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Abstract: Air pollutants from biomass burning, including forest fires and agricultural trash burning,
have contributed significantly to the pollution of the Asian atmosphere. Burned area estimates are
variable, making it difficult to measure these emissions. Improving emission quantification of these
critical air pollution sources requires refining methods and collecting thorough data. This study
estimates air pollutants from biomass burning, including PMs, NOX, SO2, BC, and OC. Machine
learning (ML) with the Random Forest (RF) method was used to assess burned areas in Google Earth
Engine. Forest emissions were highest in the upper north and peaked in March and April 2019. Air
pollutants from agricultural waste residue were found in the lower north, but harvesting seasons
made timing less reliable. Biomass burning was compared to the MODIS aerosol optical depth (AOD)
and Sentinel-5P air pollutants, with all comparisons made by the Pollution Control Department (PCD)
Thailand air monitoring stations. Agro-industries, mainly sugar factories, produce air pollutants by
burning bagasse as biomass fuel. Meanwhile, the emission inventory of agricultural operations in
northern Thailand, including that of agro-industry and forest fires, was found to have a good relation-
ship with the monthly average levels of ambient air pollutants. Overall, the information uncovered
in this study is vital for air quality control and mitigation in northern Thailand and elsewhere.

Keywords: emission inventory; biomass burning; open burning; Sentinel-2; Google Earth Engine;
burned area; forest fires; air pollution; sugar factory

1. Introduction

Air pollution is an important problem in many countries, and it is expected to worsen,
especially in tropical countries that use fire for agriculture. This includes clearing lands for
plantings and agricultural trash [1–4]. Open biomass burning releases a variety of pollutants
into the atmosphere, including greenhouse gases, carbon monoxide (CO), sulfur dioxide
(SO2), nitrogen oxides (NOX), non-methane volatile organic compounds (NMVOCs), and
particulate matter (PM) [5], which affect global air quality and human health. PM is a vital
pollutant that has affected human health in the past decade, comes in various sizes based
on aerodynamic diameter, and can be classified into three main types: coarse PM (PM10-2.5),
fine PM (PM2.5), and ultrafine PM (PM0.1) [6–11]. These pollutants directly affect respiratory
disorders, including asthma exacerbation, respiratory tract inflammation, and lung cancer.
Additionally, fine PM causes more pulmonary inflammation and is stored longer in the
lung, which worsens the condition. However, ultrafine PM can permeate throughout the
body and cause more harm. While coarse PM may not penetrate the respiratory system
like fine and ultrafine PM, it can still cause respiratory irritation, coughing, and increasing
symptoms [12,13].

Nowadays, remote sensing technology is advancing rapidly. This is seen in the
increased spatial resolution of satellite imagery like Landsat-8 OLI (Operational Land
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Imager) and TIRS (Thermal Infrared Sensor), Landsat-9 OLI/TRI, Sentinel-2 A and B, and
Moderate Resolution Imaging Spectroradiometer (MODIS), with 15–30 m, 100 m, and
250 m spatial resolutions, respectively [14–17]. Remote sensing will make monitoring
and estimating pollution in previously inaccessible areas easier. Furthermore, it will
reveal dangerous materials’ distribution, concentration, and mobility in the atmosphere.
Satellite images must be loaded into storage, which limits remote sensing data [18]. The
GEE platform’s open-source and cost-free nature makes remote sensing easy and efficient,
especially since there is no need to download photos or dedicate storage space. Moreover,
the GEE platform provides access to various data sources, including satellite images stored
on the cloud system called Data Collection, in addition to machine learning algorithms like
Random Forest (RF), support vector machine (SVM), and classification and regression trees
(CARTs). In addition, GEE platform collaboration will maximize findings in vast study
regions and air pollution analysis [19–21].

In the dry season (January–April), the open burning of farm waste residues and forest
fires cause haze in northern Thailand. These fires are a major cause of air pollution in
northern Thailand, especially in the higher north, where forests cover 89,902.7 km2 or
52.3% of the studied area. All forest fires are man-made, mainly by rural residents near
forests [22]. Surface fires in deciduous forests account for most northern Thai forest fires.
The fuel load for surface fires must include dried twigs, dead leaves, plants, grass, and
undergrowth [5,22]. Air pollution from rice, corn, and sugarcane farms is significant.
The lower north has the most plantations because of arable lowlands. After harvest,
farmers burn agricultural waste to prepare land for new planting, and crop waste is
traditionally burned in field plantations at little cost. Meanwhile, agricultural biomass is
burned in the field and during industrial processing, especially in sugar factories that use
biomass to generate renewable power. Sugar and molasses are produced from most cane
crops and delivered to sugar factories. Sugar plants also create bagasse, a juice extraction
byproduct [23,24]. Bagasse is the main fuel used in industrial boilers. Unfortunately, air
pollution control solutions in industrial processes often fail, and sugar production emits a
significant amount of air pollution. Crop waste burning and agro-industries cause most of
northern Thailand’s air pollution [2]. However, Thailand’s spatial and temporal emissions
have been poorly studied. Such an understanding is essential for finding practical solutions
to these issues, which include PM and other pollutants.

Spatial and temporal emissions from air pollution sources in Thailand have been
poorly investigated, and there are numerous methods to assess them. Emission inventories
were popular for reporting pollution levels due to their speed and cost [25]. Current
worldwide products employing sensors with varying spatial resolutions, such as MODIS
(250 m–500 m), especially the burned area product (MCD641, FIRECCI, MCD451, etc.), are
popular for estimating air pollutant emissions from open biomass burning, especially in
forest fire zones [5,26–28]. These tools may not detect tiny fires or burned areas smaller
than 1 km2, even though they generate air pollution that can affect land use [29]. Some
studies have used fire hotspots to estimate burning areas, including air pollutant emissions
from agricultural waste residues that evaluate agricultural production yield [30–32], but
this may introduce uncertainty.

Therefore, this study attempts to reduce uncertainty by integrating high-spatial-
resolution satellite imagery and Sentinel-2 imagery to estimate the emissions of air pol-
lutants from open biomass burning related to forest fires and agriculture waste residues.
Furthermore, it also assesses the amount of air pollutants emitted from the agro-industry,
which corresponds to the large amount of agricultural land in the study area. This assess-
ment is conducted through an emission inventory (EI), which is useful and the standard
method for reporting the number of air pollutants in each category of interest [25,26]. The
EI in these studies focuses on PM1, PM2.5, PM10, NOX, SO2, black carbon (BC), and organic
carbon (OC), estimated based on the amount of burned biomass. Moreover, the amount of
burned biomass is assessed in the burned area, obtained from the assessment of Sentinel-2
images using the machine learning (ML) technique and processing in the GEE platform.
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Finally, the air emissions obtained from these studies are compared with AOD and other
air pollutants obtained from Sentinel-5P to validate the results.

