3.4.4
algorithm [22,75,76,147,148]. A major advantage of MaxEnt model is that it allows for the
assessment of all the input predictor variables in order of their significance [22]. According
to the MaxEnt modelling, the probability distribution with the highest entropy is the best
one and the most significant [149]. Furthermore, WoE and FR algorithms can determine the
spatial association between the classes of each driving factor and fire occurrence. The Wf
(weight of contrast) value and FR were used to determine the spatial correlation between
the driving factor and the fire-occurrence probability [44–46,136].

2.9. Correlation Analysis

The relationships between the twenty driving factors and the susceptibility index (SI)
values from the fire-danger maps were analysed using the multi-environment trial analysis
(metan) package in R software Version 4.3.0.
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3. Results
3.1. Multicollinearity Assessment

The VIF (variable inflation factor) index results revealed that sand, silt, and clay failed
to meet the multicollinearity threshold. Henceforth, these three factors were excluded from
the analysis. The list of factors that met the multicollinearity threshold, i.e., attained VIF
values of less than 7.5, indicating the least redundancy between variables as explained in
the ordinary least squares (OLS) analysis results, are presented in Table 3.

Table 3. Variable inflation factor (VIF) for selected factors influencing fire-danger-assessment
modelling.

Variable Abbreviation VIF Variable Abbreviation VIF

Aspect A 1.06 Proximity from river Prox_river 1.52
Bare soil index BSI 1.68 Proximity from road Prox_road 1.23

Soil bulk density BD 6.14 Slope S 6.13
Coarse fragments CF 2.43 Soil moisture content SMC 2.75

Elevation E 8.91 Total Plant Available
Water-Holding Capacity TAWCP 1.09

Grass curing index GCI 5.99 Topographic position index TPI 1.10
GVMI 3.64 Topographic rugedness index TRI 6.43

Proximity from other infrastructure Prox_structures 1.15 Topographic water index TWI 1.47
Lightning L 1.66 Vegetation condition index VCI 2.48

Land surface temperature LST 2.77 Wind speed WS 1.95

3.2. Fire Danger Maps

Wildfire-danger maps based on six datasets or models consistently depicted the
presence of all five (insignificant to extreme high) fire-danger classes across the entire
study area, as presented in Figures 3 and 4. The decision tree (DT), frequency ratio (FR)
and random forest (RF) models showed the greatest area coverage in the extremely high-
danger level or class, while logistic regression (LR), support vector machine (SVM), and
weight of evidence (WoE) models showed the greatest area coverage in the moderate
danger class (Figure 3). Figure 3 illustrates that DT reported the highest percentage of the
extremely high-risk class, i.e., 41.11%, followed by RF (35.68%), FR (32.92%), WoE (26.76%),
SVM (16.67), and LR (11.48%). However, the results of the WoE model illustrated that
83% of the study area was in the moderate-, high-, and extremely high-risk classes. The
FR, DT, SVM, RF, and LR models recorded were used to record 73.12%, 70.40%, 69.62%,
68.58%, and 66.15%, respectively. All models identified that extremely high-risk areas
were mostly concentrated in the southern and south-western parts of the park Figure 4,
which are dominated by rocky highland grassland plant communities, including grass
species such as Festuca caprine, Themedea triandra, Merxmuellera disticha and Xerophyta viscosa.
Also, the eastern part of the study area (Figure 4) dominated by grass species such as
Aristida junciformis, Digitaria monodactyla, Heteropogon contortus, Melwilla natalensis,
and Adiantum capillus-veneris found at outcrop/middle plateau grassland as well as
the grass species found in plateau grassland communities including Cynodon dactylon,
Hyparrhenia hirta, Ekebergia capensis, Eriocephalus racemos and Sporobolus africana.

3.3. Model Evaluation

Table 4 presents the ROC/AUC values of all the models, and Figure 5. portrays
the ROC/AUC curves from the goodness of fit model results. The DT outperformed the
other models with an AUC value of 0.93, while SVM and LR performed poorly, yielding
0.63. The FR, RF, and WoE performed very well; the AUC values were 0.92, 0.91 and
0.83, respectively.
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Figure 3. Percentage of area of fire-danger classes in the Golden Gate Highlands National Park
(GGHNP) generated using decision tree (DT), frequency ratio (FR), logistic regression (LR), random
forest (RF), support vector machines (SVM), and weight of evidence (WoE) models.

