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Abstract: The maritime sector confronts an escalating challenge with the emergence of onboard fires
aboard in ships, evidenced by a pronounced uptick in incidents in recent years. The ramifications of
such fires transcend immediate safety apprehensions, precipitating repercussions that resonate on a
global scale. This study underscores the paramount importance of ship fire detection as a proactive
measure to mitigate risks and fortify maritime safety comprehensively. Initially, we created and
labeled a custom ship dataset. The collected images are varied in their size, like having high- and
low-resolution images in the dataset. Then, by leveraging the YOLO (You Only Look Once) object
detection algorithm we developed an efficacious and accurate ship fire detection model for discerning
the presence of fires aboard vessels navigating marine routes. The ship fire detection model was
trained on 50 epochs with more than 25,000 images. The histogram equalization (HE) technique
was also applied to avoid destruction from water vapor and to increase object detection. After
training, images of ships were input into the inference model after HE, to be categorized into two
classes. Empirical findings gleaned from the proposed methodology attest to the model’s exceptional
efficacy, with the highest detection accuracy attaining a noteworthy 0.99% across both fire-afflicted
and non-fire scenarios.

Keywords: deep learning; YOLOv8; object detection; histogram equalization; fire detection; custom
dataset

1. Introduction

Despite witnessing a notable reduction of 50% in shipping losses over the course
of the past decade, it is imperative to underscore that fires onboard vessels persist as
one of the most substantial safety concerns within the maritime industry. This enduring
challenge necessitates a continued focus on comprehensive safety measures and innovative
solutions to effectively address and mitigate the risks associated with onboard fires. A
recently published report by the international insurance conglomerate Allianz sheds light
on the alarming statistics surrounding fires on large shipping vessels. According to the
report, a staggering 200 fire incidents were documented in 2022 alone, marking the highest
annual total in a decade. Notably, of these incidents, 43 were specifically identified as
occurring on cargo or container ships, underscoring the heightened risk within this sector
of the maritime industry. Implementing computer vision algorithms for advanced fire
detection, monitoring, and response systems in the context of fire and smoke detection
offers a comprehensive approach to enhancing ship safety. Computer vision algorithms can
be trained to recognize specific patterns associated with smoke. Through the meticulous
examination of video streams captured by cameras installed on board, these sophisticated
algorithms are adept at rapidly and precisely detecting the manifestation of smoke across
different sections of the vessel. This capability extends to recognizing smoke emanations
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resulting from a multitude of sources, including, but not limited to, combustion of fuel,
leakage of lubricating oils, and the malfunctioning of pipes along with their associated
fittings [1]. The algorithms leverage advanced image processing and machine learning
techniques to analyze the visual data, enabling them to discern the subtle nuances of smoke
appearance under varying lighting and environmental conditions. This capability is crucial
to detect ship fires accurately, allowing the system to alert the crew or trigger automated
responses before a fire escalates. The integration of smoke detection algorithms enhances
the overall effectiveness of fire prevention measures.

