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Abstract: This paper numerically analyzes the influence of heat release rate (HRR) and longitudinal
ventilation velocity on smoke distribution characteristics in a T-shaped roadway when the fire
source was located upstream of the T-junction. The back-layering length, critical ventilation velocity,
smoke temperature, and CO concentration in the main and branched roadway were investigated
and analyzed. The results showed that the ventilation velocity is the key factor influencing back-
layering length, while the effect of HRR on back-layering length is gradually weakened as HRR
increases. The critical ventilation velocity in the T-shaped roadway is higher than in a single-tube
roadway, and the predicted model of dimensional critical ventilation velocity in a T-shaped bifurcated
roadway is proposed. The correlation between average temperature (Z = 1.6 m) (both in the main
roadway I and the branched roadway) and ventilation velocity fits the power function, and the
variation in average temperature (Z = 1.6 m) according to HRR fits the linear formula. The relation
between average concentration of CO (Z = 1.6 m) (both inside the main roadway I and the branched
roadway) and longitudinal ventilation velocity follows the power relation, and the variation in
average concentration of CO (Z = 1.6 m) according to HRR follows the linear function.

Keywords: mine fire; bifurcated roadway; CFD; critical velocity; smoke distribution

1. Introduction

The underground roadway of mines is a confined space; once fire occurs in the road-
way, the high-temperature smoke generates fire pressure and a throttling effect, which can
lead to airflow disorder. And the high-temperature smoke will propagate rapidly in the
roadway, which will reduce the escape space and threaten workers’ lives and health [1–4].
The T-shaped roadway is commonly used in mines; due to the complex geometric char-
acteristics of the T-shaped structure, the fire dynamics and smoke spread in bifurcated
roadways will be more complex than in straight roadways.

The smoke distribution in bifurcated roadways and bifurcated tunnels has been stud-
ied extensively by many scholars. Xue [5] researched the effect of the bifurcated angle of
inclined roadways on the velocity distribution and smoke temperature by using pyrosim
software. Lu et al. [6] studied the influence of ambient temperature, ventilation velocity,
and heat release rate on smoke temperature and visibility in T-shaped roadways by the
numerical simulation method. Gao et al. [7] conducted a series of small-scale fire experi-
ments, measured the back-layering length and smoke temperature in bifurcated tunnels,
and proposed the temperature decay model in the main tunnel and the branched tunnel.

Huang et al. [8,9] experimentally investigated thermal smoke movement in branched
tunnels, established the predicted model of the maximum ceiling temperature, and quan-
tified the smoke back-layering length under different heat release rates and various lon-
gitudinal ventilation velocities. The empirical model is proposed to predict the smoke
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back-layering length in branched tunnels. Chen et al. [10] compared the smoke temper-
ature distribution of single-line tunnels with T-shaped tunnels by experimentation and
developed the modified double-exponential correlation to describe the longitudinal tem-
perature decay process in the entire spreading region of fire smoke in T-shaped tunnel fires.
Tao et al. [11] established a model tunnel to research the impact of fire location, bifurcated
shaft exhaust velocity, and longitudinal velocity on ceiling temperature and they proposed
the temperature decay model. Some scholars [12–19] conducted a series of experiments to
study the critical velocity and the smoke backflow in single-line tunnel fires and proposed
the prediction model of the dimensionless back-layering length and the ratio of ventilation
velocity to critical velocity. Gannouni et al. [20,21] investigated the effect of obstacles on
the back-layering length and the critical velocity in single-line tunnel fires by using Fire Dy-
namic Simulator (FDS) and developed the model to calculate the back-layering arrival time.
Lu et al. [22] researched the longitudinal temperature distribution and maximum ceiling
temperature by experimentation and the simulation method and proposed a mathematical
model to predict the maximum rise in ceiling temperature and the longitudinal temperature
distribution in the bifurcated tunnel. Liu et al. [23] studied the effect of longitudinal fire
location on temperature distribution in bifurcated roadways and developed empirical
models of the maximum temperature in the main tunnel and temperature decay in the
branched tunnel.