Table 4. Results of AUC (area under the curve) index of the decision tree (DT), frequency ratio (FR),
logistic regression (LR), random forest (RF), support vector machines (SVM), and weight of evidence
(WoE) models used in the wildfire-danger assessment in the Golden Gate Highlands National Park
(GGHNP).

Model Abbreviation Accuracy/
Model Fit Success Rate Prediction

Rate

Decision tree DT 0.93 0.96 0.5
Frequency ratio FR 0.92 0.95 0.66

Logistic regression LR 0.63 0.65 0.6
Random forest RF 0.91 0.94 0.53

Support vector machines SVM 0.63 0.64 0.59
Weight of evidence WoE 0.83 0.83 0.74

The DT outperformed other models with the highest accuracy value of 0.96, although
the model reported the lowest prediction rate. Similarly, both RF and SVM demonstrated
poor prediction performances with AUC values of 0.53 and 0.59, respectively. Meanwhile,
the LR and FR achieved moderate prediction performances. The WoE was used to record
the best prediction rate, i.e., 0.74.

3.4. The Importance of Driving Factors in Fire-Danger Modelling

According to the results of the MaxEnt model analysis in Table 5, bulk density, global
vegetation moisture index (GMVI), land surface temperature (LST), proximity from road
(prox_road), aspect, proximity from river (prox_river), grass curing index (GCI), soil
moisture content (SMC), and wind speed had the most significant impact on influencing
the probability of fire occurrence. In contrast, slope, modified bare soil index (MBI),
topographic position index (TPI), coarse fragments, and lightning had little impact, and
TAWCP had no impact on occurrences of wildfires.

Figure 6 shows the results of the jack-knife test regarding the order of importance of
the driving factors in the models. The VCI and LST were the strongest and most influential
driving factors of the fire-danger model for the study area; therefore, if excluded from the
model, its performance would be considerably reduced. Without the respective application
of the BSI, elevation, lightning, slope, and TAWCP in the model, the regularized training
gain remained almost the same compared to applying all the variables at once.
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decision tree (DT); (b) frequency ratio (FR); (c) logistic regression (LR); (d) random forest (RF);
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Figure 5. ROC/AUC (area under the receiver operating characteristic curve) results of the (a)
decision tree (DT), (b) frequency ratio (FR), (c) logistic regression (LR), (d) random forest (RF),
(e) support vector machines (SVM), and (f) weight of evidence (WoE) models used in the wildfire-
danger assessment in the Golden Gate Highlands National Park (GGHNP).
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Table 5. Variables sorted in order of importance in influencing fire-danger-assessment modelling in
Golden Gate Highlands National Park (GGHNP).

Variable Unit of
Measurement Abbreviation Percent

Contribution
Permutation
Importance

Bulk density Cg/kg BD 7.7 11.8

Global vegetation moisture index GVMI 3.8 10.4

Land surface temperature ◦C LST 19.9 9

Proximity from road M prox_road 4.7 8.5

Aspect ◦ A 11.4 8

Proximity from river M prox_river 5.6 7.2

Grass curing index GCI 2 6.9

Soil moisture content Mm SMC 9.1 6.7

Wind speed m/s WS 7.3 5.3

Proximity from other infrastructure, e.g., built
environment and tourist facilities prox_structures 3.6 4.1

Vegetation condition index VCI 4.3 3.9

Topographic ruggedness index TRI 2.4 3.7

Topographic water index TWI 3.4 3.7

Elevation M E 1.3 3.2

Slope S 1.8 2.4

Bare soil index BSI 1.2 2.2

Topographic position index TPI 2.6 1.6

Coarse fragments Cm3/dm3 CF 1.9 1

Lightning MJ/m L 5.8 0.6

Total plant available water-holding capacity TAWCP 0.3 0
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Figure 6. Jack-knife of regularized training gains for modelling wildfire danger in the Golden Gate
Highlands National Park (GGHNP); BSI (bare soil index), coarse (coarse fragments), GCI (grass curing
index), GVMI (global vegetation moisture index), LST (land surface temperature), prox_structures
(proximity from other infrastructure, e.g., built environment and tourist facilities), SMC (soil moisture
content), TAWCP (total plant available water-holding capacity), TPI (topographic position index), TRI
(topographic ruggedness index), TWI (topographic water index), VCI (vegetation condition index),
prox_river (proximity from river), and prox_road (proximity from road).
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3.5. The Spatial Relationship between Fire-Driving Factors and Fire Location