Computer vision algorithms, as part of an alert system, play a critical role in providing
timely notifications about potential fire incidents. These alerts can be sent to relevant per-
sonnel, both onboard and onshore, through various communication channels. The system
can differentiate between normal activities and emergency situations, ensuring that alarms
are triggered only in response to genuine threats. The rapid dissemination of alerts enables
quick decision-making and response coordination, contributing to effective firefighting
efforts. Computer vision algorithms can be integrated with the ship’s fire suppression
systems. In the event of smoke or fire detection, the system can automatically activate
fire extinguishing mechanisms, such as sprinklers or suppressant agents. This seamless
integration ensures a swift and targeted response, minimizing the potential damage caused
by fires. Such automation is crucial for situations where immediate human intervention
might be challenging or delayed. The machine learning component of computer vision sys-
tems enables continuous improvement over time. As the algorithms process more data and
encounter various scenarios, they can adapt and refine their capabilities. This self-learning
aspect contributes to the system’s accuracy in detecting smoke patterns and anomalies,
reducing false alarms and enhancing overall reliability. The potential for fire danger zones
to manifest onboard ships is heightened due to various factors. The intricate machinery
and systems within a vessel, coupled with the presence of combustible materials, create
an environment susceptible to the initiation and rapid spread of fires. The engine room,
being the nucleus of a ship’s power generation, is particularly prone to fire incidents due to
the intricate network of components and the inherent combustibility of certain materials
present. Additionally, electrical systems, machinery malfunction, and human error can
act as catalysts for the emergence of fire danger zones, further emphasizing the need for
robust detection and prevention mechanisms within the maritime setting. The pivotal com-
partment of a vessel responsible for powering and ensuring its seamless operation is the
engine room. Nevertheless, owing to its intricate structure and the presence of flammable
materials, 75% of all ship fires originate in the engine room and nearly two-thirds of these
engine room fires specifically occur in the primary and auxiliary engines, as well as in
closely associated components such as turbochargers [2]. Given this context, the detection
of engine room fires holds paramount significance. The swift and precise identification
of fires within the engine room is crucial to mitigating potential harm to individuals and
property resulting from maritime accidents. Moreover, it can contribute positively to the
ongoing enhancement of ship damage control systems, as well as the advancement of
technology in ship fire prevention and control.

An alternative to traditional fire alarm systems is the adoption of AI-driven fire detec-
tion. In recent times, there has been a notable integration of deep learning algorithms in
the identification of fires through visual data. Current research substantiates the efficacy
of methods rooted in computer vision and deep learning for the purpose of fire detec-
tion [3–7]. Deep learning technology possesses the capability to autonomously extract
object features from images, facilitating the acquisition of generalized information. These
methodologies exhibit exceptional learning capacities and adaptability. Prominent among
the common deep learning algorithms is YOLO [8,9]. Deep-learning-based target detection
offers an automated process for extracting intricate details and features from images. This
approach proves particularly effective in overcoming the challenges of redundancy and
interference associated with the manual extraction of image features in the context of fire
detection [10]. Traditional methods of fire detection technology involve the amalgamation
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of data from various indoor sensors. Alerts are generated when the parameter values
detected by these sensors exceed the predefined thresholds. In the initial stages of sensor
technology, emphasis was placed on the concept of a “point sensor”, primarily relying on
particle activation related to essential fire characteristics, including heat, gas, flames, smoke,
and other pertinent factors [11]. In recent years, propelled by the rapid advancement of
computer vision, image processing technologies, the continuous enhancement of hardware
computing capabilities, and the widespread adoption of video surveillance networks, there
has been a discernible shift in attention towards the evolution of fire detection technologies.
Notably, video fire testing, underpinned by deep learning principles, has emerged as a
prominent research area characterized by its swift response times and heightened accuracy.
This transition is underscored by the increasing intelligence and automation of modern
ships, coupled with the maturation of video surveillance systems. This confluence presents
a viable prospect for leveraging monitoring and deep learning technologies in the detection
of fires within engine rooms.

Moreover, the successful application of video-oriented fire detection in diverse set-
tings, ranging from indoor office spaces to outdoor environments like forested areas, lays a
robust foundation for its potential adaptation in the maritime domain. In alignment with
these advancements, this paper contributes to the discourse by proposing the application
of the YOLO algorithm for ship fire detection. By harnessing the capabilities of YOLO,
which excels in real-time object detection, this research aims to enhance the efficacy of
fire detection in engine rooms through the analysis of real-time video surveillance feeds.
The YOLO algorithm stands out as a highly efficient real-time object detection method.
It operates by dividing an image into a grid system, with each grid autonomously re-
sponsible for detecting objects within its designated area. What distinguishes YOLO is
its capacity for real-time inference and, notably, it achieves this feat while demanding
minimal computational resources. The persistent threat of onboard fires remains a sig-
nificant concern in the maritime industry, despite a commendable reduction in overall
shipping losses over the past decade. Engine rooms, being vital components of vessels, are
particularly susceptible to fire incidents, emphasizing the critical need for robust detection
and prevention measures. The integration of computer vision algorithms, particularly those
rooted in deep learning and exemplified by the YOLO algorithm, presents a transformative
approach to enhancing fire detection and response systems on ships. The evolution of fire
detection technology from traditional sensor-based methods to advanced computer vision
algorithms signifies a paradigm shift in maritime safety. Leveraging the capabilities of
YOLO and other deep learning models enables real-time, accurate detection of fire and
smoke in complex environments like engine rooms, as shown in Figure 1. This transition
is aligned with the increasing intelligence and automation of modern ships and the matu-
rity of video surveillance systems, creating a conducive environment for the adoption of
cutting-edge technologies.
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This paper contributes significantly to the field by proposing the application of the
YOLO algorithm for ship fire detection.