By and large, the previous studies on bifurcation structure fires focus on tunnel fires,
the decay process of ceiling temperature, the maximum rise in ceiling temperature, and
the critical ventilation velocity, which were thoroughly studied in bifurcated tunnel fires.
Bifurcated roadway fires have been seldom researched; in particular, the back-layering
length, temperature, and CO concentration distribution in the main and branched roadways
have rarely been studied. The underground space of roadways is smaller than a tunnel, so
the smoke will propagate more fully and smoking control measures and emergency rescue
will differ from tunnel fires.

Therefore, in order to investigate the smoke distribution characteristics in bifurcated
roadways, the T-shaped roadway was selected as the roadway model; the fire source was
located upstream of the T-junction, heat release rate and ventilation velocity were selected
as the factors affecting the smoke diffusion, and ANSYS 18. 0 was used to simulate the
smoke distribution in the main roadway and branched roadway. The critical velocity and
the temperature and CO concentration distribution at breathing zone height in the main
roadway and the branched roadway were thoroughly analyzed in this paper in order to
provide suggestions for emergency rescue and personnel evacuation during underground
roadway fires.

2. Simulation Methods
2.1. Physical Model

Based on the actual underground roadway, the 3D geometric model of T-shaped
roadways was established. The size of the main roadway was 3 m × 3 m × 403 m; the
branch roadway was in the center of the main roadway and the size was 3 m × 3 m × 200 m.
All cross-sections were rectangular, with a width of 3 m and a height of 3 m. Because the
upsteam smoke would have been pushed into both the main roadway and branched
roadway, the fire source was set upstream of the T-junction. The distance from the center of
the fire source to the velocity inlet was 189 m, the length of the fire source was 2 m, and the
flame height was chosen to be 3 m; these were the limitations set by the roadway roof. The
cross-section of the geometric model of the T-shaped roadway and coordinate system is
shown in Figure 1, and the Z-direction is the height direction of the roadway.
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Figure 1. The physical model of the T-shaped roadway in cross-section. 
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Figure 1. The physical model of the T-shaped roadway in cross-section.

2.2. Boundary Conditions and Assumptions

The standard k − ε equation and transport equation were chosen to simulate the
turbulent flow of airflow and smoke diffusion [24], and the above equations have been
extensively used in the fire simulation by scholars. The airflow inlet of the main roadway
was set to be the velocity inlet and the airflow outlet of the main roadway and branched
roadway were set to be the pressure outlet, as shown in Figure 1. The fire source was
defined as the source term, and it was represented by a volumetric source. Due to the
thermal radiation of the fire source, the temperature inside the roadway increases and
the gas density in the T-shaped roadway would have been changed. Meanwhile, natural
convection of gas in the vertical direction would be caused by gravity. So, the influence of
gravity and buoyancy effect on air flow were considered in the simulation.

The following assumptions were adopted in the numerical simulation calculations:
fresh airflow and fire smoke were considered incompressible fluids; there was no sliding on
the roadway wall and no heat exchange between the wall and the air inside the roadway;
obstacles such as mining cars and workers in the roadway were ignored; the effect of gas,
dust, and blasting smoke on the airflow and smoke diffusion were not considered; the com-
bustion process of the fire was not considered; the fire source was set as an energy source
with a fixed rate of heat release [25]; the smoke generated by the fire was presented by CO;
and the amount of CO generated by the fire was calculated according to Equation (1) [26]:

Fr = Q × γco (1)

where Fr represents the amount of CO generated by the fire (m3/s), Q represents the
heat release rate (kW), and γco represents the constant of CO generation rate (m3/kJ)
(3.22 × 10−6 m3/kJ) [27].

2.3. Parameters

In the simulation, the ambient temperature was 25 ◦C, the gravitational acceleration
was 9.81 m/s2, and the ambient pressure was 101,325 Pa. The longitudinal ventilation
velocities were 1 m/s~3 m/s in the main roadway, the heat release rates were 300 kw,
600 kw, 900 kw, and 1200 kw, respectively, and the total simulation cases were 35. Then, the
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influence of heat release rate and ventilation velocity on smoke diffusion and distribution
characteristics were analyzed and discussed; the simulation cases are shown in Table 1.

Table 1. The parameters and simulation cases.

