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Abstract: This paper investigates the optimization of a non-traditional vibration absorber for simul-
taneous vibration suppression and energy harvesting. Unlike a traditional vibration absorber, the
non-traditional vibration absorber has its damper connected between the absorber mass and the base.
An electromagnetic energy harvester is used as a tunable absorber damper. This non-traditional
vibration absorber is attached to a primary system that is subjected to random base excitation. An
analytical study is conducted by assuming that the base excitation is white noise. In terms of vibration
suppression, the objective of the optimization is to minimize the power dissipated by the primary
damper and maximize the power dissipated by the absorber damper. It is found that when the
primary system is undamped, the power dissipated by the absorber damper remains a constant that
is related to the mass ratio. The higher the mass ratio, the higher the power dissipated. When the
primary system is damped, the minimization of the power dissipated by the primary damping is
equivalent to the maximization of the power dissipated by the absorber damper. The existence of the
optimum solutions depends on both the mass ratio and the primary damping ratio. In terms of energy
harvesting, the objective of optimization is to maximize the power harvested by the load resistor.
It is found that for a given mass ratio and primary damping ratio, the optimum frequency tuning
ratio required to maximize vibration suppression is slightly higher than that required to maximize
the harvested power. The trade-off issue between vibration suppression and energy harvesting is
investigated. An apparatus is developed to allow frequency tuning and damping tuning. Both the
numerical simulation and experimental study with band-limited white noise validate the general
trends revealed in the analytical study.

Keywords: non-traditional vibration absorber; vibration suppression; electromagnetic damper;
energy harvesting

1. Introduction

Machines or structures are often subjected to vibrations, e.g., unbalanced rotating
machines, vehicles on rough terrains, and high-rise buildings under wind or earthquake
excitation. Such vibrations are undesirable because they generate noises, cause discomforts,
result in fatigue failures and structural damages, etc. An undamped vibration absorber con-
sists of a mass and spring. When a single degree-of-freedom primary system is subjected to
a harmonic excitation, its steady state response can be completely suppressed by attaching
the undamped vibration absorber that meets the tuning condition. However, the undamped
vibration absorber has a narrow operating band, and its performance deteriorates signifi-
cantly when the tuning condition is not satisfied. A damper can be added to form a damped
vibration absorber or tuned mass damper (TMD) in order to improve the performance
robustness. Traditionally a damper is added between the primary mass and absorber mass,
as shown in Figure 1a where m, k, and c are the mass, stiffness, and damping coefficient
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of the primary system, respectively, ma, ka, and ca are the mass, stiffness, and damping
coefficient of the absorber system, respectively, y is the displacement of the base, x and xa
are the displacement of the primary mass and absorber mass relative to the base. Figure 1b
shows a non-traditional way in which a damper is connected between the absorber mass
and the base. The former is often referred to as “model A”, while the latter “model B”.
Although model B is not as common as model A, it offers some advantages. For example,
when the damper requires a certain stroke space in a tight space, the implementation of
model B is easier than that of model A. For a pendulum-type TMD, model B may be the
only viable option. When a TMD is used to control the resonance of a vibration isolator,
placing the damper between the absorber mass and base reduces the amount of added
mass to the isolated system.
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The two key parameters to design a TMD are the frequency tuning ratio β and absorber
damping ratio ζa. The optimum design of a TMD intends to determine the best values
of these two parameters in order to minimize the chosen objective function. Since the
famous “fixed-points” theory was developed by Den Hartog [1], the optimum design of
model A has been studied extensively. The study reported by Zilletti et al. [2] summarized
the results. In what follows, the optimum design of model B is briefly reviewed. Ren [3]
investigated the optimum design of model B attached to an undamped primary system
subjected to a direct harmonic force excitation. Using the classical “fixed-points” theory, the
optimum parameters were derived to minimize the maximum amplitude of the normalized
displacement frequency response function (FRF). These results were later verified by
Liu and Liu [4] using a more straightforward approach. Wong and Cheung [5] focused
on the case of model B attached to an undamped primary system under a harmonic
ground excitation. The objective function was chosen as the ratio between the absolute
amplitude of the primary mass and that of the base harmonic motion. The same authors [6]
further considered model B attached to an undamped primary system subjected to a direct
harmonic force excitation. The objective function was defined as the ratio of the amplitude
of the primary mass’s absolute velocity and the amplitude of the base’s velocity. Later,
they [7] investigated the optimum design of model B attached to an undamped primary
system subjected to random force excitation. The objective function was chosen to be
the mean squared normalized FRF of the primary mass. In a follow-up study [8], the
same authors revisited the problem that was first investigated by Ren [3] and Liu and
Liu [4]. They showed that for harmonic force excitation, the optimum model B based on
the “fixed-points” theory does not lead to the minimum resonant amplitude of the primary
mass. They proposed a new optimum procedure that resulted in the optimum parameters
that yield a lower maximum amplitude response.