The spatial relationship between fire-driving factors and fire location in the Golden
Gate Highlands National Park (GGHNP) was analysed using WoE and FR models. If the
FR is greater than one (>1), there is a high correlation, and if it is less than one (<1), there is a
low correlation or no causative relationship [39,46]. If the Wf of the WoE is positive, the class
of the driving factor has a role in fire occurrence with a positive relation or direct causation.
When Wf is zero, the factor is not significant for the analysis. A negative correlation exists
if the Wf is negative, i.e., the factor reduces wildfire ignition and spread. The results of the
aspect analysis revealed that the class of reliefs oriented towards northeast (NE)-, south (S)-,
southeast (SE)-, and southwest (SW)-facing directions had positive Wf values for the Wf
and FR >1, with the highest value observed in the NE class. Therefore, the relief oriented
towards NE has a strong and causative relationship with the fire occurrence. The flat zones
included negative Wf (−1.050) and positive FR (0.552) values.

Considering other topographic factors, the elevation results indicated positive Wf val-
ues and FR (>1) values at the altitude ranging from 1976 to 2815 m. The highest scores were
observed at the altitude floor 1976–2094 m (0.295; 1.103), followed by 2098–2815 m (0.152;
1.053). The lowest causative relationship was observed at 1779–1875 m (−0.297; 0.894). The
13.77–21.20 degrees (0.325; 1.113)-, and 0–4.68 degrees (−0.392; 0.860)-slope classes had
the highest and the lowest impact on the probability of fire occurrence, respectively. The
highest and lowest correlation was observed in the classes 0.63–2.0 (0.295; 1.103), and 2.0–13
(−0.264; 0.907), respectively, for the TPI. For the TRI, the highest and the lowest probability
of the fire occurrence were observed in the 31.71–117.81 (0.310; 1.108), and 1–6.86 (−0.331;
0.882) classes, respectively. With respect to TWI, a positive causative relationship to the
risk of fire was recorded for 3.26–5.06 (0.277; 1.097), 6.22–791 (0.043; 1.015), and 10.71–17.91
(0.006; 1.002) classes. Meanwhile, the 7.91–10.71 (−0.250; 0.910) and 5.06–6.22 (−0.072;
0.975) classes had no effect on the probability of fire occurrence.

Soil bulk density (BD) analysis results revealed that the highest and lowest correlation
was observed in the classes of 121–132 (0.516; 1.186) and 141–145 (−0.472–0.840), respec-
tively. Regarding SMC, the highest and lowest impacts on the occurrence of fires were
observed in the class of 3.71–4.614 (0.422; 1.139) and 3.181–3.411 (−0.292; 0.898). The soil
with coarse fragments between the 103–121 and 121–194 classes, with Wf values and FRs
of 0.162;1.057 and 0.161;1.056, respectively, had a high probability of fire occurrence. The
negative correlation was observed by the areas with the coarse fragments in the class of
43–103, with Wf and FR values of −0.223; 0.921, −0.057; 0.980, and −0.03; 0.987 for the
classes 90–103, 43–75 and 75–90, respectively. For TAWCP, classes 24–25 (0.263; 1.089) and
25–28 (0.249; 1.068) had a positive correlation with fire occurrence, whereas classes 21–24
(−0.618; 0.748) and 28–33 (−0.263; 0.92) showed no effects to fire occurrence.

All classes in the BSI factor had an impact on the probability of fire occurrence except
the class 0.391–0.466 (−0.427; 0.848). The highest positive correlation was observed in the
class 0.373–0.382 (0.249; 1.087), followed by 0.334–0.365 (0.141; 1.050), 0.382–0.391(0.030;
1.010), and 0.365–0.373 (0.014; 1.050). Similar to BSI, all GCI classes yielded a positive
correlation with the fire occurrence except the class 0–30% (−0.572; 0.816). The highest
probability of fire occurrence was recorded in the class 60–80% (0.815; 1.304), followed by
50–60% (0.562; 1.211), 30–50% (0.030; 1.007), and 80–100% (0.022; 1.010). In contrast to BSI
and GCI, all GVMI classes had no effect on fire occurrence except the class −0.051–0.109,
with positive values of Wf (0.704) and FR (1.238). The VCI that recorded the highest
probability of fire occurrence existed in the classes 39–82% (0.671; 1.228), 28–33% (0.281;
1.098), and 33–39% (0.180; 1.063). The lowest probability of fire danger was recorded in the
classes 9.0–23% (−0.567; 0.798) and 23–28% (0.525; 0.798).