2. Materials and Methods
2.1. Conceptual Framework

The Geo-Informatics and Space Technology Development Agency (GISTDA), a public
organization, contributed Landsat-8 OLI/TRI imagery with a 30 m resolution for the burned
area product or reference dataset. This dataset is the basis for burned area estimation
training. The GEE platform processes using the RF algorithm. The burned area data are
used to calculate air emissions using emission factors (EFs) specific to forest fires and
agricultural waste residues, especially in rice, corn, and sugarcane plantations. Sugar
factories are a major cause of air pollution in this region. These enterprises pollute the air by
powering boilers and factories with biomass fuel (bagasse). Sugar factories’ air emissions
are estimated using the Office of the Cane and Sugar Board’s (OCSB) sugarcane output data.
In addition, we also used the correlation matrix, which was analyzed in open statistical
software, namely jamovi version 2.3.28, to analyze the correlation between the emission
inventories from our study results with the AOD data and the pollutants reported by the
Sentinel-5p satellite. The correlation matrix is a commonly used statistical method that
helps to evaluate the relationship between two variables. A positive correlation indicates
a direct relationship between variables, while a negative correlation suggests an inverse
relationship (Figure 1).
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Figure 1. Conceptual framework.

Our study utilizes two main types of datasets: data accessed through the GEE platform
and data provided by government agencies in Thailand. The first type of data includes
Sentinel-2 imagery, which is acquired through the Copernicus Program’s Earth observation
mission and is a crucial resource for estimating open biomass emission. Additionally,
AOD data are collected by the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument on the Terra satellite, while the TROPOMI instrument on the Sentinel-5p satellite
records NOX and SO2 pollutant data. The second type of data encompasses Burned
reference data, which are processed using Lantsat-8 and maintained by GISTDA. This
includes statistical data on the amount of sugarcane in each sugar factory, collected from
the OCSB.

2.2. Study Area

The study area corresponds to northern Thailand, covering an area of around
169,644.3 km2, located in Southeast Asia, with latitudes and longitudes extending from
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15◦ N to 20◦ north and from 97◦ E to 100◦ east, respectively. There are 17 provinces in this
region, which are classified into upper-northern and lower-northern areas [27], as shown
in Figure 2. Air pollution is the main problem during the dry season in both areas, with
varying sources of air pollution based on each area’s characteristics. In the upper-north
region, the main areas are forest areas, covering approximately 89,902.7 km2. In contrast,
the lower-north region is mainly an agricultural area since most of the land is low-lying.
This area is primarily dedicated to rice plantations as the main economic crop, covering
an approximate area of 27,934.2 km2, followed by corn and sugarcane plantations, which
cover approximately 7569.9 and 3892.6 km2, respectively.
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2.3. Google Earth Engine Platform (GEE)

The Google Earth Engine platform (GEE) is open-source software featuring a cloud-
based platform that offers convenient and efficient access to its resources. Users can work
efficiently through the Internet with a web browser, eliminating the need to download
software or store data locally on their computers. Instead, the GEE platform uses the service
provider’s computer’s resources, streamlining the process for users. This approach allows
users to process massive and ever-growing amounts of geospatial data easily, including
climate and weather datasets, imagery, and geophysical datasets. Geophysical processing
is implemented in programming languages such as Python and Java, and the GEE platform
also provides an Application Programming Interface (API) that enables users to write com-
mands for data processing or the creation of related applications efficiently [19–21,28–30].

2.4. Data Collection

This study used publicly available and government sources to estimate air pollutant
emissions from open biomass burning. Sentinel-2 image, land use/cover, and sugarcane
production data were collected. First, Sentinel-2 surface reflectance time-series pictures
estimated burned areas for 2019–2021 during dry seasons on GEE. The 12-band Sentinel-2
picture collection (B1–B12) selected B4, B8A, and B11 bands with 10, 20, and 20 m resolutions.
Second, the Land Development Department in Thailand provided land use and land cover
data to identify spatial characteristics and pollutant sources. This study focuses on forest
and agricultural regions like rice, corn, and sugarcane plantations, which are the main
sources of pollution. The assessment’s burned area is characterized by land use and land
cover to calculate burned biomass. Finally, 13 enterprises in the research area provided
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2019–2021 sugarcane production data to sugar factories. Thailand’s OCSB provided this
information. This section shows that 90% of the harvested sugarcane products in the
lower-northern region is used to supply sugar manufacturing. Using bagasse as fuel in
sugar factories is another major cause of air pollution in the research region [25,31,32].

2.5. Estimation of Burned Area

This study examined burned forest and agricultural land, including rice, corn, and
sugarcane plantations, in dry seasons from 2019 to 2021. We evaluated this using ML
on GEE. This platform provides JavaScript data processing and cloud data collection,
minimizing the limits of working in wide research regions and eliminating the need to
download photographs and devote storage space. Previous studies [19–21,28–30] have
shown that study area limits can be overcome, allowing researchers to use vast study
regions. Over the past decade, many studies have been conducted on estimating burned
areas to develop approaches to reduce working time. Among these approaches, the ML
approach has gained considerable popularity. In previous studies assessing burned areas,
the RF algorithm was used and showed high assessment accuracy [33–38]. This study
employed the RF algorithm to classify burned areas in northern Thailand during the dry
season between 2019 and 2021.

2.5.1. Random Forest (RF)

The Random Forest (RF) algorithm is a data-classification algorithm based on the
Decision Tree Algorithm (DT) [39]. Its principle is to divide the data into multiple trees, each
with different data points and features. This diversity aims to achieve more independent
trees. During the training process, each tree is trained on a random subset of variables, and
features are selected randomly using random sampling with replacement. The prediction
results of each tree are combined using the majority vote method, where the most frequently
predicted value is chosen as the final prediction—a technique known as Bagging (Bootstrap
Aggregation). The researcher analyzed the data using the Random Forest algorithm, which
can be accessed from Data Collection in the GEE platform. The algorithm was configured
with 1000 decision trees, each with a maximum of 1000 branches [40,41].

2.5.2. Burned Reference Data

The burned area product during the haze episode for the years 2019–2021 was reported
by the GISTDA in Thailand. These data were obtained by processing Landsat-8 images
with a spatial resolution of 60 m. The reference data were used to create training data
for estimating the burned area and assessing the accuracy of the results. To generate
the training data from the reference data, the data in the polygon format were processed
using the Random Points tool in Geographic Information System (GIS) software (ArcMap)
version 10.8. For generated training data from the references data, the data in the format of
polygons were processed using the Random Points tool in ArcMap and a combination of
red, near-infrared (NIR), and shortwave infrared (SWIR) bands of Sentinel-2 in the GEE
platform. Moreover, 6800 training data points were classified, with 100 points in each
province, and they were used to train and test the model using the RF algorithm in the GEE
platform. It is important to note that the training data were created from the reference data
in 2021 and used to estimate the burned area for 2019–2020 (Figure 3a–c). This is due to the
limitation of the dataset reported by GISTDA, which does not cover the lower part of the
study area for 2019–2020.
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2.5.3. Accuracy Assessment

We calculated Cohen’s kappa coefficient [42]. This was performed based on the number
of reference points in the study area. Cohen’s kappa coefficient (k̂) can be calculated using
the following equation:

k̂ =
po − pe

1 − pe
(1)

where po is the relative observed agreement among raters, and pe is the hypothetical
probability of chance agreement. Cohen’s kappa coefficient can be interpreted in Table 1,
where the kappa value ranges from 0 to 1. A value of 1 indicates perfect agreement, while
values less than 1 indicate less than perfect agreement, as shown in Table 1 [42].