1. Introduction of YOLO Algorithm for Ship Fire Detection: This paper significantly
contributes to the field by introducing the application of the YOLO algorithm for ship
fire detection. The utilization of YOLO’s real-time object detection capabilities marks
a pivotal step in enhancing the methodology employed for fire detection on ships.

2. Enhancing Effectiveness through Real-time Analysis: By leveraging YOLO’s capabilities,
the research aims to elevate the overall effectiveness of fire detection systems. The
emphasis on real-time analysis of video surveillance data signifies a critical advancement,
allowing for swift and accurate detection of fire incidents as they unfold on ships.

3. Promise of YOLO-Based Algorithms in Maritime Safety: The application of YOLO-
based algorithms holds immense promise for advancing safety measures on ships.
This contribution introduces a novel and sophisticated approach to maritime fire
detection, highlighting the potential for YOLO algorithms to redefine safety protocols
within the maritime industry.

4. Utilization of Custom Datasets for Robust Algorithm Performance: The incorporation
of custom datasets in the research is a strategic move to further contribute to the
robustness and adaptability of the proposed YOLO algorithm in real-world scenarios.

5. Pioneering Further Exploration of Computer Vision Techniques with the Application
of Histogram Equalization Technique: Equalizing the histogram, subtle details and
features in 2D images, in the case of sea transports, provide better detection of smoke
and fire in high water vapor representation in the air in the oceanic environment.

In this study, we propose to enhance maritime safety by utilizing the YOLO algorithm
for detecting fires on ships. By fine-tuning the real-time detection strengths of YOLO,
following image equalization, this research seeks to significantly improve the efficiency
of fire detection. The promise held by YOLO-based algorithms represents a significant
leap forward in enhancing safety measures, paving the way for the future integration of
advanced computer vision techniques in maritime security. Furthermore, the strategic use
of custom datasets underscores the commitment to robustness and adaptability, offering
valuable insights for ongoing improvements in maritime safety protocols. As the maritime
industry embraces these technological advancements, this paper serves as a pivotal contri-
bution to the evolution of safety standards, ensuring a safer and more resilient maritime
environment.

2. Related Work

Over the past decade, there has been a notable shift in fire detection technology, with
the emergence of deep learning techniques, particularly the YOLO algorithms, proving
instrumental in addressing significant challenges in object detection. The development
of YOLO’s framework, evolving from the initial YOLOv1 [12] to the latest YOLOv8 algo-
rithms, reflects key innovations and differences that enhance its proficiency in executing
detection tasks. These advancements are intricately tied to the paradigm shift in the realm
of fire detection technology. Object detection and recognition algorithms primarily rely
on specific types of deep neural networks (DNNs) and convolutional neural networks
(CNNs). Learnable neural networks comprise multiple layers, each assigned distinct func-
tions such as area analysis, feature extraction, data identification, and anomaly detection
to achieve precise object detection. Noteworthy advancements in this field include the
early fire warning mechanism proposed by Chen et al. [13], utilizing video processing to
detect fire and smoke pixels through chromaticity and disorder measurements within the
RGB model. A typical ship’s fire detection system incorporates sensors for fire and smoke,
heat detectors, and gas detectors, in conjunction with an alarm panel [14]. Engineered
to provide both visible and audible alerts, these fire detectors play a crucial role in indi-
cating the precise location of a fire on the vessel. The network of detectors spanning the
entire ship is intricately linked to a fire control panel. This central control unit not only
issues visual and auditory alarms but also has the capacity to trigger alarms in various
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other sections of the vessel for comprehensive alerting and response. The progression
towards advanced fire detection methodologies is exemplified by Foggia et al.’s [15] work,
presenting a method that analyzes surveillance camera videos. Their approach integrates
information from color, shape alterations, and motion analysis through multiple expert
systems, showcasing the convergence of various technological elements. Furthermore, the
research conducted by Arthur K et al. [16] on video flame segmentation and recognition
underscores the industry’s dedication to exploring innovative techniques in fire detection.
In a parallel development, Wu et al. [17] introduced a dynamic fire detection algorithm for
surveillance videos, incorporating radiation domain feature models.