The proximity factors fluctuated more than any other factors; instead of a positive
or negative trend, the factors had a mixture of negative and positive correlations. A
negative correlation was observed in the 0–200 m (−0.200; 0.925) class and a positive
correlation in the 200–400 m (0.060; 1.024) class. Similarly, a negative correlation was
observed in the 400–600 m (−0.032; 0.987) class, while positive correlations were evident
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in the 600–800 m (0.140; 1.057) and more than 1000 m (0.154; 1.036) classes. In terms of
proximity from the river, the distance between 200 and 800 m recorded a positive correlation
with the occurrence of fire. The area with the highest probability of fire occurrence was
the 400–600 m (0.372; 1.146) class. Negative correlations were recorded in the 800–1000 m
(−0.269; 0.888) and the more than 1000 m (−0.169; 0.961) classes. The proximity from
tourists’ infrastructure and the built environment revealed a positive correlation with fire
occurrence in the 0–100 m (0–100 m, 0.177; 1.077), 300–400 m (0.108; 1.047), and more than
500 m (0.432; 1.009) classes. The 100–200 m (−0.642; 0.718), 200–300 m (−1.029; 0.561),
and 400–500 m (−0.232; 0.898) classes indicated a negative impact on the probability of
fire occurrence.

The results of the lightning factor revealed that a positive correlation with the proba-
bility of fire occurrence was observed at level 1 (almost danger-free lightning zone), level
4 (severe danger lightning zone), and level 5 (extremely dangerous lightning area). The
highest WoE and FR values were recorded at level 5. The lowest correlation with fire
probability was recorded at levels 2 (minimal lightning danger) and 3 (moderate danger
of lightning). For LST, the highest and lowest correlations were recorded at the 22–23 ◦C
(0.37; 1.130) and 19–22 ◦C (−0.209; 0.926) classes, respectively. Regarding wind speed,
the area with the highest probability of fire occurrence was observed in class 6.32–11.89
(0.252; 1.088), while the lowest correlation was in class 3.59–4.29 (−0.131; 0.954). Overall,
the highest probability of fire danger was observed at the GCI class of 60–80% with the
Wf value 0.815 and FR value of 1.304, followed by the GVMI class of −0.005–0.109 (0.704;
1.238), the VCI class of 39–82% (0.671; 1.228), level 5 of lightning danger (0.609; 1.218), and
level 1 of the lightning danger area (0.587; 1.243).

3.6. Pairwise Correlations between Wildfire-Driving Factors

As depicted by the Pearson correlation graph (Figure 7), the highest correlation values
were computed between the GVMI and VCI (0.71), the GCI and VCI (0.84), the GCI and
GVMI (0.85), and slope and the TRI (0.98). Significant negative correlations were recorded
for coarse fragments and BD (−0.70), SMC, and BD (−0.71). Therefore, the results indicated
that all these factors were important in the fire-danger-assessment modelling process.
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4. Discussion
4.1. Model-Performance Assessment

Considering the importance of grassland ecosystems, this study combined twenty
driving factors influencing fire occurrence to map fire danger in the Golden Gate Highlands
National Park (GGHNP), a montane grassland in Free State Province, South Africa. This
study applied conventional statistical and machine learning (ML) methods, i.e., frequency
ratio (FR), the weight of evidence (WoE), logistic regression (LR), decision tree (DT), random
forest (RF), and support vector machine (SVM). The RF, SVM, and DT models have been
proven effective in wildfire modelling [37,42,70,72,73,75,150,151]. The WoE and FR, on
the other hand, although outperformed ML models in predicting complex environmental
phenomena such as landslides and gullies [130,152,153], their applications in wildfire
mapping is very limited [44–46]. The RF has been the most accurate algorithm in fire
modelling [66].

Although the superior performance of RF was expected, the results from this study
revealed that the RF method had a medium performance compared with DT and FR in
both overall model goodness of fit and success rate. Furthermore, the RF model was the
second least poorly performed in the fire prediction rate; this aligns with previous studies
where RF was outperformed by other models [72,146,154]. Although DT and FR models
outperformed RF, the three models performed poorly in prediction rate; in fact, DT had
the worst prediction accuracy—the FR performance was satisfactory— and it was second
best after WoE. The poor performance of the LR model was also observed in previous
studies, e.g., [54,136,155,156]. While the WoE had relatively less accuracy than DT, FR and
RF outperformed all the models in terms of prediction rate. This demonstrates that WoE
can perform just as well as ML models for fire assessment. The capability of WoE to achieve
balanced accuracy makes it a better choice for fire-danger-assessment mapping in the study
area. Furthermore, Phelps and Woolford [132] have shown that statistical approaches, i.e.,
logistic GAMs, can perform just as well as ML for fire occurrence predictions; therefore,
they should be preferred models for fire-management operations.