Table 1. Cohen’s Kappa coefficient.

Cohen’s Kappa (k̂) Value Interpretation of the Cohen’s Kappa (k̂)

0 No agreement

0.10–0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

0.81–0.99 Near-perfect agreement

1 Perfect agreement

2.6. Estimation of Air Emission from Biomass Burning

The assessment of emissions from forest fires and agriculture residues consists of two
steps. Firstly, the equation for annual emissions is calculated by multiplying the activity
data by the emission factor. The emission estimation was performed by following the
Atmospheric Brown Cloud (ABC) Emission Inventory Manual, an approach developed by
the Asian Institute of Technology, Thailand [43]. Secondly, the equation for estimating the
activity rate represents the relationship between the burnt area and the combustion process.
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2.6.1. Forest Fire

The emissions of air pollutants emitted from forest fires were calculated using the
equation developed by Giglio. et al. (2006) [44]. The annual emission equation is calculated
by multiplying the amount of burning biomass obtained from the burned area by the mass
of emissions emitted per biomass combusted. The equation provided is shown below:

EMi,j = ∑
j

Mj × EFi,j (2)

where EMi,j is the emission of pollutant (i) from area (j), and Mj is the amount of burned
biomass on area (j). EFi,j is the emission factor of pollutant (i) from area (j) (g/kg of dry
matter), which are the data from the literature review, as shown in Table 2. Mj for the forest
fire was calculated from the following equation:

M = A × B × C (3)

where A is the burned area (km2); B is the biomass density in the forest area (kgdry mass/km2);
and C is the burning efficiency, as shown in Table 3.

2.6.2. Agriculture Residues

The amount of air pollutants emitted from agricultural waste residues was assessed
using the same equation as that for forest fires (Equation (2)), developed by Giglio et al.
(2006) [44]. However, the evaluation process differed in estimating the amount of burned
biomass (M), which was calculated using the equation developed by the Revised 1996
IPCC Guidelines for National Greenhouse Gas Inventories [45]. This was calculated by the
following equation:

M = BA × BL × CC (4)

where BA is the burnt area, BL is the biomass load (tons of dry matter/ha), and CC is the
fraction of the mass combusted by fire. The BL and CC are shown in Table 3.

Table 2. Summary of emission factors for each pollutant (unit: g/kgdry mass).

Type
Pollutants

PM1 PM2.5 PM10 NOX SO2 CO BC OC

Forest 0.74 a 3.4 a 7.95 a 2.55 b 0.40 b 93 b 0.52 b 4.71 b

Total Rice 0.48 a 2.13 a 5.5 a 0.21 c 1.53 c 25.80 c 0.58 f 3.5 f

Corn 0.86 a 4.71 a 7.69 a 0.07 c 1.50 c 29.79 c 0.75 f 3.71 f

Sugarcane 0.59 a 2.04 a 8.07 a 1.5 g 0.53 g 40.1 g 0.73 g 1.25 g

Bagasse 1.06 a 5 a 9.2 a 3.3 h 0.76 h 8.14 h - -

Source: a Samae et al., 2020 [8]; b Junpen et al., 2020 [46]; c Punsompong, 2016 [47]; f Zhang et al., 2018 [48];
g Junpen et al., 2020 [26] and h Sahu et al., 2015 [49].

Table 3. Summary of the parameters used for the estimated emission inventory.

Parameters
Crops

Total Rice Corn Sugarcane Forest

Burn Efficiency Ratio (nj) 0.95 a 0.92 a 0.95 a 0.79 b

Biomass Density (g/m2) (B) - - - 3.76 × 105 a

Biomass Load (BL) (t/ha) 7.62 c 5.26 d 9.40 e -

Combustion Completeness (CC) 0.34 c 0.85 d 0.64 e -

Source: a Sahu et al., (2015) [49]; b Kanabkeaw et al., (2010) [50]; c Cheewaphongphan et al., (2013) [51]; d Kanokkan-
jana et al., (2011) [52] and e Sornpoon et al., (2014) [53].
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2.6.3. Agro-Industries

Agro-industries, notably sugar plants, contribute to pollution by burning biomass.
Thailand’s second-largest sugarcane cultivation area is 169,644.3 km2. Fresh and charred
sugarcane exist. Sugar plants create power for boilers and other industries with harvested
sugarcane. Bagasse, a byproduct of juice extraction, can be transformed into renewable
energy for production heating [23,24]. Sugarcane bagasse is used to generate steam in the
boiler furnace after juice extraction for manufacturing. Industrial air pollutants might also
be released during this process, affecting air quality. There are 13 sugar factories in the
study area, and they are mainly allocated in the lower north of the region, which supervises
the OCSB in Thailand. The amount of emissions from sugar factories was proposed by an
estimation method developed by Sahu et al. (2015) [49], as detailed below:

TOj =
a

∑
i

FUi × EFj (5)

where TOj is the total emission for a specific pollutant (j), FUi is the bagasse amount for
specific sugar factories (i), and EFj is an emission factor of different pollutants emitted from
boilers in sugar factories, as shown in Table 2.

3. Results
3.1. The Spatial Distribution of Burned Area in Northern, Thailand

The total burned area over the dry seasons from 2019 to 2021 amounted to roughly
153,735.2 km2. In 2019, the burned area peaked at 88,465.3 km2, accounting for 51.4% of the
study area. Of this, 69,753.9 km2 (78.8%) was from forest fires, while 18,711.4 km2 (21.2%)
was from agricultural areas. In 2020, the following areas were discovered: 87,332.4 km2 or
50.8% of the study area was affected by forest fires, with 68,166.4 km2 or 78.1% of the forest
area and 19,165.4 km2 or 21.9% of the agricultural area being affected. In 2021, the burned
area was the smallest, at 63,500.2 km2, which accounted for 33.8% of the study area. Of this
burned area, 69,753.9 km2 (82.4%) originated from forest fires, while 13,534.0 km2 (27.6%)
originated from agricultural regions. The burned area is displayed in Table 4. Figure 4
shows the monthly distribution of burned areas during dry seasons in northern Thailand.
It was found that forest fires had been occurring since January, and the peak period was in
March–April, as shown in Figure 4a. On the other hand, the burning of agricultural waste
is indicated by an uncertain burning period due to variations in planting and harvesting
schedules. Especially in the rice plantation, as shown in Figure 4b, the burning area was
particularly high in January, which coincides with the harvest seasons, which peaks from
November. The burning of corn and sugarcane residues in the field indicated a similar time
series, as shown in Figure 4c,d. The burned area remained relatively constant over 5 months
(December–April), with the peak harvesting period for corn occurring from October to
December, aligning with the cold dry season. Similarly, in sugarcane plantations, which
can be harvested during the cold dry season, the peak harvest period for crushing seasons
was from January to April [46].