Liu and Coppola [9] dealt with the case of model B attached to a damped primary
system subjected to a direct force excitation. The objective function was the normalized
displacement FRF. The approximate frequency tuning ratio was derived based on the “fixed-
points” theory. The optimum damping ratio was found numerically. The same problem was
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investigated by Anh and Nguyen [10]. The damped primary system was approximately
replaced by an equivalent undamped one to apply the “fixed-points” theory. The analytical
expressions for the optimum parameters were found. Xiang and Nishitani [11] addressed
the issue of model B attached to a damped primary system subjected to a harmonic ground
motion. The objective function was defined as the normalized absolute amplitude of the
primary mass’s acceleration. The design procedure was proposed such that the vibration
suppression covers a wider frequency range than a traditional vibration absorber. The
same authors [12] tackled the optimum design of the same model subjected to ground
motion using the displacement coordinates relative to the ground. For harmonic ground
excitation, the performance index was set as the maximum FRF magnitude of the relative
displacement of the primary structure with respect to the ground acceleration and the
derivation was based on the “fixed-points” theory. For transient responses, the stability
maximization criterion (SMC) was used as the objective function for optimization. They
also presented a summary of the previous study [13]. Notably, an experimental verification
was conducted with a pendulum-type model B. The effect of frequency detuning on the
performance of model B was investigated by Araz [14]. The numerical study showed that
model B with a high mass ratio provides better robustness to the change in the target
frequency ratio than model A.

Significant research has been conducted to harvest energy from ambient vibrations.
Common practices of vibration energy harvesting include the use of piezoelectric mate-
rials [15] or electromagnetic devices [16]. As a typical energy harvester has a structure
similar to a TMD, it is desirable to use it for a dual goal: vibration suppression (VS) and
energy harvesting (EH). The following literature review will focus on simultaneous VS
and EH using TMD. Ouled Chtiba et al. [17] optimized the locations, masses, stiffnesses,
and damping coefficients of a set of TMDs to minimize the total energy of the primary
structure. Later, they [18] proposed an optimal design for a set of TMDs incorporated with
piezoelectric devices. Their analytical results were verified by computer simulation. A
survey of control strategies for VS and EH via piezoceramics was presented by Wang and
Inman [19]. A TMD proposed by Tang and Zuo [20] consisted of a rotary motor with gears
and a rack-pinion mechanism. By connecting the output of the motor to a resistive load,
the system functions as an electromagnetic damper. The study reported by Harne [21] com-
pared the performance of an electromagnetic energy harvester and that of a piezoelectric
energy harvester when each of them was coupled to a mass-spring-damper system. The
classical vibration absorber analysis was extended by including electromechanical damping
and stiffening effects introduced by the energy harvester. The EH TMD proposed by Ali
and Adhikari [22] consisted of a mass–spring–damper system coupled with a piezoelectric
element. The “fixed-points” theory was approximately applied to find the optimum pa-
rameters. Simultaneous VS and EH were investigated by Brennan et al. [23]. Two types
of vibration were considered: broadband excitation and single frequency excitation. The
performances of VS and EH were analyzed by using several criteria. The electromagnetic
vibration absorber proposed by Gonzalez-Buelga et al. [24] possessed both energy recovery
and frequency tuning capabilities. An energy regenerative TMD reported by Shen et al. [25]
consisted of a pendulum, an electromagnetic damper, and an EH circuit. A hybrid energy
harvester was proposed [22,26] in which a piezoelectric harvester was attached between the
primary mass and the ground while an electromagnetic harvester was between the absorber
mass and ground. However, the model for the electromagnetic absorber still belonged
to model A as the damping force of the electromagnetic harvester was proportional to
the displacement of the absorber relative to the primary mass. An experimental study
was conducted by Zoka and Afsharfard [27] with a so-called double stiffness vibration
suppressor and energy harvester. Multi-objective optimization was carried out by defining
a combined objective function with the concept of the perfection rate. A novel geometric
approach was proposed [28] for the optimal design of simultaneous VS and EH of TMDs.
Kecik and Mitura [29] developed a pendulum TMD equipped with a magnetic rotatory
harvester and a maglev harvester. The effectiveness of EH and VS of both harvesters was
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compared. The TMD proposed by Ali and Adhikari [22] was used to study parametric
uncertainty and random excitation [30]. For the random excitation, the mean squared value
of normalized primary mass relative displacement was used as the objective function for
optimum VS and the mean squared value of normalized generated voltage was used as the
objective function for optimum EH.