The WoE was the best model in terms of prediction rate; however, it was outperformed
by DT, FR, and RF models in its accuracy and success rate. This trend might be explained
by the complexity–accuracy trade-offs and the implications of complexity in interpretability
and prediction. The trade-off is based on the tendency of complex models to outperform
simple models [157], and interpretable models are worse performers than difficult to under-
stand “black-box models” [158]. Complex models achieve the best performance at the high
price of complexity, while model interpretability and complexity are positively correlated.
However, that trend holds under the assumption that the models have been properly
parameterized and trained [157]. For example, DT is regarded as an interpretable model
and is prone to overfitting if not properly parameterized. RF is robust to overfitting and
the model of choice in fire-danger modelling; however, RF is complex and not interpretable
because the aggregation step makes it very difficult to trace the outcome of the model back
to the input features [157]. In contrast, the WoE is a simple and interpretable model if
the data meet the requirements of a simple model (linearity); therefore, WoE is adept at
revealing higher performance. This is because this model can perform multiple analyses
and generalize information and present outcomes as probabilities, thus offering a robust
analytic framework with a straightforward interpretation [159].

A classification analysis of the developed fire-danger maps revealed that the largest
percentage of area coverage of the study area was observed from the extreme fire-danger
class of the DT model (41.11%), succeeded by RF (35.68%), with the lowest percentage of
area coverage derived from the LR model (11.48%). The findings reveal that these models
operate on mathematical concepts that do not necessarily lead to the same performance in
environmental settings [160]. Furthermore, the asymmetric performance of the models is
attributed to the models’ computational algorithms. Decision-tree-based models like the
RF algorithm randomly draw samples, generate multiple decision trees, and combine them
through averaging or voting in a way that reduces overfitting. The basic algorithm of the LR
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model considers a linear relationship between a fire occurrence and its driving factors [41]
that does not meet the complex nature of phenomena and therefore does not underestimate
the probability of fire danger [160]. In comparison with SVM, it can quickly and efficiently
implement “transduction” inference using a simple and robust algorithm [161]). However,
SVM requires consideration to test different kernel functions and model parameters to find
the best model and to create an impractical approach for dealing with large samples of
datasets [139].

Several authors have demonstrated the efficacy of WoE in wildfire-mapping research,
e.g., those of [44,46,48,162]. Hong, et al. [46] generated a fire-risk map for China using
FR, WoE, linear, and quadratic differential analysis models. Their findings showed that
WoE had the highest yield (2.82). For the leveraging of the capacity of WoE to deal
with generalized and manifold information and to represent a robust framework for
studying natural hazards, Jaafari, et al. [48] used it to simulate fire likelihood in the Zagros
Mountains of Iran. The results of their study confirmed the predictive ability of the
WoE model, with AUC values of 84.2% and 80.4% for success rate and prediction rate,
respectively. The authors recommended the model due to its relatively straightforward
implementation and interpretation of results, its simplicity and predictive power, ease
in incorporating multi-source information and application in a GIS environment, and
objectivity [163]. Salavati, et al. [44] assessed fire-danger potential using WoE and Statistical
Index (SI) models and compared them; their findings demonstrated the superiority of WoE
over SI. The main weakness of WoE is that it neglects the internal correlation among
the driving factors incorporated in the model to predict natural hazards [41]. However,
incorporating the WoE model with other ML or hybrid models could be an effective solution
to this problem. Studies have also suggested coupling WoE with AHP [41] and constructing
multimodal ensembles [164]. Hence, in the future, an appropriate ensemble of WoE-like
FRs based on [24,42] can be built and tested to improve wildfire modelling.

4.2. The Driving Factors of Fire-Danger-Assessment Modelling

In modelling the fire-danger assessment, it is imperative to analyse the spatial rela-
tionship between fire occurrences and their driving factors. This study explored twenty
conditioning factors of fire in the Golden Gate Highlands National Park (GGHNP). Regard-
ing the ignition source, proximity from roads, other infrastructures, such as buildings and
tourist facilities, and lightning were highly rated. According to WoE and FR, proximity
from the road networks and other infrastructures, such as buildings and tourist facilities,
does not mean that there exists an inverse relationship with fire occurrence, i.e., the closer
to the road, the higher the probability of fire occurrence. A similar observation was made
by Bowman, et al. [165] and Ye, et al. [163] that this confusion indicated the existence of
more complications and that fire-ignition patterns may be unpredictable, strengthening
the novelty of the relationship between human activities and wildfire occurrence as being
not linear. Pradeep, et al. [47] also revealed that areas far away from settlements and roads
of the Eravikulam National Park in India had a spatial correlation with fire occurrence.
Several studies, e.g., [45,95,163,166,167], concluded that fire ignitions exist near roads and
other related infrastructure.