In the realm of fire detection through image segmentation, the fundamental task entails
the allocation of individual pixels within an image to distinct categories, distinguishing
between those constituting the fire region and those comprising the background. This
segmentation objective is systematically addressed by employing semantic segmentation
networks, which undergo end-to-end training to directly assimilate the capacity for delin-
eating segmentation masks from the original image. Noteworthy instances of this approach
include the utilization of frameworks such as GAN [18]. Not only does instance segmenta-
tion involve classifying each pixel into specific categories but this CNN architecture can also
distinguish individual instances of those categories. The original U-Net architecture was in-
troduced for biomedical image segmentation, particularly for the segmentation of neuronal
structures in electron microscopy images. Consequently, this methodological paradigm
empowers the network to discern and classify elements related to fire at a granular level of
individual pixels, thereby facilitating the meticulous identification of fire regions against
the backdrop of the overall visual data. It is important to note that, while U-Net provides a
strong foundation, there are other dedicated architectures for instance segmentation tasks,
such as Mask R-CNN [19], or Region-based Convolutional Neural Network, which explic-
itly addresses the challenges of segmenting and distinguishing individual instances within
a given class. Guan et al. [20] proposed an innovative approach to instance segmentation,
denoted as MaskSU R-CNN, designed specifically for the early detection and segmentation
of forest fires. Research endeavors focused on addressing critical challenges in computer
vision related to forest fire detection using UAV-captured video frames from the FLAME
dataset. The approach proposed innovative solutions for binary image classification (fire vs.
no fire) and fire instance segmentation. The semantic segmentation method for fire smoke,
leveraging global information and the U-Net network, is designed to accurately delineate
and identify regions associated with fire smoke within images. Semantic segmentation in-
volves classifying each pixel in an image into distinct categories, in this case, differentiating
between fire smoke and the background. The integration of global information and the
U-Net architecture enhances the model’s ability to capture contextual details and spatial
relationships crucial for effective segmentation [21]. As exemplified by Zheng et al. [22],
a sophisticated approach to semantic segmentation in the context of fire smoke has been
introduced. Their method intricately integrates global contextual information and leverages
the U-Net network architecture. The algorithm, characterized by its utilization of Multi-
Scale Residual Group Attention (MRGA), is adept at concurrently exploiting contextual
understanding and intricate spatial relationships within the image data. By synergistically
incorporating MRGA with the U-Net framework, the model adeptly captures multi-scale
smoke features, thereby augmenting its capacity to discern subtle nuances within small-
scale smoke instances. This amalgamation of methodologies significantly enhances the
model’s perceptual acuity, particularly when confronted with the challenges associated
with detecting and segmenting small-scale smoke regions. The scholars referenced in [23]
have introduced an innovative algorithm denoted as “fire-YOLO”. This algorithm consti-
tutes an augmentation to YOLOv4, integrating depth-separable convolution techniques.
This augmentation serves the dual purpose of mitigating the computational costs associ-
ated with the model while concurrently enhancing the perceptual field of the feature layer.
Notably, the inclusion of a cavity convolution method further refines the model’s efficiency.