Table 4. The total burnt area that was estimated by Sentinel-2 during the haze episode.

Ye
ar Month

The Burnt Area from Assessment (km2)
Total

Forest Rice Corn Sugarcane

20
19

January 9688.5 3719.8 1173.1 1169.9 15,751.3

February 16,233.3 2106.1 1022.4 920.9 20,282.7

March 20,955.3 1993.6 929.6 623.3 24,501.8

April 22,876.9 2611.7 1495.4 945.6 27,929.6

Total 69,753.9 10,431.2 4620.5 3659.7 88,465.3
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Table 4. Cont.

Ye
ar Month

The Burnt Area from Assessment (km2)
Total

Forest Rice Corn Sugarcane

20
20

January 7484.9 3600.4 874.7 1111.3 13,071.4

February 18,089.7 2836.6 937.6 1120.8 22,984.7

March 21,295.0 2460.7 890.8 643.5 25,289.9

April 21,296.8 2694.4 1034.0 961.2 25,986.4

Total 68,166.4 11,592.1 3737.1 3836.8 87,332.4

20
21

January 3434.7 2819.5 742.2 705.6 7701.9

February 6233.3 1829.4 1103.4 792.6 9958.8

March 20,955.3 1605.2 788.4 725.4 24,074.2

April 22,876.9 1328.6 631.4 462.2 25,299.1

Total 63,500.2 7582.8 3265.4 2685.8 77,034.1
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(b) rice plantations, (c) sugarcane plantations, and (d) corn plantations.

The spatial distribution of burned areas shows that forested regions have the highest
density of burned areas, particularly in provinces such as Mae Hong Son, Tak, Chiang Rai,
and Chiang Mai (Figure 5). This observation aligns with the geological characteristics of the
study area, which mainly consists of forest areas. Additionally, certain types of agriculture,
such as corn plantations, are practiced within this region. There is a growing trend of
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expanding plantation areas, invading further into forest areas. This expansion is driven by
the favorable characteristics of corn, which is relatively easy to grow and does not require
substantial amounts of water.
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Figure 5. The Spatial distribution of the burnt area in northern Thailand during haze episodes:
(a) 2019, (b) 2020, and (c) 2021.

3.2. The Accuracy Assessment of Burned Area

The burned area assessment results obtained from the RF algorithm were validated
with the burned area estimation dataset derived from Landsat-8 OLI/TRI reported by
GISTDA (Table 5). The validation process yielded kappa coefficients of 0.83, 0.82, and 0.83,
respectively, over the 3 years, indicating good consistency between the assessment and the
dataset. The overall accuracy of the validation was found to be 85%. The evaluation also
utilizes hot spots obtained from MODIS satellite measurements that coincide with the same
period. Moreover, it incorporates line considerations through false color combinations
of Sentinel-2 satellite imagery in the bands B4, B8A, and B11, where the burned area is
importantly highlighted. Figure 6 shows an example of a map of the burned area estimated
by the RF algorithm in Chiang Mai overlaid with training data and Sentinel-2 imagery (B4,
B8A, and B11).

Table 5. Confusion matrix and performance metrics of the assessment of the burned area in Chiang
Mai, Thailand.

Confusion Matrix
Predicted Performance Metrics

Not Burned (TN) Burned (FP) Accuracy Precision Recall F1 Score

Actual

Not burned 167 6 95.14% 91.89% 91.89% 87.48%

burned 6 68 95.14% 96.53% 96.53% 96.53%

Overall accuracy (%) 95.14%

Kappa coefficient 0.8842
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3.3. Total Emissions from Open Biomass Burning

In assessing the air emissions from open biomass burning, the total emissions from
agricultural waste residues and forest fires during 2019–2021 were estimated using Equation
(1) for the forest area and Equation (2) for agricultural residues. The emission factors (EFs)
and parameters reserved in the calculations are detailed in Tables 1 and 2, and the amount of
air emissions is presented in Table 6. The findings indicate that forest fires during 2019–2021
emitted air pollutants totaling 3926.0 tons of PM1, 17,886.0 tons of PM2.5, 3084.5 tons of NOX,
and 5401.3 tons of SO2. Notably, the highest emissions occurred in 2019, with 736.8 tons of
PM1, 3372.3 tons of PM2.5, 564.2 tons of NOX, and 999.8 tons of SO2. Conversely, the lowest
air emissions were reported in 2021, amounting to 507.7 tons of PM1, 2320.3 tons of PM2.5,
397.9 tons of NOX, and 709.3 tons of SO2. Analyzing the trend of air emissions reveals
a correlation with the utilization of agricultural areas, with higher emissions observed
in sugarcane plantations, followed by corn plantations, forest areas, and rice plantations,
respectively. The assessment indicates an unstable emission trend between 2019 and 2021,
characterized by a peak in 2019 followed by a decline in 2020–2021. One contributing factor
to this instability is climate change, particularly the La Niña Phenomenon [54–56]. During
the La Niña years of 2020 and 2021, a significant increase in precipitation was observed
during typically dry seasons, leading to a deviation from customary fuel moisture levels.
Furthermore, 2020 witnessed the global spread of the COVID-19 pandemic, impacting
people’s lives and directly affecting the economy, including the demand for agricultural
products [57–61]. This factor also contributed to the observed fluctuations in air emissions
during this period.
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Table 6. The emissions from biomass burning.