The observed fire-ignition pattern for this study can be explained using a saturation
curve as described by [20], i.e., mild weather conditions are unlikely to generate wildfires;
however, in more severe weather conditions, the probability of fire increases sharply. There-
fore, some areas may be limited by natural ignition and saturated by frequent lightning
strikes or by human population density, in which case a slight reduction in ignitions may
not necessarily reduce the chance of fire occurrence. Even a relatively small number of
ignitions can generate fires if coupled with extremely hot weather. The GGHNP is a moun-
tainous protected area, saturated by frequent lightning strikes, as spatial autocorrelation
analysis by the authors of Mofokeng, et al. [168] revealed. In the park, the presence of
humans is limited, and therefore, the population density is smaller. However, reduced
ignition occurrence may be sufficiently compensated for by less-fragmented fuel, resulting
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in more extensive fires. It takes fewer people to provide a sufficient ignition source, and
lightning can provide adequate ignition sources in smaller human populations. Spatially,
as per expectation, most fire occurred in class 5, an extremely high lightning-danger zone.
However, the class 1 lightning-free danger areas correlate positively with fire-danger prob-
ability. Based on this observation, it can be concluded that the fire-ignition pattern of the
GGHNP is driven by both anthropogenic and natural sources of ignition.

Lightning and elevation had a positive correlation; this is in agreement with
Catry, et al. [169], who found that elevation positively influences ignition distribution and
that lightning-caused fires are prevalent in high elevations. The analysis revealed that
although fire danger increased with elevation, it dropped slightly at the highest altitude
class (>2098). A similar observation was made by Fang, et al. [170] in the boreal forest of
the Great Xing’an Mountains, China. The authors suggested that the positive correlation
between elevation and fire danger might be possibly attributed to the complex interaction
of elevation with fuel and weather. Mpakairi, et al. [148] also found a positive correlation
between elevation and fire occurrence while determining the Kavango Zambezi Transfron-
tier Conservation Area (KAZA-TFCA) fire hotspots in Zimbabwe. According to a recent
study by Alizadeh, et al. [171], there is a greater elevational synchronization of fire hazards
in western United States (US) mountains, which suggests the existence of a weakened
flammability barrier in high elevations due to climate warming. This suggests that in recent
decades, higher elevations that were formally sufficiently moist to reduce the risk of fire
have started to favour fire activity [172].

The aspect analysis showed a weaker negative correlation with fire occurrence.
Chafer, et al. [173] found a non-significant relationship between fire and aspect in the
Sydney basin, Australia. A study by the authors of Eskandari, et al. [141] found aspect to be
collinear with other fire-conditioning factors and was discarded for fire-danger analysis. In
South Africa, the north-facing slopes have more direct sunlight exposure, higher tempera-
tures, less rainfall, and lower humidity [23] and, therefore, have relatively sparser and drier
vegetation, which is favourable for fire activities, resulting in higher fire-danger probability.
In this study, the northeastern-facing (NE) slopes had the greatest correlation with the fire
occurrence probability. Slope had a significant influence and positive correlation with the
predicted fire occurrence. Similarly, Argañaraz, et al. [174] found a significant positive
correlation between slope and fire frequency. Fires are typically more likely to spread on
intermediate slopes than on flat or very steep slopes [95]. Oliveira, et al. [175] reported
a similar pattern, whereby very steep slopes had fewer fire activities. Fuel discontinu-
ity might have played a role, as rocky outcrops are inadequate to initiate a fire and are
less flammable.

This study found no relationship between topographic water index (TWI) and topo-
graphic position index (TPI) and fire occurrence. These findings are consistent
with [22,141,151]. In fact, Eskandari, et al. [141] suggested the disqualification of the use of
these drivers in fire-danger modelling. The topographic ruggedness index (TRI), a topo-
graphic driver that has not yet received much quantitative attention in fire danger research,
demonstrated its superiority among frequently used topographic drivers, e.g., elevation
and slope. The TRI was the second strongest driver associated with increasing wildfires
in Portugal [176]. In general, fire-danger probability decreases with TRI—in contrast, a
significant positive correlation between TRI and the predicted fire-danger-assessment map
was observed (Figure 7). Spatially, the highest fire-danger areas were on the highest class of
the TPI. This pattern might be due to the effect of climate warming. Although the TRI had
collinearity with other topographic drivers [26], its superiority to elevation underscores its
incorporation in fire-danger modelling.

