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Abstract: Fires are one of the main sources of disturbance in fire-sensitive ecosystems such as the
Amazon. Any attempt to characterize their impacts and establish actions aimed at combating these
events presupposes the correct identification of the affected areas. However, accurate mapping of
burned areas in humid tropical forest regions remains a challenging task. In this paper, we evaluate
the performance of four operational BA products (MCD64A1, Fire_cci, GABAM and MapBiomas
Fogo) on a regional scale in the southwestern Amazon and propose a new approach to BA mapping
using fraction images extracted from data cubes of the Brazilian orbital sensors CBERS-4/WFI and
CBERS-4A/WFI. The methodology for detecting burned areas consisted of applying the Linear Spectral
Mixture Model to the images from the CBERS-4/WFI and CBERS-4A/WFI data cubes to generate
shadow fraction images, which were then segmented and classified using the ISOSEG non-supervised
algorithm. Regression and similarity analyses based on regular grid cells were carried out to compare
the BA mappings. The results showed large discrepancies between the mappings in terms of total area
burned, land use and land cover affected (forest and non-forest) and spatial location of the burned area.
The global products MCD64A1, GABAM and Fire_cci tended to underestimate the area burned in the
region, with Fire_cci underestimating BA by 88%, while the regional product MapBiomas Fogo was
the closest to the reference, underestimating by only 7%. The burned area estimated by the method
proposed in this work (337.5 km2) was 12% higher than the reference and showed a small difference
in relation to the MapBiomas Fogo product (18% more BA). These differences can be explained by
the different datasets and methods used to detect burned areas. The adoption of global products in
regional studies can be critical in underestimating the total area burned in sensitive regions. Our study
highlights the need to develop approaches aimed at improving the accuracy of current global products,
and the development of regional burned area products may be more suitable for this purpose. Our
proposed approach based on WFI data cubes has shown high potential for generating more accurate
regional burned area maps, which can refine BA estimates in the Amazon.

Keywords: burned area; Amazon; regional assessment; linear spectral mixture model; CBERS;
data cubes
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1. Introduction

Fire is an important agent of landscape transformation, which negatively affects fire-
sensitive ecosystems, such as the Amazon [1]. Except during extreme climate events, the
natural occurrence of fires in rainforest regions is extremely rare, as the moist microclimate,
high levels of rainfall and the lack of dry fuel create unfavorable conditions for the start
and spread of fire [1–3]. Nonetheless, every year, thousands of hectares of old-growth
forests are burned in the Amazon [4], especially during the dry season between August and
October [5–7], leading to the degradation of large areas of forest [8,9]. Fires in this region
are strongly associated with anthropogenic activities [10,11]. They are often used in pasture
management to stimulate forage regrowth, and to control weeds, pests and diseases [10,12].
Fires are also used for deforestation, during the process of burning the felled vegetation to
clear the land [13–15]. In addition, due to the low adoption of appropriate techniques for
the use of fire, both management and deforestation fires often evolve into forest fires, as
they escape into adjacent forest areas [12,16].

The burning of vegetation in the Amazon has numerous negative impacts, which
include disrupting the stability of environmental and socioeconomic systems. The main
impacts are related to an increase in tree mortality [17], changes in the structure and compo-
sition of forests [18–20], soil impoverishment [21], altering the water cycle [22,23], a decline
in biodiversity and habitat integrity [24–27], and economic losses from the damage to in-
frastructure and plantations on rural properties [28]. In addition, greenhouse gas emissions
and aerosols released by biomass burning modify the energy balance and chemistry of
the atmosphere, contributing to global climate change [29,30], deteriorating air quality [11]
and affecting human health [31,32]. These effects may also be exacerbated by the positive
feedbacks between changes in land use, fire activity and climate anomalies [29,33–41].

Recently, there has been an increase in the incidence of fires in the Amazon associated
with escalating deforestation [4,42] and the amplification of forest fragmentation [43–45].
Extreme drought events have also contributed considerably to the rise in the occurrence
and extent of burned area (BA) in the last few decades. For example, during the extreme
drought event of 2005, there was an increase of 33% in active fires in the region compared
to the period 1999–2005 [46], and an increase of 51% and 99% in the total forest BA during
the droughts of 2015 and 2016 compared to the average of the last ten years [47]. As an
aggravating factor, climate projections point to an increase in the frequency and intensity
of these anomalous climatic events in the Amazon, leading to intensified fire weather
conditions [48,49]. Given the predicted uptick in fire occurrence, fire management and
prevention will be increasingly important to maintain ecosystem functioning and the
services they offer, which influence human well-being; therefore, this issue is a huge
present and future challenge for society and governments [1,9].

Mapping areas affected by fires can support the analysis and characterization of
fire dynamics and its impacts on vegetation, providing decision-makers with important
information for formulating efficient fire prevention and mitigation actions [50,51]. In this
context, remote sensing techniques are particularly useful for monitoring the occurrence
of fire and extracting information about BA [52,53]. However, mapping BA in tropical
forest regions and obtaining its true extent is a challenging task. Firstly, because persistent
cloud cover limits optical observations of areas affected by fire [54]. Secondly, because the
climatic characteristics of the region favor the rapid recovery of the spectral signature of
post-fire vegetation limiting the detection capacity of low temporal resolution sensors [55].
In addition, the closed canopies limit the detection of understory fires, and the presence of
small burn scars is not captured by coarser-resolution sensors [56,57].

In recent years, several initiatives have developed operational products, based on
orbital sensors, that map BA at global and regional scales, based on different methodological
approaches and multiple sensors [57,58]. Therefore, discrepancies among these products
are observed, including the extent of BA and in its spatial and temporal patterns, which
vary significantly according to the biome and scale of analysis [59–65]. In some regions
of the Amazon, the difference between BA estimates can reach up to 160 times in areas of
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forest cover [63], which significantly affects the accounting of impacts associated with fire,
such as carbon emissions [66,67]. These variations between BA products are associated
with the characteristics and specifications of each product [68,69]. Global BA products
(e.g., MCD64A1 and Fire_cci), despite the high temporal resolution of MODIS (twice a day),
do not detect small-scale BA and have difficulty in identifying understory fires due to their
coarser spatial resolution (250–500 m) [55,62,63]. On the contrary, GABAM and MapBiomas
Fogo products, with medium spatial resolution (30 m), are more suitable for estimating
small burn scars [70,71], but are limited to a few monthly observations (every 16 days),
which decreases the likelihood of smoke and cloud-free BA scar observations [64,72].