Heat Release Rate/kw Longitudinal Ventilation Velocity/(m·s−1) Hydraulic Diameter/m

300 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 2.5, 3 3
600 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3 3
900 1, 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3 3
1200 1, 1.5, 2, 2.1, 2.5, 3 3

2.4. Mesh

In order to validate the independence of mesh, four kinds of cell sizes were chosen
to simulate the roadway fire, which are 0.15 m × 0.15 m × 0.15 m, 0.2 m × 0.2 m × 0.2 m,
0.25 m × 0.25 m × 0.25 m, and 0.28 m × 0.28 m × 0.28 m, repectively. Figure 2 shows the
horizontal and vertical temperature distribution in the main roadway when the heat release
rate is 600 kw and the ventilation velocity is 2 m/s. It can be seen that, when the interval
sizes of the grid are 0.15 m and 0.2 m, the difference in lateral temperature distribution and
in longitudinal temperature distribution are very small; so, taking into account both the
computational accuracy and time cost, a cell size of 0.2 m × 0.2 m × 0.2 m is selected and
the total number of cells is 678,375.
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Z = 2.9 m in the main roadway.

3. Results and Discussion
3.1. Back-Layering Length and Critical Velocity

Back-layering length is the important parameter in roadway fires. The back-layering
flow is the most fatal contamination to workers who are blocked in upstream of the
fire source.

Figure 3 shows the relationship between back-layering length and longitudinal venti-
lation velocity under different heat release rates. Figure 3 indicates that the back-layering
length decreases constantly as the ventilation velocity increases and presents a linear trend.
Moreover, under the same ventilation velocity, the back-layering length increases as the
heat release rate increases. However, when the heat release rate is more than 600 kw, the
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back-layering length increases quite slowly. This indicates that the influence of heat release
rate on the back-layering length is gradually weakened as the heat release rate increases.
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Critical ventilation velocity is also a key parameter for ensuring the safety and proper
emergency evacuation of workers in roadway fires. The critical ventilation velocity in
single-tube tunnel fires has been researched thoroughly. Wu and Bakar [12] established a
mathematical model for dimensionless critical ventilation velocity and dimensionless heat
release rate in a single-tube tunnel, as shown in Equation (2):

v
′
c =

vc√
gH

=

{
0.40[0.20]−1/3

.
[Q]

1/3
,

.
Q ≤ 0.20

0.40,
.

Q > 0.20
(2)

where v
′
c represents the dimensionless critical ventilation velocity, vc represents the crit-

ical ventilation velocity (m/s), g represents the gravity acceleration (m/s2), H repre-
sents the hydraulic tunnel height (m),

.
Q represents the dimensionless heat release rate,

.
Q = Q/ρ0cpT0g1/2H5/2, Q represents the heat release rate (kw), ρ0 represents the ambient
air density (kg/m3), cp represents the specific heat capacity (kJ/(kg·K)), and T0 represents
the environment temperature (K).

Li et al. [13] also acquired the correlation between dimensionless critical ventilation
velocity and dimensionless heat release rate in a single-tube tunnel, which can be expressed
in Equation (3):

v
′
c =

vc√
gH

=

{
0.81

.
[Q]

1/3
,

.
Q ≤ 0.15

0.43,
.

Q > 0.15
(3)

where
.

Q = Q/ρ0cpT0g1/2H5/2 and H represents the tunnel height (m).
In this paper, the critical ventilation velocity was determined by the X direction

velocity vector beneath the ceiling in the main roadway. The critical ventilation velocities
are 1.5 m/s, 1.8 m/s, 2 m/s, and 2.1 m/s when the heat release rates (HRR) are 300 kw,
600 kw, 900 kw, and 1200 kw, respectively. The critical ventilation velocity predicted by
CFD simulation under different HRRs is shown in Figure 4a, and the critical ventilation
velocities calculated by equations proposed by Wu [12] and Li [13] are also presented in
Figure 4a for comparison. It can be seen that the critical ventilation velocity increases
with the increase in heat release rate and the increased value decreases slowly. Also, we
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can find that the critical ventilation velocity is higher than Wu’s and Li’s model, which
means the critical ventilation velocity in the T-shaped bifurcated roadway is higher than
in the single-tube roadway when the fire is located upstream of the T-junction. This is
because, when the airflow passes through the T-junction, a portion of ventilation mass
flow is pushed into the branched roadway, so the actual ventilation mass flow in the main
roadway of the T-shaped bifurcated roadway is lower than in the single-tube roadway.
Figure 4b presents the correlation between dimensional critical ventilation velocity and

dimensional heat release rate. According to Figure 4b, v
′
c is directly proportional to