The global vegetation moisture index (GVMI) was the most important among fuel
drivers and the second highest contribution to the model. Generally, the fire-danger
probability increases as the GVMI decreases; however, a positive correlation between the
GVMI and the predicted fire occurrence was evident (Figure 7)—this might be associated
with the threshold related to fuel moisture [20]. The highest GVMI of the study area
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of 0.12 implies that the vegetation may ignite and propagate easily as the fuel moisture
content (FMC) exceeds the fire ignition and spread moisture thresholds at which fire can be
sustained. However, it should be noted that the FMC threshold for fire ignition and spread
is species-dependent [27]. Consistent with Clarke, et al. [19], the relationship between fuel
dryness (GCI) and predicted fire occurrence was positive. According to earlier research, the
resource gradient restrictions principle may not be sufficient to maintain the fuel growth
necessary to support fire danger in grasslands under conditions favourable to high fuel
dryness [177,178].

The probability of fire is expected to be high in areas with a low bare soil index (BSI), as
these areas will be highly vegetated, and hence increased availability of fuel to sustain fire
[KumariandPandey [38]]. This study met the expectation as a significant inverse relation
between the BSI and predicted fire occurrence was observed. Concerning the vegetation
condition index (VCI), the strongest contributor to fire-danger modelling, there existed a
significant positive relation with wildfire occurrence—spatial analysis revealed the highest
fire activity at the highest value of the VCI. This pattern is not surprising; in contrast
with woody communities, in grass communities, drought is associated with reduced fire
activity [20]. According to the researchers, fire activity is primarily based on grass biomass
and fuel continuity; in the grassland ecosystem, drought reduces fuel continuity and,
consequently, lessens the spread of fires. Grasses are particularly combustible every year
during the dry season. Furthermore, Bowman, et al. [179] observed that during the 2019–
2020 Australian fire season, there was a significant rise in the area burned in forests but a
decrease in the area burned in grasslands (savannas).

Soil bulk density (BD) was the most important driving factor of the model. Bulk density
(BD) captures soil porosity, which can relate to root growth and, therefore, influences plants’
intake of nutrients and water, affecting grass production and, thus, fuel conditions [111].
Bulk density (BD) was also one of the strongest predictors of fuel components for all fuel
strata modelling in examining the climatic and edaphic gradient variation in wildland fuel
hazards in south-eastern Australia [180]. The study found that the probability of extreme
fuel hazards decreased as soil BD increased. Similarly, a significant negative correlation
between BD and predicted fire occurrence was observed in this study—the highest values
of BD had no impact on the probability of fire danger. The lowest bulk density class had
a greater fire activity. This study used coarse fragments as a proxy for soil fertility—soil
fertility positively affects grass production [15]. In agreement with the hypothesis of the
authors of [15], a significant positive correlation between coarse fragments and predicted
fire danger was observed; therefore, fire danger probability increased with the increase
in coarse fragments. The spatial relation also revealed that the highest fire activity was at
the highest coarse fragment classes. Total plant available water-holding capacity (TAWCP)
showed no significant relation with predicted fire occurrence—this could be because the
Africa Soil Profile database has data gaps, leading to uncertainty in spatial analysis [181].

Chicas and Østergaard Nielsen [77] classified soil moisture as one of the least driving
factors used in fire-danger modelling. However, applying soil moisture data in fire danger
rating systems is gaining traction in fire-risk science [182]. Soil moisture does not only
influence vegetation growth conditions and thus the accumulation of fire fuel, but also
determines the vegetation moisture content and hence the flammability of the vegeta-
tion [27,32,183]. Generally, the probability of fire danger decreases as the soil moisture
increases. In contrast, a significant positive relation between soil moisture and the predicted
fire danger was observed in this study. These findings confirmed the global regression
models, suggesting a positive relationship between soil moisture and fire in the montane
grassland biomes [177]. This positive trend might have been attributed to chronic lower soil
moisture (3.18–4.62 mm). Krueger, et al. [184] have shown that during the dormant season,
low dormant season soil moisture may reduce vegetation moisture content, increase their
flammability, and accompanying this with extreme weather, could provide a conducive
environment for the enhancement of fire activity. Based on this pattern, using a combination
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of current, near-time, and antecedent soil moisture data is vital to determine the fire–soil
moisture relations.