In this context, to circumvent these difficulties in mapping BA, there is the possibility
of exploring the combination of medium spatial resolution images (64 m and 55 m) obtained
from the Brazilian Wide Field Imaging Camera (WFI) sensor onboard the CBERS-4 and
CBERS-4A satellites, with a temporal resolution of 3 to 5 days when considering both satel-
lites. One way of managing and taking advantage of the large collection of images available
from the WFI sensors, reducing interference from clouds, geometric and atmospheric noise
that hinders object analysis and demands processing time, is to use the data cubes product
provided by the Brazil Data Cube (BDC) project initiative [73,74]. In addition, adopting
image processing techniques that emphasize the spectral information of BA facilitates the
digital interpretation process and increases the chances of generating more accurate and
cohesive maps. One technique that has been widely used for BA mapping is the use of the
shade fraction images, derived from spectral mixing models [65,75–79]. Although recent
initiatives have used data cubes to improve mapping classification in Brazil [80–83], none
of them have focused on BA mapping nor on exploring the potential of WFI data cubes
combined with the linear spectral mixing model.

Thus, this research aimed to (i) evaluate the performance of four operational BA prod-
ucts (MCD64A1, Fire_cci, Gabam and MapBiomas Fogo) at a regional scale in southwestern
Amazonia, considering the total BA detected in forest and non-forest land covers; (ii) pro-
pose a novel BA mapping approach using fraction images extracted from CBERS-4/WFI
and CBERS-4A/WFI data cubes; and (iii) compare the differences and similarities between
the four operational BA products, the results of the proposed approach, with a reference
BA map based on Sentinel-2/MSI and Planet images.

2. Materials and Methods
2.1. Study Area

The study area is located in the southwestern Brazilian Amazon, in the state of
Rondônia, covering the municipalities of Nova Mamoré, Porto Velho, Buritis and Guajará-
Mirim with a total area of 3296 km2 (Figure 1). Approximately 50% of the area is occupied
by the following protected areas: the Karipuna Indigenous Land, the Guajará-Mirim State
Park, the Jaci-Paraná Extractive Reserve and the Igarapé Lage Indigenous Land. The region
is inserted in the zone of influence of the BR-421 and RO-420 highways, one of the most
conflictive areas in the state of Rondônia, with high rates of deforestation [84–86]. The
region is also characterized by the incidence of fires [87], induced by the accelerated process
of illegal occupation in these protected areas since 2014, following the expansion of the
road network within them [85,88].

The region’s vegetation cover consists of dense ombrophilous forest, open ombrophilous
forest, and small patches of savanna/forest ecotones [89]. The climate is classified as Am,
which indicates tropical rainy weather, characterized by average annual temperatures of
26 ◦C and an average annual rainfall of 2000 mm [90]. There are two well-defined seasons
in the region: the rainy season, spanning from October to April, and the dry season, lasting
from May to September. There is also a higher incidence of active fires between July and
September [91], coinciding with the peak of the dry season. The landscape is influenced by
the expansion of livestock, and the use of fire for agricultural management and clearing
areas after deforestation [85,86].
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Figure 1. Study area located in the state of Rondônia, in the Southwest Amazon region, depicting the
land use land cover (LULC) classes in 2020 according to MapBiomas data.

2.2. Methodological Overview and Remote Sensing Datasets

The research was conducted according to the structure summarized in the flowchart
below (Figure 2). The initial steps consisted of (I) selecting three global BA products and
one regional product; (II) mapping BA using CBERS-4/WFI and CBERS-4A/WFI data
cubes combined with the linear spectral mixing model; (III) obtaining a reference BA
map to compare the products; (IV) using the forest and non-forest cover map to obtain
the burned area estimates by land cover; and finally (V) performing the statistical and
similarity analyses based on grid cells.

2.2.1. Burned Area Products

Currently, there are several open-access operational BA products available. Among
the global ones, three products widely used in the Amazon were selected (MCD64A1
c6.0, Fire_cci v5.1 and GABAM). At the regional scale, a more recently developed product
tailored specifically for Brazil (MapBiomas Fogo c1.0) was selected.

MCD64A1 collection 6.0 is a 500 m spatial resolution monthly global BA product
developed by the National Aeronautics and Space Administration (NASA) based on sur-
face reflectance data from the Moderate-Resolution Imaging Spectroradiometer (MODIS)
sensors onboard the Terra and Aqua satellites, incorporated with data from 1 km active fire
observations [92]. The algorithm employs a burn-sensitive vegetation index (VI) to create
dynamic thresholds that are applied to the composite data [92]. In addition, the product has
been applied as input for the development of other BA products and for biomass burning
emissions models [11,93].

Fire_cci version 5.1 is a 250 m spatial resolution monthly global BA product devel-
oped by the European Space Agency (ESA) as part of the Climate Change Initiative (CCI)



Fire 2024, 7, 67 5 of 23

program. The product inputs are MODIS 250 m surface reflectance bands, active fire in-
formation and quality masks. The BA classification algorithm uses a two-phase approach,
based on seed detection and region growth. The latest version has been improved from
v5.0 [94], including a new concept of cluster-based adaptive thresholding [95] and an
expanded period of analysis, until 2020.
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GABAM is the operational global BA product with the best spatial resolution currently
available. It was developed by China’s Aerospace Information Research Institute (RAD) in
collaboration with the Chinese Academy of Sciences (CAS). The product is based on an
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automated algorithm implemented in GEE, which uses 30 m spatial resolution Landsat
reflectance data and spectral indices as inputs in the Random Forest algorithm, and a
region-growing approach [70]. Data are available from 1985, aggregated into bi-annual
composites until the year 2000 and annual composites from 2000 onward.