It should be noted that the aforementioned studies are based on model A. Recently an
electromagnetic model B was developed for the dual purpose [31]. The device was attached
to a primary system subjected to a harmonic base excitation. The relative displacement
transmissibility ratio was chosen to be the objective function for optimum VS, while the
ratio of the harvested power amplitude to the input power amplitude was chosen to be the
objective function for optimum EH. The same device was used in a primary system under
initial disturbance [32]. The SMC was employed as the objective function for optimum VS,
while the ratio of the harvested energy over the input energy was used as the objective
function for optimum EH. The difference between the present study and these two reported
ones is two-fold. First, the type of excitation is different as the present study deals with
random base excitation. Second, the objective functions for optimization are different. The
objective for VS is to minimize the power dissipated by the primary damping and maximize
the power dissipated by the absorber damping. The objective for EH is to maximize the
harvested power by the load resistor. To the best of our knowledge, the novelty of the
present study lies in the three aspects. First, model B, other than model A, is used to achieve
simultaneous VS and EH under random ground excitation. Second, the optimum criteria
are based on both VS and EH. Third, as the model under consideration is defined using the
relative coordinates and the mean squared relative velocity of the primary mass is used as
the objective function, the optimum results are different from those reported by Cheung
and Wong [8].

The remainder of the paper is organized as follows. Section 2 addresses the optimiza-
tion of a model B TMD for VS. Section 3 discusses optimization of a model B TMD for EH.
Section 4 presents result validation using numerical simulation and experiment. Section 5
draws the conclusion of this study.

2. Optimization of a Non-Traditional TMD for Vibration Suppression

The equations of motion for model B shown in Figure 1b are given by:

..
x +

(
ω2

p + µω2
a

)
x− µω2

a xa + 2ζpωp
·
x = − ..

y
..
xa + 2ζaωp

·
xa + ω2

a xa −ω2
a x = − ..

y
(1)

where

ωp =

√
k
m

, ωa =

√
ka

ma
, µ =

ma

m
, ζ p =

c
2mωp

, ζa =
ca

2maωp

The notations ωp and ωa are the natural frequencies of the primary system and
absorber system, respectively, µ is referred to as the mass ratio, ζp and ζa are the primary
damping ratio and absorber damping ratio, respectively. To find the velocity FRFs of the
primary mass and absorber mass, the ground motion is first assumed to be harmonic or
y = Ye jωt where j =

√
−1, Y and ω are the amplitude and frequency of the base motion,

respectively. Then, the steady-state responses of the primary mass and TMD’s mass
are defined by x = Xe jωt and xa= Xae jωt, respectively. Substituting y, x, and xa into
Equation (1) results in

ω2
p

[
1− r2+µβ2+j2ζ pr −µβ2

−β2 β2−r2+j2ζar

][
X
Xa

]
=

[
1
1

]
ω2Y (2)

where r = ω/ωp and β = ωa /ωp are referred to as the frequency ratio and frequency
tuning ratio, respectively. Solving Equation (2) results in
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X =
(1 + µ)β2−r2+j2ζar

ω2
p

[
(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r

2
]
+j2r[(β 2−r2)ζ p+(1− r 2+µβ2)ζa]

ω2Y (3)

and

Xa =
(1 + µ)β2+1− r2+j2ζ pr

ω2
p

[
(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r

2
]
+j2r[(β 2−r2)ζ p+(1− r 2+µβ2)ζa]

ω2Y (4)

As the steady-state relative velocities are given by
·
x = jωXejωt = Vejωt and

·
xa = jωXaejωt = Vaejωt, the amplitudes of the steady-state relative velocities are defined by

V =
−2ζar2+j[(1 + µ)β 2−r2]r

ωp

[
(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r

2
]
+j2r[(β 2−r2)ζ p+(1− r 2+µβ2)ζa]