Fire 2024, 7, 84 6 of 15

The influence of ocean proximity in areas near the ocean often means higher humidity
levels due to the proximity of a great deal of water evaporation, which makes object detection
less accurate. Humidity can affect the performance of the sensors used in imaging systems,
degrading the quality of images captured by cameras. Therefore, contrast is instrumental for
visual processing and understanding of the information contents within the images in various
environmental settings [24]. Chen et al. [25] introduced a histogram equalization (HE)-based
approach, called quadrant dynamic histogram equalization (QDHE), for captured images
from devices. This method was mainly applied in the area where images were captured
in low-light environments; the QDHE algorithm enhances images without any intensity
saturation, noise amplification, or over-enhanced images.

3. Proposed Methods, Model Architecture

Our primary goal is to effectively detect fire on ships by training a model that detects
ships, smoke, and fire, and mainly focuses on detecting ships that are on fire or with smoke
without fire. We created custom dataset for various sea transports that are with fire, without
fire, and with smoke, and fine-tuned YOLOv8 state-of-the-art single-shot detector model.

Moreover, since real-time object detection is relatively challenging due to its variances
in object sizes and aspect ratios, inference speed and noise occurrences significantly affect
object detection. In other words, high humidity levels in the marine environment can lead
to haziness and reduce visibility in the atmosphere. Objects in real-world scenarios often
exhibit diverse aspect ratios, meaning they can be elongated or compressed in various ways.
This mainly results in images with reduced contrast and clarity, making it challenging
to distinguish objects such as sea transports. Object detection algorithms often rely on
well-defined features and patterns. Therefore, for better detection purposes we apply
histogram equalization techniques for image enhancement, avoiding a narrow range of
intensity values in ship images.

Traditional object detection models might struggle when confronted with such vari-
ability. Moreover, real-time object detection demands swift processing to keep pace with
the continuous stream of input data, such as video frames. Slower inference speeds can
lead to latency issues, causing a lag between the occurrence of an event and the model’s
response. Considering above-mentioned obstacles, YOLO is a great approach.

3.1. YOLO Architecture

YOLOv1 was introduced in 2016; initial steps of real-time object detection of YOLO
algorithm that consisted of 24 convolutional layers are shown in Figure 2.
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YOLOv1 takes an input image of fixed size (e.g., 448 × 448 pixels). Input image is
then divided into as A × A grid, where each grid cell is responsible for predicting objects
that fall within it. Each grid cell predicts B bounding boxes and confidence scores for those
boxes. The final output is a tensor of dimensions (A,A,B × 5 + C), where B is the number
of bounding boxes predicted per grid cell, 5 corresponds to the bounding box coordinates
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and C is the number of classes. YOLOv1 used stochastic gradient descent as its optimizer,
localization loss, and classification loss functions. Loss function is designed to penalize
both localization and classification errors. The λcoord and λnoobj were equalized to 5, set to
regularization coefficients to regulate the magnitude of different parts of localized objects
as shown in equation below.

λcoord
A2

∑
i=1

B
∑

j=1
↑obj

ij

∑c∈classes

(1)

where ↑obj
ij denoted objects that appeared in cell i and ↑obj

ij denoted the jth bounding box in
cell i that was set to prediction.

3.2. The Model Structure of Yolov8 Network

YOLOv8 stands as the latest iteration in the YOLO object detection model series,
retaining the foundational architecture of its predecessors while introducing a myriad of
enhancements. In the context of ship fire detection, the importance of YOLOv8 in real-
time applications becomes evident. Utilizing a custom collection of ship images depicting
both fire and non-fire scenarios, YOLOv8 proves instrumental in swiftly and accurately
identifying instances of ship fires. This capability is particularly crucial for maritime safety,
where timely detection of ship fires can significantly contribute to effective emergency
response and disaster mitigation.