MapBiomas Fogo collection 1.0 is the first version of the regional burned area product
available for Brazil, developed by the MapBiomas initiative [96]. The product uses surface
reflectance Landsat mosaics with a spatial resolution of 30 m and machine learning models
for pattern recognition, implemented in Google Earth Engine (GEE) [71]. The method
consists of generating annual quality mosaics from minimum NBR index values and
collecting samples of both burned and unburned areas for training the Deep Neural
Network (DNN) classification model. In post-classification, spatial filters and masks
are used to remove noise and reduce the commission error [71]. Estimates of BA from
collection 1 are available from 1985 to 2021 in monthly and annual composites. The general
characteristics of each of the products can be seen in Table 1.

Table 1. Description of the global BA products evaluated in this study.

Product Sensor Spatial
Resolution Scale Time Reference

MCD64A1 c6.0 MODIS 500 m Global 2000–2022 [92]
Fire_cci v.5.1 MODIS 250 m Global 2001–2020 [95]

GABAM Landsat 30 m Global 2000–2021 [70]
MapBiomas Fogo c1.0 Landsat 30 m Brazil 1985–2021 [71]

To perform the analyses, it was necessary to standardize the data obtained from the
BA products. The data were acquired in raster format, precisely extracted for the study
area. The monthly estimates of BA products (MCD64A1, Fire_cci and MapBiomas Fogo)
were aggregated into annual composites for the year 2020, aiming to standardize with the
GABAM product.

2.2.2. Burned Area Map with CBERS-4/WFI and CBERS-4A/WFI Data Cubes

The CBERS-4 and CBERS-4A satellites constitute the environmental monitoring pro-
gram developed by the partnership between Brazil and China [97]. The Wide Field Imaging
Camera (WFI) sensor is onboard both satellites, although with some differences regard-
ing spatial resolution (64 m and 55 m) and imaging range (866 km and 684 km), due to
variations in platform altitude. The sensor has four spectral bands, blue (0.45–0.52), green
(0.52–0.59), red (0.63–0.69) and NIR (0.77–0.89). Operating in tandem, these satellites offer a
revisit rate of 3 to 5 days, facilitating cloud-minimized image acquisition and BA mapping.

The WFI images are distributed by the National Institute for Space Research (INPE)
in Digital Number (DN) and geometric correction levels L2 (corrected based on auxiliary
data sent by the satellite) and L4 (corrected with control points and SRTM). More recently,
they started to be distributed at the Surface Reflectance (SR) level, within the scope of the
BDC project, in image collection format and multidimensional data cubes [73,98], available
on the portal https://brazildatacube.dpi.inpe.br/portal/explore (accessed on 23 February
2024). Data cubes are essentially Analysis Ready Data (ARD), in which satellite images are
processed under a minimum set of requirements, and their pixels are aligned in space and
time [73]. This arrangement of data simplifies the analysis of large volumes of images and
allows for immediate use by the final user [80,83]. The BDC data cubes are generated in the
format of regular cubes, which require the definition of a regular time interval (e.g., one
month or 16 days) that guides the temporal composition of multiple images available in
each time interval, and their metadata are stored in a relational database called the Spatial
Temporal Asset Catalog (STAC) [73].

In this work, the CBERS-4/WFI (64 m spatial resolution) and CBERS-4A/WFI (55 m
spatial resolution) regular data cubes, generated using 16-day temporal compositing func-
tions from the period of January to December 2020, were used. This compositing function

https://brazildatacube.dpi.inpe.br/portal/explore


Fire 2024, 7, 67 7 of 23

is called the best pixel approach, which consists of classifying the images by selecting the
optimal observations of pixels within the scenes during the specified period [73]. The
composition guarantees cloud-free observations or observations with the least cloud cover
in the time window. To ensure compatibility between the two data cubes for mapping
purposes, the CBERS-4A/WFI data cube was resampled to the spatial resolution of 64 m.

The Linear Spectral Mixing Model (LSMM) was applied to the two WFI data cubes
to generate the vegetation, soil and shade fraction images, based on selecting pixels that
had the closest spectral response to the theoretical curve expected for the pure targets
(endmembers) [75]. The LSMM considers that the pixel values of an image are the re-
sult of the combinations of reflectance of different endmembers contained in the pixel;
consequently, the resulting images are the proportion of each endmember within each
pixel [99]. The generation of these synthetic images is an alternative approach to reducing
the dimensionality of an image’s data and highlighting the desired features of the targets
for digital classification [64,65]. In this case, the shade fraction image was used to identify
BA since its spectral response resembles the spectral response of the shadow, characterized
by low reflectance.

The BAs were determined after the digital classification of the shade fraction images,
similarly to [65,75,77–79]. In the first step, we applied the image segmentation technique on
the shade fraction using the region-growing algorithm with the parameters of segment size
and similarity thresholds (8, 60), respectively. Subsequently, the segmented images were
classified using the ISOSEG unsupervised classifier, which employs the covariance matrix
and the mean of the spectral values to estimate the class centers in each region [100]. Finally,
we grouped the resulting classes into a binary classification between Burned and Unburned,
selecting the burned class to compose the final map, called CBERS. All processing was
carried out using Terra View software, version 5.6.5 [101].

2.2.3. Reference Map

A reference map containing the BA in 2020 was used to evaluate the burned area
estimates derived from the BA products and the CBERS mapping. The map was generated
through the visual and manual image interpretation of the polygons of BA identified in
Sentinel-2A and 2B Multispectral Instrument (MSI) images, featuring a spatial resolution
of 10 m, as well as in monthly mosaics of Planet images with a spatial resolution of
approximately 5 m, both with geometric and surface reflectance corrections. All available
images from January to December 2020 were used in this stage. Furthermore, active fire
data from all sensors available in INPE’s BDQueimadas database [91] were used as ancillary
information to classify the burn scars.

2.2.4. Forest and Non-Forest Mapping

The performance of burn scar mapping algorithms can vary depending on the land
cover affected by the fires [63,65,102]. Generally, algorithms are more deficient in adequately
mapping burn scars on forest cover, as detection on this type of cover is more challenging
than on other land covers with lower biomass [103,104]. Thus, stratification of classes
allows us to obtain independent assessments of the variations in the performance of BA
algorithms [103].