.
Q

1/3
;

hence, the prediction model of dimensional critical ventilation velocity in the T-shaped
bifurcated roadway can be expressed as:

v
′
c = 0.087 + 0.75

.
Q

1/3
(4)

It can be found that Equation (4) is similar to Equations (2) and (3) and is more close
to Li’s model.
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To further validate the accuracy of the numerical model adopted in this paper, the
critical ventilation velocities predicted by CFD were compared with data from Li’s small-
scale tests [13]. Li’s small-scale experimental tests were conducted in a 12 m long model
tunnel. The fire source, which was a 100 mm diameter porous bed burner, was located in
the center of the tunnel model. We built the same simulated tunnel model as Li’s, and the
numerical model was the same as mentioned above (see Section 2.2). The fire source was
set as a volumetric source with a height of 0.25 m and a diameter of 0.1 m. Table 2 presents
the critical ventilation velocity predicted by CFD under different cases in Li’s experiment,
and the comparison between simulation values of critical ventilation velocity and tested
results by Li is shown in Figure 5. According to Table 2 and Figure 5, there is a reasonable
agreement between the simulation and the experiment tests.
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Table 2. The critical ventilation velocity predicted by CFD under different cases in Li [13].

Geometric Dimensions of Tunnels Heat Release Rate/kw Ambient Temperature/◦C
vc/m·s−1

Li’s Experiment CFD

0.25 m × 0.25 m × 12 m

3.2 20 0.57 0.68
4.8 20.8 0.63 0.7
6.7 20.8 0.66 0.71
9.3 23.3 0.67 0.71

12.9 23.5 0.67 0.71
16.7 24.5 0.67 0.71
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3.2. Longitudinal Temperature Profile in the Main and Branched Roadway

Inhaling high-temperature smoke is the main factor to cause casualties in fire accidents,
so the temperature distribution at breathing zone height (Z = 1.6 m) was analyzed in this
paper. The tolerance time in a fire environment is 12 min for a person [28], so the escape
temperature that a person can escape from the fire environment successfully is set to be
60 ◦C.