Figure 3 is representation of YOLOv8 architecture, which is built on PyTorch open-
source machine leaning library. Backbone layer of model includes convolutional 2D
(conv2d) image and batch normalization (U) in the same parameter, then Rectified Linear
Unit (ReLU) activation function in leak parameter to handle negative inputs, allowing
small non-zero gradients to propagate through the network. C is for concatenation and P
(3,4,5) are detection model names.
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3.3. Histogram Equalization Technique Application for Detection Enhancement

Histogram equalization (HE) technique application for the enhancement of ship fire
images is a crucial approach in our study. As we mentioned, marine environment has high
likelihood of becoming humid most of the time. Our objective is to enhance precision in
ship fire detection and categorize images based on the presence or absence of fire. Adverse
weather conditions associated with high humidity, such as fog, mist, or heavy rainfall,
can significantly impact the quality of images and compromise the effectiveness of object
detection. The presence of moisture in the air can cause reduced visibility, image distortion,
and altered surface characteristics, making it difficult for algorithms to accurately identify
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and locate objects. Therefore, we combined trained ship fire detection model with HE. The
proposed HE technique adjusts the brightness of ship images by evenly distributing over
RGB channels. Moreover, HE produces unrealistic effects in photographs most of the time.
To solve this, we also apply image upscaling technique by keeping image identity. The
brightness distribution can be seen through cumulative density function (cdf) or cumulative
distribution function, showing a line in 0 to 255 color channels.

h(v) = round
(

cd f (v)− cd f min
(M× N)− cd f min

× (L− 1)
)

(2)

where h(v) represent the output value after applying the operation for HE to variable v,
round is a rounding result of the expression inside the parenthesis operations, cd f (v) is
cumulative density at the point variable, and cd f min is a constant for the minimum value.
M × N are dimension variables of an input image. L is the equalized value (266), because
pixel intensity is generally expressed in between 0 and 255.

3.4. Data Distribution

In maritime safety and emergency response, the swift and accurate detection of ship
fires plays a pivotal role in mitigating potential disasters. Leveraging advancements in
computer vision and deep learning, this methodology outlines a comprehensive approach
to training a model specifically designed for the detection of ship fires. The process involves
the meticulous collection of a diverse dataset.

To augment the dataset’s size and variability, video frames depicting ship fires are
extracted, enriching the training material. The chosen model architecture, a variant of
the widely used YOLO family, is tailored to facilitate real-time detection capabilities.
Pre-trained on a large dataset, the model is fine-tuned to discern between two crucial
classes: ships on fire and ships not on fire. The methodology encompasses critical steps,
including dataset organization, data augmentation, model selection, and training parameter
optimization, ensuring the development of a robust and reliable ship fire detection system.

This methodology not only emphasizes the technical intricacies of model training but
also underscores the importance of continuous improvement. Regular updates, fine-tuning,
and adaptation to evolving scenarios contribute to the model’s ongoing effectiveness in
safeguarding maritime environments. Through a systematic and well-documented approach,
this method serves as a valuable resource for those aiming to deploy advanced technologies
for ship fire detection, ultimately enhancing safety measures within maritime operations.

Figure 4 depicts our dataset’s ship images in different scenarios. (a) shows wide visible
burning ships, where fire is clearly shown. (b) is an example of ships on fire where smoke
is the dominant feature to classify. (c) is an example of no-fire class. Overall, if ship images
have smoke in them, we labeled those images as “fire” class. “Not-fire” class images are
clear, without any smoke with only evaporation in the images.

Table 1 represents a comprehensive dataset we used to train our model, encompassing
images representative of both fire and non-fire scenarios. The dataset comprised a total
of 19,781 images, with meticulous attention given to balancing the representation of fire-
related instances alongside non-fire instances, a critical consideration for ensuring model
robustness and generalization.

Table 1. Distribution of fire images in the dataset.

Dataset Training Images Validation Images Total Images

Fire 16,261 3520 19,781

Non-Fire 3111 2624 5735
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Within the dataset, the category of “Fire” images encompassed a substantial count of
16,261 instances, indicative of the emphasis placed on capturing the diverse manifestations
of fire-related occurrences. Correspondingly, “Non-Fire” images were meticulously curated
to provide a complementary representation, totaling 5735 instances, thereby facilitating a
comprehensive assessment of the model’s discriminative capabilities across varied scenarios.

For the purpose of model training and evaluation, the dataset was partitioned into
distinct subsets, namely “Training Images” and “Validation Images”. The “Training Images”
subset, consisting of both fire and non-fire instances, comprised 19,372 images, serving
as the foundational corpus upon which the model’s learning process was predicated. In
parallel, the “Validation Images” subset, comprising 6144 images, was employed to gauge
the model’s performance and generalization ability on unseen data, thereby ensuring a
rigorous evaluation framework.