ω2Y (5)

and

Va =
−2ζ pr2+j[(1 + µ)β 2+1− r2]r

ωp

[
(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r

2
]
+j2r[(β 2−r2)ζ p+(1− r 2+µβ2)ζa]

ω2Y (6)

The velocity FRF of the primary mass is defined by

G(r) =
V

ω2Y/ωp
=

−2ζar2+jr[(1 + µ)β 2−r2][
(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r

2
]
+2jr[(β 2−r2)ζ p+(1 + µβ 2−r2)ζa]

(7)

and the velocity FRF of the absorber mass is defined by

Ga(r) =
Va

ω2Y/ωp
=

−2ζ pr2+jr[(1 + µ)β 2+1− r2]

[(1− r 2)(β 2−r2)− (µβ 2+4ζ pζa)r
2]+2jµr[(β 2−r2)ζ p+(1 + µβ 2−r2)ζa]

(8)

The power spectral density (PSD) function of the base excitation is defined as

S(ω) =
1

2π
|A(ω)|2 (9)

where A(ω) is the Fourier transform of the base acceleration function [33]. Now, assume
that the ground motion is white noise with a uniform PSD function of S0. To measure the
response magnitudes, the mean squared relative velocity [2] is used. The mean squared
relative velocity E

(
V2) of the primary mass is defined by

E(V 2) =
∫ ∞

−∞
V2dω =

S0

ωp

∫ ∞

−∞
|G(r)|2dr (10)

and the mean squared relative velocity E
(
V2

a
)

of the absorber mass is defined by

E(V 2
a) =

∫ ∞

−∞
V2

a dω =
S0

ωp

∫ ∞

−∞
|Ga(r)|2dr (11)

For this study, two performance indices are defined as below

I1 =
1
2

c
E
[
V2]

2πS0m
(12)
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and

I2 =
1
2

ca
E
[
V2

a
]

2πS0m
(13)

In the above equations, the constant 2πS0m is introduced to ensure the indices are
dimensionless. Apparently, the first index I1 measures the power dissipated by the pri-
mary damping, while the second index I2 the power dissipated by the absorber damping.
Substituting Equation (10) into Equation (12) results in

I1 =
ζp

2π

∫ ∞

−∞
|G(r)|2dr (14)

Substituting Equation (11) into Equation (13) yields

I2 =
µζa
2π

∫ ∞

−∞
|Ga(r)|2dr (15)

Following the procedures given by Newland [34], the integrals in Equations (14) and (15)
can be evaluated. Thus, the defined indices can be expressed explicitly as

I1 =
ζp

4
A1β4+A2β2+A3

B1β4+B2β2+B3
(16)

I2 =
ζaµ

4
A1β4+A4β2+A5

B1β4+B2β2+B3
(17)

The constants in Equations (16) and (17) are given in Appendix A.
First, an undamped primary system is considered or ζp= 0. In this case, the indices

defined in Equations (16) and (17) become

I1= 0 (18)

I2 =
µ + 1

4
(19)

Equation (18) is self-explanatory as no power is dissipated by a damping-free primary
system. Equation (19) indicates that the power dissipated by the absorber damper is
constant. This can be explained by the energy balance. When no damping exists in the
primary system, the input power equals to the power dissipated by the absorber damping.
The input power is constant as the excitation is assumed to be ideally white. As a matter of
fact, if both ζp and ζa are not zero, the sum of I1 and I2 is also equal to the constant given
by Equation (19), as proven in Appendix A.

To investigate the optimum frequency tuning ratio β∗ and damping ratio ζ∗a that mini-
mizes the mean squared relative velocity of the primary mass, the following index is defined

Ip =
1

2π

∫ ∞

−∞
|G|2dr =

1
4

(1 + µ)β4+2
(

2µζ2
a−1

)
β2+4ζ2

a+1

µζaβ4 (20)

The following two conditions should be satisfied

∂Ip

∂β
= 0 (21)

∂Ip

∂ζa
= 0 (22)

which result in (
2µβ2+4

)
ζ2

a−β2+1 = 0 (23)
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4
(

µβ2+1
)

ζ2
a − (1 + µ)β4+2β2−1 = 0 (24)

Equation (23) yields

ζa =

√
β2−1

2µβ2+4
, β > 1 (25)

Substituting Equation (25) into Equation (24) results in

(1 + µ)µβ6+2(1− µ)β4+3(µ− 2)β2+4 = 0 (26)

For Equation (26) to have real positive roots, the following condition needs to be satisfied

∆ = 4− 27µ5−72µ4−184µ3−87µ2−12µ > 0 (27)

which holds true only when µ < 0.142. Table 1 lists the optimum parameters obtained by
solving Equation (26) first and Equation (25) next. The results show that with an increase in the
mass ratio, the optimum frequency tuning ratio and damping ratio need to increase as well.