Figure 6 presents the longitudinal temperature profile at breathing zone height of
the main roadway when heat release rates are 300 kw, 600 kw, and 900 kw, respectively.
Figure 6a illustrates that, when the longitudinal ventilation velocity is 1 m/s, the maximum
temperature is located at the fire source and the value is 101.636 ◦C, and the influence
range of the fire source on upstream temperature is 21.4 m, which can be explained by
smoke backflow and thermal convection. When the longitudinal ventilation velocities
are 1.5 m/s, 2 m/s, 2.5 m/s, and 3 m/s, respectively, the influence range of fire source
on upstream temperature is 0 m and the smoke temperature at the fire source increases
dramatically from 25 ◦C to 41.16 ◦C, 37.13 ◦C, 34.73 ◦C, and 33.07 ◦C, respectively; then,
the temperature rises slightly and becomes steady along the longitudinal direction (X
direction). The smoke temperatures in the main roadway I are all lower than escape
temperature when the ventilation velocities are 1 m/s~3 m/s. As shown in Figure 6b,
when the longitudinal ventilation velocities are 1 m/s and 1.5 m/s, the values of maximum
temperature are 179 ◦C and 140 ◦C, respectively, and the influence ranges of fire source on
upstream temperature are 24.2 m and 14 m, respectively. When the longitudinal ventilation
velocities are 2 m/s, 2.5 m/s, and 3 m/s, respectively, the smoke temperature at the fire
source increase dramatically from 25 ◦C to 37.366 ◦C, 34.869 ◦C, and 33.2 ◦C, respectively;
then, the temperature rises slightly and becomes steady along the longitudinal direction
(X direction). The smoke temperatures in the main roadway I are all lower than escape
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temperature when the ventilation velocities are 2 m/s, 2.5 m/s, and 3 m/s. According to
Figure 6c, when the longitudinal ventilation velocities are 1 m/s and 1.5 m/s, the values of
maximum temperature are 296.96 ◦C and 138.8 ◦C, respectively, and the influence ranges of
fire source on upstream temperature are 27 m and 18 m, respectively. When the longitudinal
ventilation velocities are 2 m/s, 2.5 m/s, and 3 m/s, respectively, the smoke temperature
at the fire source increase dramatically from 25 ◦C to 61.90 ◦C, 54.35 ◦C, and 49.68 ◦C,
respectively; then, the temperature rises slightly and becomes steady along the longitudinal
direction (X direction). The smoke temperatures in the main roadway I are all lower than
escape temperature when the ventilation velocities are 2.5 m/s and 3 m/s.
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Then, the effect of longitudinal ventilation velocity and heat release rate on average
temperature at breathing zone height inside the bifurcated roadway is discussed thoroughly.
Figure 7 presents the average temperature at Z = 1.6 m inside the main roadway I and
branched roadway under different ventilation velocities and different heat release rates.
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It can be observed from Figure 7 that the average temperatures in the main roadway I
and branched roadway are lower than 60 ◦C when the HRR is 300 kw and the ventilation
velocities are 1 m/s, 1.5 m/s, 2 m/s, 2.5 m/s, and 3 m/s and when the HRR is 600 kw and
the ventilation velocities are 2 m/s, 2.5 m/s, and 3 m/s and when the HRR is 900 kw and
the ventilation velocities are 2.5 m/s and 3 m/s. The average temperatures in the branched
roadway under different cases are all slightly lower than that in the main roadway I. When
the heat release rate is 300 kw, the maximum temperature difference between the main
roadway I and the branched roadway is 3.1 ◦C and the minimum temperature difference is
0.7 ◦C. When the heat release rate is 600 kw, the maximum temperature difference is 2.12 ◦C
and the minimum temperature difference is 0.585 ◦C. When the heat release rate is 900 kw,
the maximum temperature difference is 6.47 ◦C and the minimum temperature difference
is 1.43 ◦C. When the heat release rate is 1200 kw, the maximum temperature difference is
8 ◦C and the minimum temperature difference is 0.3 ◦C.

Figure 7 also shows that, under different heat release rates, the average temperatures
in the main roadway I and branched roadway decrease as the ventilation velocity increases.
This occurs because the thermal convection between airflow and smoke is intensified with
the increase in ventilation velocity. And the temperature decay fits the power function, as
shown in Equation (5):

T = a(1 + υ)−b (5)

where T represents the average temperature at Z = 1.6 m (◦C), υ represents longitudinal
ventilation velocity (m/s), and a and b represent dimensionless coefficient, respectively.

The fitting curves are shown with solid lines and dashed lines in Figure 7. The values
of a and b are displayed in Table 3. It can be seen from Figure 7 and Table 3 the values of
R-squares are all above 0.98; it can be concluded that the variation in average temperature
in the main roadway I and branched roadway according to ventilation velocity can be
accurately describe by Equation (5).

The variation in average temperature with the increasing heat release rate in the
bifurcated roadway is shown in Figure 8. It can be observed that the average temperatures
in the main roadway I and branched roadway increase constantly as the heat release rate
increases, and the predicted data of average temperature can be correlated to HRR with the
following equation:

T = c + dQ (6)
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where T represents the average temperature at Z = 1.6 m (◦C), Q represents the heat release
rate (kw), and c and d represent the dimensionless coefficient, respectively.

Table 3. The values of coefficients a and b.

The Type of Roadway Heat Release Rate/kw a b R2

the main roadway I

300 74.659 0.579 0.9892
600 130 0.808 0.99437
900 163.280 0.825 0.98

1200 242.607 1.013 0.97933

the branched roadway

300 79.253 0.606 0.98865
600 128.951 0.774 0.99875
900 179.1 0.859 0.99

1200 237.95 0.954 0.9988
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Figure 8. The variation in average temperature according to heat release rate.