A forest cover map of the year 2020 was used as ancillary data to estimate the areas
degraded by fire in both forest and non-forest covers. This evaluation was conducted for
each BA product, the reference map and the CBERS BA mapping. The map was generated
through the reclassification of land use land cover (LULC) dataset from MapBiomas Brazil
collection 6.0, which has 30 m spatial resolution [96]. The classes were divided into
forest formation, water and non-forest (aggregation of the remaining LULC classes). The
LULC dataset MapBiomas provides annual maps, freely available, which are based on
automatic classifications of Landsat images carried out by a Random Forest machine
learning algorithm implemented on Google Earth Engine [105].
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2.2.5. Evaluation and Agreement Analysis

In order to evaluate the performance of the BA products and the CBERS mapping
against the reference data, we first calculated the total estimates of burned areas in 2020.
Subsequently, we derived estimates by taking into account the forest and non-forest clas-
sifications identified by each BA product, the CBERS mapping and the reference map.
The total burned area is a crucial indicator of the performance of a burned area mapping
algorithm [61].

A regular grid at the spatial resolution of 1 km was used to analyze the spatial
agreement between the reference and BA mappings. This approach ensures homogeneity
criteria in the assessment [106], thereby preventing misrecording in the calculation of
proportional errors for burned area block sizes and bias in the estimation, overcoming the
spatial and temporal limitations inherent to burned area maps [61,107]. The grid cell size
was determined after carrying out preliminary tests with grid cells measuring 1 × 1 km,
5 × 5 km and 10 × 10 km (Figure 3). The process took into consideration (i) the size of
the study area, the pixels of the burned area maps and the polygons of the burn scars;
(ii) the spatial distribution of the scars; and (iii) scale effects. The first and the second items
aimed to ensure greater detail and suitability for the analysis of the object of study and
were analyzed based on an empirical approach, as suggested by Assis et al. [106]. The third
consideration accounted for the scale effect on the statistical parameters’ results. Ultimately,
it was determined that the grid with 1 × 1 km cells was the most suitable for this study.
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The burned areas derived from the reference map, MapBiomas Fogo, MCD64A1,
GABAM, Fire_cci and CBERS were then individually aggregated into 1 × 1 km cell grids.
The aggregation consisted of summing the area of each BA pixel into the grid cells. Grid cells
not indicating detection of burned areas from any of the analyzed burned area mappings
were excluded. Then, the statistical metrics including the coefficient of determination (R2),
Pearson’s correlation (R), Root Mean Square Error (RMSE), and Mean Biased (MB) were
calculated. These analyses were performed using R language.

Agreement (similarity) analysis was conducted to investigate the spatial variations
and inconsistencies among the BA mappings, following the approach employed by Pes-
soa et al. [63]. In this analysis, the same regular 1 × 1 km grid was adopted, which was
converted into raster files containing the burned area information for each mapping. Only
cells showing BA in at least one of the mappings were considered. Subsequently, the burned
area maps were pairwise compared using the fuzzy numeric method implemented in Map
Comparison Kit 3 (MCK) software [108]. This method allowed us to obtain the location
and degree of the similarities between pairs of cells of two numeric maps. The outcome is a
similarity index ranging between 0 (completely distinct) and 1 (completely identical). It also
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takes the neighborhood of cells into account to evaluate this similarity [109]. The resulting
statistic is the average similarity over the entire area. The parameters employed included
the exponential decay function with a halving distance equal to 2 and a neighborhood
radius equal to 4.

3. Results
3.1. Spatial Distribution of the Total Burned Area and Estimates by Land Cover

All BA mappings differed in terms of the total area burned and, consequently, in the
estimates of forest/non-forest burned (Figure 4). The reference map showed 300.5 km2 of
BA in 2020, representing ~9% of the study area, with 266.21 km2 (89%) of non-forest and
34.29 km2 (11%) of forest burned. The forests of the Guajará Mirim State Park were the most
affected by fires in 2020. Additionally, the non-forest areas located on rural properties in
the immediate surroundings and within the Jaci-Paraná Extractive Reserve had the highest
incidence of fires in the period.
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The estimates of the total BA provided by the operational products were underesti-
mated in relation to the reference map. This was also observed when analyzing BA per land
cover. While the regional MapBiomas Fogo product showed only 7.5% less BA than the
reference in 2020 (7% in non-forest cover and 12% in forest), the Fire_cci product showed
88% less BA (89.6% in non-forest and 76.6% in forest), followed by the GABAM product
(86.5% less burned area, 87.2% and 82.5% in non-forest and forest cover). Additionally, the
MCD64A1 product detected 40% less burned area in the region; although it mapped 48.2%
less burned area in non-forest, it detected a 22% increase in forest areas.

Our novel BA mapping approach, based on CBERS data cubes and the LSMM, detected
more BA than the reference map and all BA products. The method was able to detect
282.73 km2 of burned area in non-forests and 54.77 km2 over forests, an overestimation of
12% when compared with the reference, 6% and 58% in non-forests and forests, respectively.
Compared to the operational BA products, CBERS produced a mapping more similar to
MapBiomas Fogo, although it showed an 18% greater extent of BA. In contrast, the greatest
differences were found with the Fire_cci and GABAM products, with CBERS mapping up
to 10 times more extent of BA.

Visually, the burned area maps derived from CBERS and MapBiomas Fogo showed
a spatial pattern more similar to the reference map. Each of them were able to detect a
greater number of small burn scars, both over forest and non-forest, and obtained the
largest spatial extent mapped, differing from the other maps provided by the global BA
products MCD64A1, GABAM and Fire_cci. Furthermore, despite the small difference in the
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total burned area, between GABAM and Fire_cci, they exhibited great spatial disparities.
While GABAM mapped small scars distributed throughout the study area, the Fire_cci
product detected large blocks of burned areas, but in a more restricted way. Finally, the
MCD64A1 detected only the largest burn polygons and observed the formation of regular
borders around these scars (Figure 5).
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3.2. Statistical Evaluation and Agreement Analysis

The results of the regular grids analysis with cells of 1 km, 5 km and 10 km enabled
us to observe the effects of scale on the statistical parameters of the regression, showing
an increased trend of bias, as larger grids of cells are adopted in the regional evaluation
of the burned area maps. As the size of the grid cells increased, there was a propensity
for the parameters of the regression models to improve for all BA mappings in the 5 km
(R = 0.96 and R2 = 0.92) and 10 km (R = 0.98 and R2 = 0.96) grids when compared to the
1 km grid (R = 0.85 and R2 = 0.71). In addition, the empirical analysis allowed us to infer
that as the size of the grid cell increases, the information on the burned area is smoothed
out, due to the loss of representation of the pattern of small polygons of burned scars and
their location in the spatial unit of the cell. As a result, burned area maps tend to be more
spatially similar.