Year Type
Type of Pollutants (tons/year)

PM1 PM2.5 PM10 NOX SO2 BC OC

2019

Forest fire 15,332.6 70,447.0 164,721.7 52,835.3 8287.9 10,774.3 97,589.8

Total rice 1297.2 5756.4 14,863.8 567.5 4134.8 1567.5 9458.8

Corn 1776.6 9730.0 15,886.1 144.6 3098.7 1549.4 7664.2

Sugarcane 1299.0 4491.4 17,701.4 3302.5 1166.9 1607.2 2752.1

All Type 19,705.4 90,424.7 213,173.0 56,849.9 16,688.3 15,498.3 117,464.9

2020

Forest fire 14,983.6 68,843.7 160,972.8 51,632.8 8099.3 10,529.0 95,368.8

Total rice 1441.6 6397.0 16,518.0 630.7 4595.0 1741.9 10,511.5

Corn 1436.9 7869.6 12,848.7 116.9 2506.3 1253.1 6198.8

Sugarcane 1361.9 4708.8 18,558.1 3462.3 1223.4 1685.0 2885.3

All Type 19,224.0 87,819.1 208,897.7 55,842.8 16,423.9 15,209.1 114,964.3

2021

Forest fire 9796.3 45,010.2 105,244.3 33,757.6 5295.3 6883.9 62,352.3

Total rice 943.0 4184.5 10,805.0 412.6 3005.8 1139.4 6875.9

Corn 1255.6 6876.4 11,227.0 102.2 2189.9 1095.0 5416.4

Sugarcane 953.3 3296.2 12,990.9 2423.7 856.4 1179.5 2019.7

All Type 12,948.2 59,367.2 140,267.2 36,696.0 11,347.4 10,297.8 76,664.4

All 51,877.5 237,611.0 562,337.8 149,388.7 44,459.6 41,005.2 309,093.6

The spatial distribution of PM2.5 emissions from open biomass burning (grid size
1 km × 1 km) is shown in Figures 7–10. Figure 7a–c shows that the upper-north region
emitted the highest PM2.5 emissions from forest fires, primarily due to its extensive forest
cover, encompassing approximately 64.9% of the upper-north area. This correlation be-
tween high emissions and significant forest cover is notable in provinces such as Mae Hong
Son, Chiang Mai, and Tak, where the distribution of PM2.5 can be found at concentrations
ranging from 5000 to 6000 tons/grids. Conversely, the lower-north region had heightened
PM2.5 emissions from burning crop residue; notably, the burning of rice waste, particularly
in Sukhothai, Kamphaeng Phet, Phitsanulok, and Nakhon Sawan, contributed to a higher
density of PM2.5 emissions, with the year 2020 featuring the highest density, with PM2.5
emissions reaching approximately 600–700 tons/grids (Figure 8a,b). These provinces, char-
acterized by lowland areas conducive to rice cultivation, have rice as a primary economic
crop. Similarly, the burning of sugarcane wastes indicates a high density in provinces
such as Nakhon Sawan, Kamphaeng Phet, Uthai Thani, and Phetchabun, with Phetchabun
showing the highest density at approximately 1000–1200 tons/grids (Figure 9a–c). Notably,
over 90% of harvested sugarcane products are sent to sugar factories—a trend attributed to
the proximity of sugarcane plantations to these factories, influencing the burning activities
in sugarcane plantations to meet factory demands. Furthermore, PM2.5 emissions from
corn waste residues are notably higher in provinces such as Nan, Chiang Rai, and Lampang
compared to other regions, as evidenced in Figure 10a–c. The upper-northern region has
a significant presence of corn residues, extending into areas without extensive irrigation
systems, as corn cultivation thrives in these regions due to its ability to grow with minimal
water requirements. Although the density of burning corn waste is lower than rice and
sugarcane waste residues, it continuously impacts regional air quality.
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(a) 2019, (b) 2020, and (c) 2021.

3.4. Total Emissions from Agro-Industries (Sugar Factory)

Figure 11 shows the sugarcane production and bagasse use in the sugar factories across
the study area. This includes 13 sugar factories, with Kamphaeng Phet having the highest
number of sugar factories, with 3 factories, followed by Nakhon Sawan, Phetchabun, and
Uthai Thani provinces, with 2 factories. The raw materials for these sugar factories are
sourced during the annual crushing seasons, covering approximately five months from
December to April. Throughout the years 2019–2021, Kamphaeng Phet recorded the highest
sugarcane production transported into sugar factories, reaching around 7705,759.0 tons in
2019, followed by 4907,854.9 tons in 2020 and 4531,978.7 tons in 2021. It is worth noting that
the quantity of sugarcane production utilized by each factory varies based on the number of
industries in the area and their registered capacity. Moreover, the procurement of sugarcane
production extends to various regions surrounding the sugar factories, contributing to the
diverse sourcing patterns observed in these facilities.
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Table 7 presents the air emissions from sugar factories utilizing bagasse for power
generation in their production processes, estimating NOX, SO2, and PM2.5 emissions for
the production years of 2019–2021. The results showed that PM2.5 emissions peaked in
2019 at 3604.8 tons, followed by NOX at 2379.1 tons and SO2 at 547.9 tons. In 2020, PM2.5
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emissions were 2182.6 tons, accompanied by NOX at 1440.5 tons and SO2 at 331.8 tons.
This trend continued in 2021, with PM2.5 emissions at 2045.0 tons, NOX at 1349.7 tons, and
SO2 at 310.8 tons. Moreover, the highest air emissions were observed in Kamphaeng Phet,
followed by Sukhothai, Uthai Thani, and Nakhon Sawan. Notably, the air emissions from
each sugar factory are contingent on the number of industries in the area, including the
production capacity of the factories, influencing their ability to process larger quantities of
sugarcane compared to industries in other provinces. Finally, the spatial distribution of
PM2.5 emissions from sugar factories in each province is shown in Figure 12.

Table 7. The emissions from agro-industries in sugar factories.

Province

Emission of Pollutants (tons/year)

2019 2020 2021

SO2 NOX PM2.5 SO2 NOX PM2.5 SO2 NOX PM2.5

Nakhon Sawan (2) 27.1 117.7 178.3 12.6 54.9 83.1 18.5 80.4 121.8

Uttaradit (1) 7.5 32.6 49.4 6.1 26.5 40.1 4.8 20.8 31.5

Phetchabun (2) 24.2 105.2 159.3 12.1 52.6 79.6 14.1 61.2 92.7

Kamphaeng Phet (3) 328.0 1424.0 2157.6 208.9 907.0 1374.2 192.9 837.5 1269.0

Sukhothai (1) 77.3 335.5 508.3 50.2 217.9 330.2 39.9 173.1 262.3

Phitsanulok (1) 12.0 52.0 78.8 7.1 30.9 46.8 5.9 25.7 39.0

Uthai Thani (2) 71.9 312.1 472.9 34.7 150.8 228.6 34.8 150.9 228.7

Total 547.9 2379.1 3604.8 331.8 1440.5 2182.6 310.8 1349.7 2045.0
 

5 

 

   
Figure 12. The spatial distribution of the gridded PM2.5 emissions emitted from sugar factories: (grid 
size of 1 km × 1 km): (a) 2019, (b) 2020, and (c) 2021. 

Figure 12. The spatial distribution of the gridded PM2.5 emissions emitted from sugar factories: (grid
size of 1 km × 1 km): (a) 2019, (b) 2020, and (c) 2021.