The fitting lines are shown with solid lines and dashed lines in Figure 8. The values
of c and d are displayed in Table 4. It can be seen from Figure 8 and Table 4 the values of
R-squares are all above 0.99, which indicates that the variation in average temperature in
the main roadway I and branched roadway according to heat release rate can be accurately
predicted by Equation (6).

Table 4. The values of coefficients c and d.

The Type of Roadway Ventilation Velocity/(m·s−1) c d R2

The main roadway I

1.0 26.5 0.079 0.99343
1.5 28.3 0.052 0.99442
2.0 26.25 0.044 0.9977
2.5 24.9 0.037 1
3.0 24.85 0.031 1

The branched roadway

1.0 28.043 0.079 0.99994
1.5 28.81 0.057 0.99919
2.0 25.555 0.049 0.99254
2.5 24.92 0.039 0.99991
3.0 25.205 0.032 0.99999



Fire 2024, 7, 80 11 of 15

3.3. The Profile of CO Concentration in the Main and Branched Roadway

Figure 9 presents the smoke propagation in the T-shaped roadway when the HRR is
600 kw and longitudinal ventilation velocity is 1.5 m/s. According to Figure 9, it can be
seen that a high concentration of CO mainly gathers near the top plate of the fire source
and spreads upstream of the fire source at a certain distance. Under the influence of
longitudinal ventilation, the CO generated by the fire gradually spreads downstream of
the main roadway and inside the branched roadway and then is rapidly diluted. The CO
concentration in the main roadway I and branched roadway are much lower than near the
fire source.
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Figure 9. The volume concentration of CO in the T-shaped roadway (600 kw and 1.5 m/s).

Based on previous fire accident analyses, we know that high-temperature smoke
contains CO, and casualties were partly caused by inhaling CO, so the distribution of CO
concentration at breathing zone height is thoroughly analyzed and discussed in this section.
Figure 10 shows the concentration distribution of CO at breathing zone height in the main
roadway I and branched roadway under different longitudinal ventilation velocities when
the HRR is 600 kw.

We can see clearly from Figure 10 that the concentration of CO at the height of the
breathing zone in the main roadway I and branched roadway gradually decreases and
tends to be of uniform distribution as the longitudinal ventilation velocity increases. When
the ventilation velocities are 1 m/s and 1.5 m/s, the concentration of CO at the height of the
breathing zone in the main roadway I is higher than in the branched roadway. And, when
the ventilation velocities are 2 m/s, 2.5 m/s, and 3 m/s, respectively, the concentration of
CO in the branched roadway is slightly higher than in the main roadway I.

The CO volume concentration in the safe evacuation passage is less than 500 ppm in
the fire environment [28], so 500 ppm is chosen to be the critical concentration to escape
safely for a person. The average concentration of CO at the breathing zone height inside
the main roadway I and branched roadway is shown in Figure 11.

According to Figure 11, it can be seen that the average concentrations of CO in the
main roadway I and branched roadway are all lower than 500 PPM. When the HRR is
900 kw, the maximum concentration difference between the main roadway I and branched
roadway is 84.444PPM and the minimum concentration difference is 5.676 PPM. When
the HRR is 600 kw, the maximum concentration difference is 19.72 PPM and the minimum
concentration difference is 4.776 PPM. When the HRR is 300 kw, the maximum concen-
tration difference is 54.094 PPM and the minimum concentration difference is 2.686 PPM.
In addition, the concentration differences of CO between the main roadway I and the
branched roadway decrease as the ventilation velocity increases. And we also can find
that the average concentrations of CO inside the main roadway I and branched roadway
decrease constantly with the increase in longitudinal ventilation velocity, which fits the
power function. The fitting curves are shown in Figure 11 and the fitting functions are
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shown in Table 5. The values of R-squares are all above 0.95 according to Figure 10 and
Table 5; the equations describing the variation in average concentration of CO are shown in
Table 5.
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Figure 10. The concentration distribution of CO at breathing zone height in the T-shaped roadway
(600 kw).
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Table 5. The correlation equations between the average concentration of CO and longitudinal
ventilation velocity.