Generally, climatic/weather-driving factors significantly contributed to the fire-danger-
assessment modelling, particularly temperature-associated drivers [185]. Temperature cor-
relates positively with fire-danger probability, as high temperatures increase the probability
of fire danger, increasing the effect on evapotranspiration rate and flammability [46]. On
the contrary, this study revealed a weak, significant negative relationship between LST and
the predicted fire occurrence. A similar observation was made by the authors of [7]. The
most probable reason might be the climate characteristics of rain and heat synchronization,
in that when the moisture is high, fuel does not ignite easily in hot weather [7]. Spatial
relation analysis also illustrated that variation as a positive correlation was observed at
the area of 22–24 ◦C and negative at the area with the lowest LST class (19–22 ◦C) and the
highest class (24–25 ◦C). The assumption is that this spatial variation might be due to the
study area’s local specific biophysical and social conditions [51]. The study area is charac-
terized by a diversity of topography and scenic, heritage, or cultural (caves) landscapes.
As expected, wind speed was positively related to the predicted fire-danger map. The
higher the wind, the higher the evapotranspiration rate, the more oxygen is supplied for
fuel combustion, and the higher the flame rate and depth as well as the dispersal of embers
speed increase [178]. Spatially, variation was observed in which fire occurrence decreased
in the highest class of wind value. The observation confirmed that severe wind events do
not usually accompany extreme fire occurrences [178] due to the role of synoptic circulation
interacting with topography [186].

5. Conclusions

Understanding the probability of fire ignition and spread is critically important in
identifying fire-prone regions, especially in montane grassland ecosystems. Such measures
are useful for effective fire preparedness, mitigation planning, and sustaining the ecological
and cultural integrity of protected areas (PAs). This study is probably among the first
that attempts to map and predict grassland fires in the protected mountainous area using
both statistical and machine learning (ML) models. The ROC/AUC results revealed that
the weight of evidence (WoE) (0.74) had achieved the highest prediction rates while the
decision tree (DT) outperformed other models in success rate (0.96) and model-fit accuracy
rate (0.93). The grassland fire-danger maps created by all models revealed extremely high
fire-danger areas concentrated in the south-western, south, and eastern part of Golden Gate
Highlands National Park (GGHNP), while the DT model classified the largest area coverage
of 41.11%. These results revealed that statistical and ML models have individual advantages
in wildfire-danger-assessment modelling. The analysis also revealed a trade-off between
these techniques. Therefore, this study suggests a hybrid or ensemble approach comprising
statistical (WoE), ML, and deep learning methods for improving fire-danger-assessment
mapping in the Golden Gate Highlands National Park (GGHNP). Advanced model-fusing
techniques should be explored to increase the reliability of the hybrid approaches.

The application of the WoE and frequency ratio (FR) models allowed for discerning that
the spatial relationship between fire occurrence and driving factors varied over the different
topographic, human, soil, weather, and fuel condition classes. While the MaxEnt method
assists in the relative importance assessment of driving factors on the fire-danger modelling,
the impact of driving factors on fire danger is complex and cannot be apprehended or
explained by a simple monotonic relationship. Overall, spatial analysis revealed that fuel
conditions, a grass curing index (GCI) class of 60–80%, a global vegetation moisture index
(GVMI) class of −0.005–0.109, and a vegetation condition index (VCI) class of 39–82%
as well as a level 5 and level 1 of lightning-danger area had the highest impact on the
probability of fire danger. In that, the results revealed that the study area’s fire regime
was fuel-driven—this suggests that a fire-management strategy should be based on a
fuel-management strategy that considers the local fuel conditions. Therefore, there is an
urgent need to identify and determine the thresholds of fuel conditions, especially grass
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fuel, for fire prevention and control in the study area. Also, this suggests that the fire
ignition source of the study area was caused by both anthropogenic and natural causes,
with natural-ignition sources dominating fire occurrence, owing to heterogeneity with the
mountainous terrain of the GGHNP.

Knowing where and how the key drivers affect wildfires is significant for fire suppres-
sion and preparedness and for Sustainable Development Goal 15: life on land, including
the protection of natural landscapes and biodiversity and the conservation of mountain-
ous ecosystems. In conclusion, this study provides a novel perspective to fire-danger
assessment and modelling methods and offers references for enhancing fire-management
strategies in the protected grassland Afromontane of the GGHNP.
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