3.5. Correlation between Emission Inventory, AOD, and Air Monitoring Pollutant
3.5.1. Particulate Matter

Figure 13 shows the amount of monthly PM2.5 emissions from forest fire and agricul-
ture waste residues with monthly AOD at the Chiang Mai Government Center (Chiang
Mai-1) and the Yupparaj Wittayalai School (Chiang Mai-2), which are data at the location
of the PCD air-monitoring stations. The AOD is a measure that indicates the relationship
between the portion of particles measured vertically above the ground and the number of
particles recorded at the observation point on the ground. It is commonly used to predict
and monitor the PM2.5 situation because it estimates the average value of PM2.5 covering all
areas throughout the country. We used the AOD value obtained from the MODIS satellite
observation. This was because the air monitoring of pollutants reported by PCD stations
was unavailable during the study period.
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Figure 13. Monthly average of AOD and monthly air emissions from forest fire and agriculture
residues in Chiang Mai Government Center (Chiang Mai-1), including (a) Chiang Mai-1, 2019;
(b) Chiang Mai-1, 2020; and (c) Chiang Mai-1, 2021.

In Figure 13a–c the data indicate that in Chiang Mai-1, forest fires are the primary
source of air pollution. This was evident from March to April when there was an increase
in the PM2.5 emission from forest fires, and the AOD levels were higher during the same
period. However, when comparing with Chiang Mai-2, as shown in Figure 14a–c, the trend
is similar, but the AOD values are higher than in Chiang Mai-1. This could be attributed to
the location, particularly within the economic zone, mainly due to motor vehicles.
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Figure 14. The average AOD and monthly air emissions from forest fire and agriculture residues in
Yupparaj Wittayalai School (Chiang Mai-2), which (a). Chiang Mai-2, 2019, (b). Chiang Mai-2, 2020,
and (c). Chiang Mai-2, 2021.

Tables 8–10 show a correlation matrix between the average PM2.5 emissions and the
AOD value at Chiang Mai-1 in 2019–2021; mainly, in 2019, the emissions from forest fires
and total biomass emissions had a direct impact on the AOD value and indicated the
highest correlation during the three years, with values of 0.81 and 0.99 in 2020 and 2019,
respectively, as shown in Tables 8 and 9. On the other hand, in Chiang Mai-1, the emissions
from burning rice waste and sugarcane waste in the field showed an inverse relationship
with the AOD value. Thus, the emissions from both activities did not directly impact the
AOD value. One of the reasons for this is the land use and land cover in Chiang Mai
province, where there is limited space for both types of agriculture due to most of the area
being forests. Despite this, there is a concentrated cultivation density for both types of
agriculture in the lower-northern region. However, the burning incidents often occur at
times that do not align with periods of air pollution issues in the area.
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Table 8. Correlation matrix between the AOD and open biomass burning emissions at Chiang Mai-1
in 2019.

Variables AOD
Open Biomass Burning Emissions

Forest Fire Corn Waste Rice Waste Sugarcane Waste Total Biomass Emission

AOD −1

Forest fire 0.906 −1

Corn waste −0.320 −0.689 −1

Rice waste −0.212 −0.088 −0.246 −1

Sugarcane waste 0.039 −0.385 0.934 −0.322 −1

Total biomass
emissions 0.994 0.941 −0.410 −0.140 −0.057 −1

Table 9. Correlation matrix between the AOD and open biomass burning emissions at Chiang Mai-1
in 2020.

Variables AOD
Open Biomass Burning Emissions

Forest Fire Corn Waste Rice Waste Sugarcane Waste Total Biomass Emission

AOD −1

Forest fire 0.886 −1

Corn waste −0.841 −0.662 −1

Rice waste −0.904 −0.624 0.927 −1

Sugarcane waste −0.868 −0.547 0.747 0.941 −1

Total biomass
emissions 0.811 0.986 −0.531 −0.495 −0.440 −1

Table 10. Correlation matrix between the AOD and open biomass burning emissions at Chiang Mai-1
in 2021.

Variables AOD
Open Biomass Burning Emissions

Forest Fire Corn Waste Rice Waste Sugarcane Waste Total Biomass Emission

AOD −1

Forest fire 0.857 −1

Corn waste 0.240 0.705 −1

Rice waste −0.472 0.048 0.729 −1

Sugarcane waste 0.270 0.653 0.821 0.639 −1

Total biomass
emissions 0.756 0.985 0.816 0.216 0.734 −1

Moreover, the density of both types of agriculture is concentrated in the lower-northern
region. However, the agricultural waste residues that occur do not correspond to periods
of air pollution or dry seasons, especially in the case of sugarcane. Sugarcane is often
harvested, including being burned for harvesting production before the crushing seasons,
typically from December to April [25,32]. This is similar to the burning in rice waste fields,
where the burning is usually at its peak in November, known as in-season rice. The rela-
tionship between the burning of agricultural waste in fields, which has less impact on AOD
values than forest fires, is similar to the pattern in another province in northern Thailand.
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3.5.2. NOX and SO2

This section shows the correlation between the amount of air emissions and air pollu-
tant data from Sentinel-5p because the concentration of air pollutants reported by the PCD
in Thailand is not available during the study period. Thus, the air monitoring data from
the Sentinel-5p are used instead of the data from the PCD. Furthermore, Sentinel-5p is one
of the satellites that was improved for monitoring and reporting the concentration of air
pollutants from the Tropospheric Monitoring Instrument (TROPOMI) sensor. Moreover,
data from Sentinel-5p are reported daily, ensuring the information is highly efficient and
up-to-date with the air pollution situation.

Tables 11–13 show the correlation between the monthly average NO2 and SO2 re-
ported by Sentinel-5p at the PCD air monitoring stations in Nakhon Sawan provinces and
emissions from agricultural waste residues, forest fires, total biomass emissions, and sugar
factories. The correlation matrix between SO2 and total biomass emissions indicated a very
weak correlation, with values of 0.49 in 2019, 0.35 in 2020, and 0.34 in 2021, respectively.
Furthermore, the correlation between NO2 and biomass burning emissions is unclear, in-
dicating an inverse correlation, with values of −0.53 in 2019, −0.91 in 2020, and −0.12 in
2021, respectively. Thus, the amount of open biomass burning and emissions from sugar
factories does not directly impact SO2 and NO2 concentrations.

Table 11. Correlation matrix between the AOD and open biomass burning emissions at Nakhon
Sawan in 2019.

Variables
Sentinel-5p Open Biomass Burning Emissions

SO2 NO2 Forest Fire Corn Waste Rice Waste Sugarcane Waste Factories Total

SO2 (Sentinel-5p) −1

NO2 (Sentinel-5p) −0.816 −1

Forest fire −0.206 0.582 −1

Corn waste −0.507 0.028 −0.737 −1

Rice waste 0.057 −0.455 −0.050 0.059 −1

Sugarcane waste −0.160 −0.041 −0.807 0.793 −0.463 −1

Factories 0.545 −0.281 0.616 −0.896 0.386 −0.914 −1

Total 0.489 −0.526 0.304 −0.562 0.778 −0.808 0.870 −1

Table 12. Correlation matrix between the AOD and open biomass burning emissions at Nakhon
Sawan in 2020.