Reinforcing the differences found in the total estimates of burned area and in the visual
inspection, the analysis by grid cells allowed for it to infer both statistical disparities and
spatial similarity. The global BA products GABAM, MCD64A1 and Fire_cci did not detect
most of the grid cells in which burned areas were detected by the reference (875, 956 and
1188 burned cells were omitted, respectively) (Figure 6). However, the BA products showed
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particularities in terms of the size of the scars detected and their spatial distribution. The
GABAM product showed small burn polygons distributed throughout the region, which
was reflected in the high number of cells with a low burn ratio (between >0 and 0.1). On
the other hand, MCD64A1 and Fire_cci identifies larger and more spatially concentrated
burn scars, which resulted in a higher number of cells with an elevated burn ratio (>0.5).
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The reference map, BA MapBiomas Fogo product and the CBERS-derived map showed
no significant differences. All three provided the most spatially extensive maps containing
small burn scars, resulting in a high number of cells with a low proportion of burns
(between >0 and 0.1). In the reference, approximately 70% of the grid cells had values of
less than 0.3 km2, indicating that the burned area patterns in the study area in 2020 mostly
corresponded to small scars. While the MapBiomas Fogo and CBERS-derived mapping
resembled the reference in terms of spatial distribution and the proportion of burned cells,
MapBiomas Fogo detected 75 fewer cells, and CBERS 79 more cells of burned area. Most of
the commission areas found in the CBERS mapping were located over forest cover, mainly
related to water bodies, exposed rock formations and cloud cover.

Table 2 shows regression analysis for the different pairs of mapped areas. The BA
products and the CBERS-derived mapping were compared with the reference map and then
compared with each other by cell grid. All the relationships were statistically significant at
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a 95% confidence level (p < 0.05). The most significant correlations ranged from 0.63 to 0.87
and the least significant from 0.10 to 0.58.

Table 2. Evaluation metrics for the regression models for the different pairs of burned area maps,
considering the percentage of burned area in 1 km grid cells.

Model R R2 RMSE MB MB (% of Observed)

Reference × MCD64A1 0.58 0.33 0.197 0.073 40.34
Reference × Fire_cci 0.31 0.09 0.229 0.159 88.07
Reference × GABAM 0.41 0.17 0.220 0.156 86.61

Reference × MapBiomas 0.87 0.76 0.118 0.014 7.54
Reference × CBERS 0.85 0.72 0.128 −0.022 −12.30

CBERS × MCD64A1 0.52 0.27 0.215 0.095 46.88
CBERS × Fire_cci 0.30 0.09 0.241 0.181 89.38
CBERS × GABAM 0.41 0.17 0.229 0.178 88.08

CBERS × MapBiomas 0.80 0.63 0.152 0.036 17.67
MapBiomas × MCD64A1 0.63 0.39 0.188 0.060 35.48

MapBiomas × Fire_cci 0.34 0.12 0.227 0.145 87.10
MapBiomas × GABAM 0.46 0.21 0.214 0.142 85.52
MCD64A1 × GABAM 0.25 0.06 0.253 0.083 77.56
MCD64A1 × Fire_cci 0.28 0.08 0.251 0.086 80.01
GABAM × Fire_cci 0.10 0.01 0.068 0.003 10.89

The comparison between the reference map and the other burned area mappings
showed that MapBiomas Fogo had the best results, followed by the CBERS-derived method.
The coefficients of determination were the closest to 1 (R2 = 0.76 and R2 = 0.72) and the
models showed the smallest errors (RMSE = 0.12 and 0.13), indicating the best quality of fit,
and consequently the tendency of these mappings to identify approximate values of burned
area in the cells. The absolute MB indicates better spatial agreement when its values are
lower. Meanwhile, MB % indicates the direction of the error trend, where negative values
suggest an overestimation tendency and positive values indicate underestimation. In this
case, the values were also the lowest for MapBiomas Fogo and CBERS, with MapBiomas
Fogo tending to underestimate the area burned by 7.54% and CBERS overestimating it by
12.30%. On the other hand, the regression results were unsatisfactory for the models with
the Fire_cci (R2 = 0.09) and GABAM (R2 = 0.17) BA products, with positive MB above >85%.

The regression analysis results comparing the CBERS burned area map with burned
area products revealed the best correlation with the MapBiomas Fogo product (R = 0.80),
despite the coefficient of determination being at an intermediate level (R2 = 0.63). The
worst results were found for the Fire_cci product (R2 = 0.09). The MB was negative for all
the analyses because, as mentioned before, the CBERS-derived method tends to map more
burned areas than the BA products. The intercomparison among the BA product models
revealed that, despite the GABAM x Fire_cci pair having a low error rate, its coefficient of
determination was also notably low. This suggests that the regression analysis provides
limited insight into the behavior of these mappings. Additionally, while both products
depict similar burned area quantities, they exhibit different distribution patterns between
the grid cells.

The similarity analysis made it possible to identify the most spatially cohesive regions
between the burned area maps (Figure 7). Considering the reference burned area map,
the similarity indices were relatively high for the MapBiomas Fogo product (0.73) and the
CBERS-derived method (0.70), but in general were low for MCD64A1, GABAM and Fire_cci,
ranging from 0.20 to 0.40 (Table 3). The first pattern can be explained by the extensive
burned area mapped by MapBiomas Fogo and CBERS, which is similar to that observed in
the reference map. On the other hand, the global products were more conservative, with
a reduced mapped area. This indicates greater divergence in relation to the burned area
pattern found in the region.



Fire 2024, 7, 67 13 of 23

Fire 2024, 7, x FOR PEER REVIEW 14 of 25 
 

 

and Fire_cci, ranging from 0.20 to 0.40 (Table 3). The first pattern can be explained by the 
extensive burned area mapped by MapBiomas Fogo and CBERS, which is similar to that 
observed in the reference map. On the other hand, the global products were more con-
servative, with a reduced mapped area. This indicates greater divergence in relation to the 
burned area pattern found in the region.  