The dataset comprises over 25,000 high-resolution images, capturing a wide array of
maritime environments. Each image is meticulously labeled to indicate the presence or
absence of a fire on the ship. The inclusion of both positive and negative instances aims to
challenge object detection models to discern subtle details amidst the complex maritime
backdrop. A notable challenge in this dataset is the variability in ship sizes and orientations,
and the dynamic nature of fire occurrences. The aspect ratio of ships, combined with the
unpredictable nature of fires, necessitates robust algorithms capable of handling these
variations for accurate detection. The dataset is partitioned into training and validation
sets to facilitate the development and evaluation of our ship fire detection model. We
employ state-of-the-art object detection architectures and fine-tune them on our dataset.
The training process involves optimizing for both accuracy and inference speed, balancing
the need for precision with the demand for real-time performance.

4. Experimental Results and Discussion

This research not only establishes a robust foundation for effective ship fire detection
systems but also underscores the potential of computer vision and deep learning method-
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ologies in addressing critical safety challenges in the maritime domain. The meticulous
evaluation of our approach, utilizing precision, recall, and F1 score metrics, provides a
comprehensive understanding of the model’s performance, affirming its viability for practi-
cal implementation in enhancing maritime safety protocols. Furthermore, the success of
our preliminary experiments encourages the further exploration and refinement of these
methodologies to continually advance the capabilities of ship fire detection systems for
broader industry applications.

4.1. Model Evaluation

As shown in Table 2, the computational setup utilized for this research comprises a
high-performance hardware configuration. The motherboard employed is the ASRock
X399 Taichi, renowned for its robustness and compatibility with high-end components.
The system boasts a substantial memory capacity of 32.0 GiB, ensuring ample resources
for data processing and model training tasks. At the heart of the system lies the AMD
Ryzen™ Threadripper™ 1950X processor, a formidable workstation-grade CPU equipped
with 32 cores. This processor provides exceptional parallel computing power, enabling the
efficient execution of complex machine learning algorithms. Complementing the CPU is
the NVIDIA GeForce GTX 1080 Ti graphics card, renowned for its prowess in accelerating
deep learning tasks through GPU parallelism.

Table 2. The configuration information of the experimental platform.

Configuration Versions

Hardware model ASRock X399 Taichi
Memory 32.0 GiB
Processor AMD Ryzen™ Threadripper™ 1950X × 32
Graphics NVIDIA GeForce GTX 1080 Ti
Operating system Ubuntu 23.04
Operating system type 64-bit
Toolkit CUDA 12.0
Kernel version Linux 6.2.0-37-generic

4.2. Evaluation Metrics

The performance of the developed ship fire detection model is meticulously assessed
through the examination of the confusion matrix, a fundamental tool in evaluating the
classification results. The matrix encapsulates the model’s predictions against ground truth
labels, offering insights into its proficiency across distinct classes. The selection of perfor-
mance metrics is contingent upon distinct factors, including the inherent characteristics of
the data and the objectives of the analysis. These metrics serve as pivotal tools for gauging
the efficacy of a proposed approach or model, offering a nuanced evaluation of its perfor-
mance. The assessment of model predictions against ground truth involves fundamental
metrics such as true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). These metrics, extensively employed in our prior scholarly works [27–32],
encapsulate the model’s proficiency in accurately categorizing instances, shedding light on
its discriminative capabilities. The quantitative derivation of these metrics contributes to
a comprehensive understanding of the model’s performance across diverse datasets and
analytical contexts, delineating its efficacy and reliability in distinct scenarios.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 score =
2 ∗ Recall ∗ Precision

Recall + Precision
(5)
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4.3. Model Training Results