Variables
Sentinel-5p Open Biomass Burning Emissions

SO2 NO2 Forest Fire Corn Waste Rice Waste Sugarcane Waste Factories Total

SO2 (Sentinel-5p) −1

NO2 (Sentinel-5p) −0.236 −1

Forest fire 0.115 0.099 −1

Corn waste 0.426 0.641 −0.331 −1

Rice waste −0.088 −0.937 0.000 −0.858 −1

Sugarcane waste 0.597 0.636 0.109 0.896 −0.851 −1

Factories 0.069 −0.947 −0.391 −0.566 0.899 −0.707 −1

Total 0.354 −0.910 −0.454 −0.308 0.752 −0.444 0.947 −1
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Table 13. Correlation matrix between the AOD and open biomass burning emissions at Nakhon
Sawan in 2021.

Variables
Sentinel-5p Open Biomass Burning Emissions

SO2 NO2 Forest Fire Corn Waste Rice Waste Sugarcane Waste Factories Total

SO2 (Sentinel-5p) −1

NO2 (Sentinel-5p) −0.769 −1

Forest fire 0.531 0.077 −1

Corn waste −0.149 −0.200 −0.774 −1

Rice waste −0.299 −0.325 −0.967 0.811 −1

Sugarcane waste −0.702 0.750 −0.359 0.484 0.174 −1

Factories 0.474 −0.290 0.667 −0.877 −0.589 −0.846 −1

Total 0.345 −0.120 0.698 −0.944 −0.662 −0.742 0.985 −1

The relationship between NOX and emission estimation is less evident than the associ-
ation between particulate matter and emission estimation, which showed similar results
in other provinces. This could be the case because other sources, like motor vehicles and
oil-burning industries, also contribute significantly or even greater amounts [25,62,63].

4. Discussion
4.1. The Assessment of Burned Areas by Using the GEE Platform

In the estimation, the RF algorithm had the highest accuracy in assessment. This result
corresponds with a study by Gholamrezaie et al. (2022) [19], which reported that the RF
algorithm achieved the highest accuracy, with a kappa coefficient of 0.90 and an overall
accuracy of 0.89. These results indicate that the burned area using the RF algorithm for
estimation was highly accurate and reliable. Moreover, numerous previous studies esti-
mated using the ML approach also showed that the RF algorithm has high accuracy [36–41].
Furthermore, this was observed in studies in Thailand focused on estimating using the
Normalized Burn Ratio (NBR) and Difference Normalized Burn Ratio (dNBR) with satellite
images [62–64]. Although the results showed similar accuracy, the processing steps were
time-consuming and involved loading satellite images. Thus, conducting large-scale as-
sessments, especially in regions like the northern area, can be challenging. The extent of
the burned area that can be assessed aligns with the report from the government sector
in Thailand. The amount of burned area in the assessment was found to be consistent
with the burned area report of GISTDA for the years 2019–2021 [65–67], which reported
that 2019 featured the greatest amount of burned area, particularly in Tak, Mae Hong Son,
and Lampang provinces, with burned areas of 2480.4, 2445.4, and 1635.4 km2, respectively.
However, the results from GISTDA are lower than those of this study. The differences
between the results are due to the spatial resolution of the satellite images used to estimate
the burned area: GISTDA used at-8 imagery with a resolution of 30 m, while this study
used Sentinel-2 images with a resolution of 20 m. In addition, the burned area from the
MCD64A1 products was lower than the burned area estimated in the study. This difference
is still caused by differences in the spatial resolution of the satellite images, in which the
MCD64A1 product has a spatial resolution of 500 m.

One of the reasons for the greatest burned area in 2019 was the El Niño year, which
caused lower average rainfall compared to standard years [68]. The average rainfall in 2019
was recorded at 1343.4 mm, marking it as the year with the lowest precipitation within
the 5 years of 2015–2019. In addition, the average temperature in 2019 recorded an annual
average of 28.1 degrees Celsius, which remained higher than the average temperature
during the previous 30-year period of 1981–2010. Due to the specific meteorological char-
acteristics experienced during that year, many burned areas resulted from open burning
activities. In contrast, the years 2020 and 2021 were influenced by the La Niña phenomenon,
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resulting in above-average rainfall. The precipitation was recorded as 1527.3 mm and
1759.3 mm, respectively, continuously increasing throughout the period. The higher pre-
cipitation levels significantly impact the atmospheric humidity and directly influence the
potential for further combustion. The increased moisture content in the air is a deterrent to
combustion, thereby reducing the occurrence and extent of burning activities. Furthermore,
COVID-19 developed into a global pandemic in 2020. This epidemic affected the economy,
especially agricultural demand. Lockdowns and travel restrictions to contain the epidemic
harmed imports and exports, especially agricultural products. Supply chain disruptions
and consumer behavior shifts exacerbated agricultural sector issues that year [57–61].

4.2. The Emissions from Open Biomass Burning

The air emissions during the assessment were consistent with previous studies, which
explain that the sources of air pollution affecting the upper north are primarily caused by
forest fires. In contrast, the lower north experiences pollution originating from agricultural
waste [5,46–48,69–71]. Furthermore, the direction of the increase or decrease in the emis-
sions was consistent with studies conducted by Nuthammachot et al. (2016) [31]. These
results indicate that Tak, Chiang Mai, and Mae Hong Son had the highest PM2.5 emissions
caused by forest fires. In addition, the estimated amount of emissions in this study was
higher than that of Jansakoo et al. (2022) [69]. Their study reported that the amount of
PM2.5 emissions emitted from forest fires was 1029 tons/year, which is 32.3% higher than
the results from this study. On the other hand, the amount of PM10 emitted was reported
as 961.3 tons/year, which was 52.6% lower than the results from this study. Furthermore,
the amount of emissions from agricultural residues in this study remains relatively higher
compared to the previous study [69]. However, a spatial consensus indicates that rice waste
residues were found to have the highest air emissions. The higher air emissions compared
to the previous study can be attributed to the data used in the assessment, specifically the
burned area used for calculating the amount of burned biomass. This resulted in a clear
difference from previous studies, particularly in terms of air emissions from agricultural
areas. Most previous studies primarily focused on estimating emissions based on the quan-
tity of agricultural products [48,70,71]. The use of yield to calculate the amount of burned
biomass is a common method for assessing air pollutant emissions in agriculture. However,
it is important to note that not all agricultural waste is burned. Agricultural waste can be
effectively processed and utilized for various advantageous purposes, including biomass
energy production, animal feed, and fertilizer production.