The MapBiomas Fogo product showed few places of disagreement with the reference 
map, and these disagreements are distributed throughout the region in both forest and 
non-forest covers, where the product captured less burned area. The biggest discrepancies 
between the reference and CBERS occur in the north of the study area, where the proposed 
method mapped more burned area over forests, especially in the Karipuna Indigenous 
Land.  

When analyzing the global BA products in comparison to each other, it was observed 
that the similarity indices ranged from relatively intermediate to high. These products 
displayed a reduced extent of mapped burned areas throughout the region and were con-
centrated in specific locations. Some of these locations coincided with detection sites, 
while others were found in non-detection sites. This spatial overlap suggests a higher like-
lihood of similarity among these products. 

 
Figure 7. Similarity maps of the best and worst comparison pairs of burned area products. The sim-
ilarity index was calculated taking into account only cells that have burned area detected by at least 
one product. The similarity index ranges from 0 (lowest similarity) highlighted in dark red to 1 
(highest similarity) highlighted in blue. 

  

Figure 7. Similarity maps of the best and worst comparison pairs of burned area products. The
similarity index was calculated taking into account only cells that have burned area detected by at
least one product. The similarity index ranges from 0 (lowest similarity) highlighted in dark red to
1 (highest similarity) highlighted in blue.

Table 3. Overall similarity for the different pairs of burned area maps. The similarity index ranges
from 0 (totally different) to 1 (totally identical), and it was calculated using the fuzzy numerical
algorithm for map comparison.

Product Combinations Overall Similarity
Reference × MapBiomas 0.70
Reference × MCD64A1 0.41
Reference × GABAM 0.33
Reference × Fire_cci 0.27
Reference × CBERS 0.68
CBERS × MCD64A1 0.42

CBERS × Fire_cci 0.23
CBERS × GABAM 0.28

CBERS X MapBiomas 0.63
MapBiomas × MCD64A1 0.40

MapBiomas × Fire_cci 0.31
MapBiomas × GABAM 0.36
MCD64A1 × GABAM 0.67
MCD64A1 × Fire_cci 0.68
GABAM × Fire_cci 0.73
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ous detrimental environmental and socioeconomic impacts [1]. Any attempt to character-
ize, understand and mitigate its effects presupposes the correct identification and quanti-
fication of the areas affected by fire [103,110]. Estimates of the extent of BA provided by 
operational BA products show substantial differences, which vary regionally [63,102,111]. 
The characteristics of the sensors and the methods for detecting burn scars incorporate 
limitations into each product [68,69], leading to BA being underestimated or overesti-
mated [65]. In this study, we were able to evaluate the relative performance of four oper-
ational BA products (MCD64A1, Fire_cci, GABAM and MapBiomas Fogo) in 2020, in an 
emerging frontier of degradation by fire events in the southwestern Amazon. Here, we 
also focused on exploring the potential of integrating multidimensional data cubes based 
on Brazilian remote sensing systems (WFI sensors, from the CBERS-4 and CBERS-4A sat-
ellites), combined with a well-known information enhancement technique (the shade frac-
tion images derived from LSMM) [65] to map BA and provide more accurate estimates in 
difficult-to-monitor regions of the Amazon. Our results showed significant divergences in 
the total estimates of BA and by cover type (forest and non-forest), between the four BA 
products and the proposed method with CBERS with reference data based on remote sen-
sors with better spatial resolution (Sentinel-2/MSI and Planet). 

Eighty nine percent of the BA identified in our study area by the reference mapping 
occurred in non-forest areas, predominantly occupied by pasture and agriculture classes, 
where fires have historically been employed in land management [12]. Critically, areas of 
natural vegetation were also affected by fire in 2020, with 11% of the total BA occurring in 
forest areas, mostly located within protected areas. This result reinforces that, although 
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The MapBiomas Fogo product showed few places of disagreement with the refer-
ence map, and these disagreements are distributed throughout the region in both forest
and non-forest covers, where the product captured less burned area. The biggest dis-
crepancies between the reference and CBERS occur in the north of the study area, where
the proposed method mapped more burned area over forests, especially in the Karipuna
Indigenous Land.

When analyzing the global BA products in comparison to each other, it was observed
that the similarity indices ranged from relatively intermediate to high. These products
displayed a reduced extent of mapped burned areas throughout the region and were
concentrated in specific locations. Some of these locations coincided with detection sites,
while others were found in non-detection sites. This spatial overlap suggests a higher
likelihood of similarity among these products.

4. Discussion

Fire is one of the main sources of disturbance in the Amazon [9], resulting in numerous
detrimental environmental and socioeconomic impacts [1]. Any attempt to characterize,
understand and mitigate its effects presupposes the correct identification and quantification
of the areas affected by fire [103,110]. Estimates of the extent of BA provided by operational
BA products show substantial differences, which vary regionally [63,102,111]. The charac-
teristics of the sensors and the methods for detecting burn scars incorporate limitations into
each product [68,69], leading to BA being underestimated or overestimated [65]. In this
study, we were able to evaluate the relative performance of four operational BA products
(MCD64A1, Fire_cci, GABAM and MapBiomas Fogo) in 2020, in an emerging frontier of
degradation by fire events in the southwestern Amazon. Here, we also focused on explor-
ing the potential of integrating multidimensional data cubes based on Brazilian remote
sensing systems (WFI sensors, from the CBERS-4 and CBERS-4A satellites), combined
with a well-known information enhancement technique (the shade fraction images derived
from LSMM) [65] to map BA and provide more accurate estimates in difficult-to-monitor
regions of the Amazon. Our results showed significant divergences in the total estimates
of BA and by cover type (forest and non-forest), between the four BA products and the
proposed method with CBERS with reference data based on remote sensors with better
spatial resolution (Sentinel-2/MSI and Planet).