The Type of Roadway HRR/kw Equation R2

The main roadway I
300 C = 269.693(1 + υ)−1.39483 0.99855
600 C = 747.738(1 + υ)−1.67461 0.99666
900 C = 913.481(1 + υ)−1.49318 0.99963

The branched roadway
300 C = 666.969(1 + υ)−2.12719 0.98718
600 C = 613.838(1 + υ)−1.49064 0.95877
900 C = 1404.458(1 + υ)−1.79827 0.99514

C is the average concentration of CO at the breathing zone height (PPM).

The effect of HRR on average concentration of CO inside the main roadway I and
the branched roadway are discussed then. Figure 12 shows the variation in the average
concentration of CO according to the heat release rate. It can be seen that, as the heat release
rate increases, the average concentration of CO inside the main roadway I and branched
roadway increase linearly. And it can be described by the linear function; the fitting lines
are shown in Figure 12 and the equations are presented in Table 6.
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Table 6. The correlation equations between the average concentration of CO and heat release rate.

The Type of Roadway Ventilation Velocity/(m·s−1) Equation R2

The main roadway I

1 C = −44.6 + 0.457Q 0.97318
1.5 C = 4.677 + 0.250Q 0.99836
2 C = 0.870 + 0.192Q 0.99997

2.5 C = −0.709 + 0.157Q 1
3 C = −0.806 + 0.131Q 1

The branched roadway

1 C = 63.033 + 0.317Q 0.89406
1.5 C = −5.233 + 0.276Q 0.97509
2 C = 17.161 + 0.177Q 0.94341

2.5 C = 0.154 + 0.163Q 0.99999
3 C = 0.568 + 0.136Q 0.99999

C is the average concentration of CO at the breathing zone height (PPM).
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Table 6 illustrates that the value of R-squares is 0.89406 when the ventilation velocity
is 1 m/s and the type of roadway is branched roadway. However, the values of R-squares
are all above 0.94 in other cases. It can be explained that, when the ventilation velocity
is 1 m/s, the volume of fresh airflow pushed into the branched roadway is much lower
than in the main roadway I, so the mixing of smoke and fresh airflow is uneven, which
leads to the disordered distribution of smoke in the branched roadway. Therefore, it can be
concluded that the average concentration of CO inside the main roadway I and branched
roadway can be predicted better by this kind of equation.

4. Conclusions

In this paper, the influence of heat release rate and longitudinal ventilation velocity on
smoke distribution in the bifurcated roadway is investigated by numerical simulation. The
back-layering length, critical ventilation velocity, smoke temperature, and CO concentration
at breathing zone height are analyzed and discussed. The conclusions are as follows:

(1) The relationship between back-layering length and ventilation velocity under the
same heat release rate is similar to a linear function in the T-shaped roadway. The
ventilation velocity is the key factor influencing back-layering length, but the influence
of heat release rate on back-layering length is gradually weakened when the HRR is
above 600 kw.

(2) By comparing the simulation data and the predicted model proposed by Wu [12]
and Li [13], the critical ventilation velocity in the T-shaped roadway is higher than
in a single-tube roadway when the fire source locates upstream of the T-junction. A
prediction model of dimensional critical ventilation velocity in the T-shaped bifurcated
roadway is proposed, which also fits a power function of 1/3.

(3) The temperatures in the main roadway I and branched roadway are conducive to
escape when the HRR is 300 kw and the ventilation velocity is between 1 m/s and
3 m/s, when the HRR is 600 kw and the ventilation velocity is in the range from 2 m/s
to 3 m/s, and when the HRR is 900 kw and the ventilation velocities are 2.5 m/s
and 3 m/s, respectively. The correlation between average temperature (Z = 1.6 m) in
the main roadway I and branched roadway and ventilation velocity fits the power
function. And the variation in average temperature (Z = 1.6 m) according to HRR fits
the linear function.

(4) The workers in the main roadway I and branched roadway are less susceptible to fire
smoke and toxic gases when the HRRs are 300 kw and 600 kw and the ventilation is
between 1 m/s and 3 m/s. The relationship between average concentration of CO
(Z = 1.6 m) inside the main roadway I and branched roadway and longitudinal venti-
lation velocity follows the power formula. And the variation in average concentration
of CO (Z = 1.6 m) according to the HRR follows the linear function trend.
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