The measurement of air pollutant emissions resulting from open biomass burning
has emerged as a significant area of focus in environmental research, particularly in the
context of incorporating satellite imagery for evaluation. This study aligns with prior
research by examining the evaluation of emissions resulting from open biomass burning
using the measurement of burned area. The assessment primarily relied on burned area
data obtained from MODIS products, notably the MCD64A1 and MCD45A1 burned area
products [5,71]. Nevertheless, the assessment indicates that the quantity of emissions was
reduced compared to the findings of this study as a result of disparities in geographic
resolutions. The geographic resolution of the MODIS burned area product dataset is 500 m,
whereas the burned area calculated in this study, which was evaluated using Sentinel-2
satellite photos, has a greater resolution of 20 m. The study conducted by Junpen et al.
(2020) [26] aimed to estimate the quantity of air pollutant emissions resulting from open
biomass burning in Thailand, specifically in the Greater Mekong Subregion, during the
year 2015. The findings suggest that the air emissions observed in this study remain lower
compared to those reported in our study. This disparity can be attributed to the variation in
geographic resolution derived from satellite imagery. In addition to the factors mentioned
earlier, EFs contribute to the differences from previous studies. The availability of specific
EFs for Thailand is still limited. Therefore, researchers often select values from areas like the
study area, including studies conducted in countries like China and India [8,26,46–48,72].
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4.3. The Emissions from Indoor Biomass Burning

The last point is the amount of air emissions emitted from the processing in sugar
factories. The results showed that the air emissions from this assessment were lower
than those in studies by Janghathaikul et al. (2005) [73], which focused on sugar factories
in Nakhon Ratchasima in 2005. In their study, the annual emissions were reported as
76,634 tons of NOX. The reported assessment in this study was highest in 2021, with
1254.21 tons of NOX, but also lower than that in studies by Janghathaikul et al. (2005) [73],
with a reduction of 98.4% of NOX. One of the differences in the results is the location
of the factories: Janghathaikul et al. (2005) [73] studied Nakhon Ratchasima, located
in northeastern Thailand, the region with the most sugarcane plantations in Thailand.
Furthermore, when considering PM2.5 emissions, the highest emissions were in 2019,
with 3604.79 tons/year, which was lower than that reported by Sahu et al. (2015) [49],
who found that PM2.5 emissions were 444 Gg/year—more than double the results in this
study. Moreover, this difference is caused by the amount of sugarcane and bagasse used
in factories. The amount of bagasse in the studies by Sahu et al. (2015) [49] was higher
than in this study because of the difference in the location of the study area. Additionally,
one previous study on the size of the study area affected by the air emissions from sugar
factories was that by Figueiredo et al. (2010) [74], which focused on greenhouse gas
emissions and studies in Brazil. They found that the air emissions corresponded to the
amount of agricultural production, with 622 million tons in a single production year, which
is higher than the amount of sugarcane production in this study. These findings suggest a
significant correlation between agricultural production and air emissions.

On the other hand, the studies by Kawashima et al. (2015) [75] reported emissions
of 267 tons/year of PM2.5 and 20.5 tons/year of NOX. This result was lower than that in
this assessment by 85.9% and 98.4%, respectively. In addition, it was observed that studies
on this issue in Thailand are still limited; most studies mainly focus on the assessment of
the carbon footprint of sugar produced [76–78], and most industries indicate that green-
house gas emissions of around 80% are caused by the acquisition of raw materials and
approximately 15% are from processing in industrial plants. The acquisition includes the
requirements of the Ministry of Industry in Thailand, which mandates factories to install
unique tools and equipment to report air pollution from factory chimneys. This is one of
the reasons why studies on this issue are limited in Thailand.

4.4. Uncertainty

Previous research has demonstrated that various sources of inaccuracy and data
reliability (such as satellite products) significantly impact the uncertainty surrounding
wildfire discharge estimations. The fire point data used in this study are commonly
available for satellite products, and prior research has confirmed that their data have
improved small fire monitoring capabilities and shown good reliability. According to our
calculations, the average confidence in detecting fire points is not low, and the burned
area is 96.2% in northern Thailand. In addition to data reliability, other error sources can
affect the estimates’ accuracy. In addition, emission factors can vary significantly over time
and space, as they are affected by the fire type, the composition of the burned material,
combustion conditions, etc. Jin et al. (2022) [79] estimated this relative error to be between
1.2% and 65.6%.

5. Conclusions

This study quantified burned areas using GEE, Sentinel-2 imagery, and the ML tech-
nique, specifically the RF algorithm, to estimate air emissions from open biomass burning
in dry seasons from 2019 to 2021. Cohen’s kappa coefficient showed that the RF algo-
rithm has near-perfect evaluation agreement, with a score of 0.85. The year 2019 featured
the greatest burned area, at 88,465.27 km2, followed by 2020 and 2021 at 87,332.4 and
77,034.1 km2. Forest emissions peaked in March–April 2019 in upper-northern Thailand.
However, in lower-northern areas, air pollution from agricultural waste residue is unclear
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due to harvesting periods, unlike in upper-northern areas. Agro-industries such as sugar
factories employ sugarcane residue to generate heat and power, which pollutes the air. The
greatest air emissions from sugar factories were 547.9 tons of SO2, 2379.1 tons of NOX, and
3604.8 tons of PM2.5 in 2019, followed by 331.8 tons, 1440.5 tons, and 2182.6 tons in 2020.
The lowest air emissions were 310.83 tons of SO2, 1349.7 tons of NOX, and 2045.0 tons of
PM2.5 in 2021. The trend of the burnt area and emissions is uncertain due to meteorological
factors such as the El Nino year in 2019, which caused higher average temperatures and
lower average rainfall than normal, compared to the La Nina year in 2020–2021. Moreover,
the spread of COVID-19 in 2020 could have influenced the cessation of economic activities
in this area.
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Abbreviations
A glossary of the abbreviated terms used in this article.

Abbreviations Full Name
AOD Aerosol Optical Depth
API Application Programming Interface
B Biomass Density
BC Black Carbon
BL Biomass Load
CART Classification and Regression Trees algorithm
CC Combustion Completeness
CO Carbon Monoxide
DT Decision Tree Algorithm
EF Emission Factor
EI Emission Inventory
GEE Google Earth Engine
GIS Geographic Information System
GISTDA Geo-Informatics and Space Technology Development Agency
ML Machine Learning
NB Naive Bayes
NIR Near-Infrared
NMVOCs Non-Methane Volatile Organic Compound
NOX Nitrogen Oxides
OA Overall Accuracy
OC Organic Carbon
OCSB Office of the Cane and Sugar Board’s
PM Particulate Matter
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PM0.1 Ultrafine Particulate Matter
PM10-2.5 Coarse Particulate Matter
PM2.5 Fine Particulate Matter
RF Random Forest Algorithm
SO2 Sulfur Dioxide
SVM Support Vector Machine
SWIR Shortwave Infrared
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