Eighty nine percent of the BA identified in our study area by the reference mapping
occurred in non-forest areas, predominantly occupied by pasture and agriculture classes,
where fires have historically been employed in land management [12]. Critically, areas of
natural vegetation were also affected by fire in 2020, with 11% of the total BA occurring in
forest areas, mostly located within protected areas. This result reinforces that, although
these territories are considered effective barriers to protect forests [112], the pressures
exerted not only by deforestation [113,114] but also by fire activity are growing [115,116].

When comparing the reference data with the BA products, the mappings showed
different results for all of the parameters evaluated. The MapBiomas Fogo product had the
best performance, obtaining the highest correlation in the 1 × 1 km grid (R = 0.87), and the
lowest error of omission for the BA total (7.5%), as well as by land cover stratification. The
product also presented the broadest spatial mapping, detecting smaller polygons of fires
and better delineating the burned pixels. To some extent, these results can be explained by
Landsat’s better spatial resolution in the optical spectrum (30 m), giving it advantages in
the BA mapping process over MODIS-based products (250–500 m). BA maps produced
with higher spatial resolution data tend to have fewer omission errors [107]. This occurs
because the higher spatial resolution allows for a greater probability of detecting small
scars, and a better definition of their boundaries, avoiding a greater mixture of burned and
unburned patches in the same pixel [50,70,117]. Although the GABAM global product uses
the same input as the MapBiomas Fogo product, it showed completely different results,
mapping 85% less burned area. In this case, another important point to consider, which
may explain this difference, is the different methods used to generate the products. On the
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one hand, MapBiomas Fogo uses NBR annual quality mosaics and local training samples as
input data for a deep learning algorithm (Deep Neural Network—Multi-Layer Perceptron)
to detect BA [71]. On the other hand, GABAM uses the combination of various spectral
indices (NDVI, NBR, NBR2, MIRBI, SAVI, NDMI, BAI) and training samples from around
the globe as input to a machine learning model (Random Forest), combined with a region
growing technique for modeling BA [70]. Meanwhile, similar patterns in the total BA
estimates between the GABAM and MapBiomas Fogo products were identified in the
southern region of the Amazonas state [102], prompting the authors to propose that the
extent BA detected by these products might be linked to spectral confusions with bamboo
vegetation. However, in our specific region, this does not appear to be the case, suggesting
that the observed differences may still be associated with challenges in calibrating global
algorithms to the characteristics of regional vegetation. Therefore, the development of
regional BA products is promising and should be further developed.

Even though global products are important for fire modeling based on global anal-
ysis of the burned area [66,69], providing continuous information on the dynamics and
changes in the space–time patterns of fire and its consequences [47,118,119], our results
demonstrated the conservative nature of these products for studies related to our regional
scale. Between the BA products, Fire_cci and GABAM were the ones that differed the
most from the other datasets, presenting the highest errors of omission (>80%) both in
forest and non-forest areas when compared to the reference data. Although these global
products were similar in terms of total BA estimates, they are spatially distinct. While
GABAM detected smaller burn scars distributed throughout the area, Fire_cci obtained
more restricted mapping and predominantly large scars. The same conservative GABAM
pattern was observed in other Brazilian biomes, such as the Pantanal, where the prod-
uct underestimated around 68% of BA in relation to a Sentinel-2-based dataset [64]. The
Fire_cci product, in its turn, has shown an underestimated BA in various regions of the
globe [59,120], detecting up to 98% less BA than other products in regions of the Brazilian
Amazon [63]. Despite the improvements incorporated in the most recent version of Fire_cci
(v. 5.1), its validation process indicated a global omission error of 0.6710 and a commission
error of 0.5440 [95], which reflects the conservative nature of this dataset, and consequently
the tendency to underestimate BA in relation to other global products [94]. In general,
although the MCD64A1 product mapped more BA than the other global products (GABAM
and Fire_cci), it underestimated the total BA by 40% compared to the reference. However,
MCD64A1 showed a commission error (22%) in forest areas. The increase in detection
over this type of cover may be associated with the fact that edges form around the MODIS
pixel (500 m), leading to more BA being recorded in deforested areas nearby forests [102].
In addition, the relatively better performance of MCD64A1 compared to the other global
products is mainly due to the improvement in the product’s mapping algorithm, which
integrates changes in surface reflectance with active fire observations [92,121].

The size of the scars is also a determining factor in the detection accuracy of MODIS-
based products [120]. In our study area, scars were small and irregular, the majority (70%)
up to 0.3 km2 in size. Coarser spatial resolution products have difficulty in adequately
detecting scars smaller than 100 ha [62,120], which leads to BA being considerably un-
derestimated [92]. Several validation studies of global products show underestimates of
approximately 25% of MODIS data in comparison to Landsat data [107,122,123]. In this
context, the small and irregular BA scars may have led to the high omission errors of the
MODIS-based products because the spatial resolution of the pixels is too coarse to detect
such small fires. Furthermore, several inconsistencies reported in the BA maps of global
products are associated with the difficulty of calibrating the mapping algorithms to deal
with the high levels of spectral heterogeneity of BA, in response to regional seasonality,
land use and land cover types, fire regimes, burn intensities, and climatic agents, which
modulate the local characteristics of BA [57,62]. The limitations of global algorithms in BA
estimates point to the development of regional algorithms that consider local characteristics
(e.g., vegetation, soil and climate) and regional validation of the results [65,110], such as
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MapBiomas Fogo and our CBERS-based mapping. Regional BA mappings derived from
better spatial resolution sensors could also be used in the calibration process of global BA
products [64,117] to incorporate performance improvements on a regional scale, since the
long temporal range of MODIS and Landsat are extremely important for spatiotemporal
fire modeling.