The matrix, presented in Figure 5, encapsulates the model’s classification outcomes for the
“Ship on Fire” and “Ship Not on Fire” classes. The model exhibits an exceptional proficiency
in detecting ships engulfed in flames, achieving a commendable accuracy of 99%. This result
underscores the robustness of the model in discerning and accurately classifying instances
of fire aboard ships. The high precision in this class is particularly noteworthy, indicating a
low rate of false positives in the identification of fire incidents. In the complementary class
of “Ship Not on Fire”, the model attains a flawless accuracy rate of 100%. This implies that
the model, when confronted with ships devoid of fire, consistently makes correct predictions
without any instances of misclassification. The perfect accuracy in this category signifies a
robust ability to differentiate non-fire scenarios with utmost precision.
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From Figure 6a it can be seen that the decline in training loss from an initial value of 1 to
the remarkably low level of 0.001 signifies the model’s capacity to capture intricate patterns
and dependencies within the training data. This progressive learning is indicative of the
model’s adaptability, as it shows its parameters to align more closely with the underlying
structure of the ship dataset and the same adaptability in case (b), with relatively higher
fluctuation until reaching epoch 20. In the case of (c), the model’s learning rating is
increasing significantly, reaching its highest point of 0.97% accuracy in 50 epochs. This
metric, representing the proportion of correctly classified instances, stands as a testament
to the ship fire detection model’s proficiency in discerning intricate patterns within the
data. While the achieved accuracy is remarkable, careful consideration must be given to
the generalization capabilities of the model.
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Figures 7 and 8 illustrate the outcomes of ship fire detection concerning validation
examples from our custom dataset. These visual representations showcase the effectiveness
of our developed model in accurately identifying and delineating instances of ship fires. In
Figure 7, the detection results provide a clear visualization of the algorithm’s performance,
offering insights into its ability to discern and highlight areas indicative of fire incidents.
Similarly, Figure 8 further elucidates the proficiency of our ship fire detection system by
presenting additional validation examples from the custom dataset.
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The comparative results of ship on fire images are presented in Figure 9. Panel (a) dis-
plays images without the application of HE, providing a baseline representation. In contrast,
Panel (b) exhibits images after the application of histogram equalization, showcasing the
enhanced quality and contrast achieved through this preprocessing technique. These compar-
ative visualizations offer a side-by-side assessment of the impact of histogram equalization
on ship fire images. The images in Panel (b) demonstrate the improved visibility of critical
features, aiding in the discernment of fire-related patterns and enhancing the overall quality
of the dataset for more effective analysis and detection. In Figures 10 and 11, single image and
multiple image examples as visual output results from the proposed method.
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5. Conclusions

In conclusion, this research has addressed the escalating challenge posed by onboard
fires on container ships within the maritime industry. The discernible surge in incidents over
recent years necessitates a proactive approach to enhance maritime safety and mitigate the
associated risks. Leveraging the YOLO object detection algorithm, our study successfully
developed an efficient and reliable system to detect ship fires. The model, trained on
a comprehensive dataset comprising over 25,000 ship images, achieved an impressive
accuracy exceeding 99%, underscoring its robust performance.

The multifaceted nature of ship fires, stemming from diverse causes such as electrical
faults and human error, emphasizes the significance of advanced detection systems. Beyond
immediate safety concerns, the implications of ship fires extend to environmental impacts,
including the release of pollutants and greenhouse gases, contributing to global warming.
Recognizing the urgency of addressing these challenges, our research advocates for the
integration of state-of-the-art fire detection technologies into maritime safety systems. By
implementing advanced detection systems, not only can we safeguard human lives and pro-
tect valuable cargo, but we also contribute to minimizing the ecological footprint associated
with maritime disasters. This paper highlights the critical importance of proactive measures
in preventing and responding to ship fires effectively. To enhance the accuracy of our ship
fire detection model, we combined the trained model with HE algorithms to preprocess
ship images, because the presence of moisture in the air, such as fog, mist, or heavy rainfall,
can significantly influence the quality of images. The application of HE is set to increase
object detection accuracy. As the maritime industry faces evolving challenges, embracing
cutting-edge technologies becomes imperative to ensure the resilience and sustainability
of maritime operations. Our research serves as a foundation for further advancements in
ship fire detection and underscores the pivotal role of technology in shaping the future of
maritime safety.
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