Regarding the proposed method for generating BA maps, our results performed well
in all the parameters evaluated in relation to the reference, and were superior to the global
products (GABAM, MCD64A1 and Fire_cci). Our approach showed the second best correla-
tion (R = 0.85) of the dataset analyzed, and spatially similar patterns to the reference and the
MapBiomas Fogo product. The product showed high sensitivity in detecting small burn
scars, and the average spatial resolution of the WFI (64 m) may explain the better mapping
when compared to MODIS-based global products (250–500 m). The temporal resolution
conferred by the two satellites CBERS-4 and CBERS-4A together (3 to 5 days) increases the
acquisition of smoke- and cloud-free WFI images compared to Landsat images (16 days).
This is an important factor for fire-related studies in tropical areas. In this region, the signs of
fires can disappear quickly after the fire event, due to climatic characteristics and the rapid
regrowth of vegetation [124]. The high frequency of images therefore makes it possible to
reduce errors of omission in BA maps [65]. Multidimensional data cubes (CBERS-4/WFI and
CBERS-4A/WFI) also provide advantages by reducing the dimensionality of the volume
of WFI images to be processed and analyzed, based on the best pixel storage approach,
while also ensuring that much of the cloud cover is eliminated [73,125]. The shade fraction
images derived from LSMM proved to be particularly effective in highlighting the BA in the
region, facilitating the algorithm’s classification process. However, although our approach
performed well, it tended to overestimate BA by 12% in the region. These data may be
associated with incorrect classification by the ISOSEG algorithm, due to spectral confusions
in the shade fraction images, especially within protected areas, over forest cover. These
confusions are related to the similarity of the spectral response of BA with the spectral re-
sponses of shadows (clouds and terrain relief), water bodies and some rock formations [65]
identified in our study area. In addition, some images from the WFI data cube presented
composition problems due to the cloud mask used by the project [73], where the mask failed
in the image the algorithm classified as burnt. This problem was recently reported by the
developers and will be resolved shortly [125].

The scale of analysis can also influence the performance of BA products [61,63] and
our proposed method. The difference in scale of analysis (e.g., state or country) alters
the relationship between variables evaluated in grid systems [11]. Statistically significant
relationships in BA data at a regional level may not show the same pattern at a local or
global level. The definition of the grid size is also a factor to be considered in studies
evaluating BA mappings. With a brief analysis, we showed that larger grid cells (5 × 5 km
and 10 × 10 km) show improvements in the statistical parameters of the regression, demon-
strating a tendency towards bias in the regional evaluation of BA mapping. Larger grid
cells tend to soften the information on the BA, due to the loss of representation of the small
polygon pattern of the burn scars and their location in the spatial unit of the cell. As a
result, BA maps tend to be more spatially similar.

Accurately assessing the extent of BA is key to understanding the effects of fires on
Amazonian ecosystems [126], on society [127] and on the global carbon cycle [63,128], as
well as ensuring good communication in national reports, and for decision-makers, more
efficient actions to manage and prevent these events. Despite the significant contribution of
global products, we have shown that, regionally, the use of these products can be critical in
underestimating the total area burned and, consequently, fire-related impacts. Regional BA
products can improve the availability of data on the areas affected by fires in the region,
as observed with MapBiomas Fogo. However, it is important that the final user assesses
the advantages and disadvantages of choosing a BA product depending on the objectives
and scale of analysis of their study. The difficulty of reconciling the spatial and temporal
characteristics of orbital sensors, and the method for detecting burn scars, incorporates
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limitations to the final performance of each product and implies challenges for generating
a new BA product.

Our mapping approach using data cubes from Brazilian orbital sensors and fraction
images shows high potential for generating more accurate regional BA maps for the
Amazon. In the absence of an official national product for monitoring the extent of areas
affected by fire, the proposed method could be an alternative approach to providing spatial
information on BA every 3–5 days. This information can be useful for supporting decisions
by public policymakers and environmental agencies that promote monitoring and control
in the Amazon, establishing more efficient fire prevention, control and management actions
in the region, ensuring greater success in actions to curb the illegal use of fire, which would
help Brazil meet its commitments to reduce carbon emissions from forest degradation. At
the same time, reliable mapping of BAs allows the country to better estimate and report
its carbon emissions from fire in national reports. Furthermore, aiming at improving the
accuracy of current BA products, the BA classifications derived from our method could
be used as a regional reference for calibrating global BA detection algorithms, since they
benefit from long time series such as those derived from MODIS and Landsat images. For
future research, we also highlight that there is room for further improving this method;
other data can also be incorporated, such as the inclusion of WFI images from the Amazonia-
1 satellite (available from 2021), aiming to increase the frequency of image acquisition to one
or two days. The use of auxiliary information, such as water body and cloud masks, can
also avoid the confusion of BA by ISOSEG, and consequently improve the shade fraction
classification process in our approach. Finally, it would be beneficial to implement the
algorithm in a cloud processing environment for monitoring larger areas and analyzing
time series.

5. Conclusions

The use of BA products derived from orbital remote sensing to investigate the effects
of fire and subsidize public policies in the Amazon requires reliable estimates of the
uncertainties associated with these products. Therefore, in this study, we regionally evaluate
the performance of four widely used operational BA products, three global (MCD64A1,
Fire_cci, GABAM) and one regional (MapBiomas Fogo), and proposed a new BA mapping
approach exploiting the potential of Brazilian sensors’ data cubes (CBERS-4/WFI and
CBERS-4A/WFI) combined with the linear spectral mixing model to extract more accurate
BA information in a region of the southwestern Brazilian Amazon. We compared the
operational BA products and our results to a reference mapping based on better spatial
resolution images (Sentinel-2 and Planet) and showed that there were significant differences
in total BA estimates and by land use and land cover type. The proposed BA mapping
approach integrating data cubes and fraction images presented advantages in reducing the
volume of data to be analyzed and in highlighting BA, facilitating the classification process
and consequently resulting in more reliable BA estimates. Global BA products tended to
considerably underestimate BA in the region.

The general characteristics of the sensors and the methods for detecting burn scars
incorporate limitations in each product, leading to underestimates or overestimates of BA.
It is essential that the user evaluates the advantages and disadvantages of the products for
their analysis scale. The adoption of global BA products in regional studies can be critical
in underestimating the total area burned and, consequently, the impacts related to fire and
actions to prevent and manage these events. This brings up the need to develop approaches
aimed at improving the accuracy of current global products. In this respect, regional BA
products may be more suitable for regional studies. Our BA mapping approach showed
high potential for generating more accurate regional BA maps in the Amazon, presenting
advantages over global BA products. In the absence of an official national product to
monitor the extent of areas affected by fires in the Amazon, the proposed method could be
an alternative approach to providing spatial information on BA. Improvements can still be
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incorporated into our method, and therefore be a starting point to the development of a
national and official BA product based on Brazilian sensors.
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