Table 1. The optimum parameters that minimize Ip defined by Equation (20).

µ β* ζ*
a Ip

0.05 1.028 0.119 4.466

0.06 1.035 0.132 4.074

0.07 1.043 0.145 3.768

0.08 1.051 0.158 3.521

0.09 1.059 0.171 3.316

0.10 1.069 0.184 3.141

0.11 1.081 0.199 2.989

0.12 1.095 0.215 2.855

0.13 1.113 0.235 2.736

0.14 1.146 0.268 2.626

Figure 2 shows the contours (solid line) of Ip and the solution (dashed line) of Equation
(25) when µ = 0.05. The local minimum point is marked by a box, while the local maximum
point is marked by a circle. As shown in the figure, the variation in the mean squared
relative velocity is relatively small at any point on the dashed line. A similar phenomenon
was observed when the mean squared displacement was minimized for model B subjected
to a direct force excitation [7]. Figure 3 shows the results of µ = 0.15. In this case, no local
minimum point existed as Equation (27) is no longer satisfied.

Now the damped primary system is considered. For the sake of VS, the power dissi-
pated by the primary damping should be minimized, while the power dissipated by the
absorber damping should be maximized. Thus, the following conditions must be satisfied,

∂I1

∂β
= 0,

∂I1

∂ζa
= 0 (28)

∂I2

∂β
= 0,

∂I2

∂ζa
= 0 (29)

Substituting Equation (16) into Equation (28) yields,(
µ2ζ2

p + 2µζpζa − 2µ2ζ3
a + 2µ2ζ3

pζa + ζ2
a − 2µζ4

a + 2µζ4
p − 2ζpζ3

a + 2ζ3
pζa

)
β4 +

(
µζ2

p + 4ζ2
pζ2

a − 4µζpζ3
a + ζpζa − µζpζa−

ζ2
a − 4ζ4

a + 4µζ3
pζa

)
β2 − ζpζa − 4ζ2

pζ2
a − 4ζpζ3

a = 0
(30)
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(
−4β2−4µβ4

)
ζ4

a +
(

8ζ pµβ4 − 16ζ p − 24ζ pµβ2 + 8ζ pβ2 − 8ζ pµ2β4
)

ζ3
a +

(
β6 + 8ζ2

pµ2β4 + µβ6 − 8ζ2
p − 2β4 + 4ζ2

pβ4+

β2)ζ2
a +

(
2ζ pµβ6 + 8ζ3

pµβ2 + 8ζ3
pµ2β4 + 2ζ pµ2β6 + 8ζ3

pµβ4
)

ζa + ζ2
pµ2β6 + 4ζ4

pµβ4 + ζ2
pµβ2 + ζ2

pµ3β6 + 2ζ2
pµ2β4 = 0

(31)
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∂I2
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∂I2
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2 + 2µζpζa – 2µ2ζa

3 + 2µ2ζp
3ζa + ζa

2 – 2µζa
4 + 2µζp
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2 + 4ζp
2ζa

2 – 4µζpζa
3 + ζpζa – µζpζa – 

ζa
2 – 4ζa

4 + 4µζp
3ζa)β

2 – ζpζa – 4ζp
2ζa

2 – 4ζpζa
3 = 0 

(30)

(–4β2 – 4µβ4)ζa
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3 + (β6 + 8ζp

2µ2β4 + µβ6 – 8ζp
2 – 2β4 + 4ζp

2β4 + 
β2)ζa

2 + (2ζpµβ6 + 8ζp
3µβ2 + 8ζp

3µ2β4 + 2ζpµ2β6 + 8ζp
3µβ4)ζa + ζp

2µ2β6 + 4ζp
4µβ4 + ζp

2µβ2 + ζp
2µ3β6 + 2ζp

2µ2β4 = 0 
(31)
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Figure 3. Contour plot of Ip superimposed with the solution (black dashed line) of Equation (25)
when µ = 0.15.

Substituting Equation (17) into Equation (29) yields the same set of equations. This
indicates that minimizing the power dissipated by the primary damping is equivalent
to maximizing the power dissipated by the absorber damping for the same set of µ and
ζp. The simultaneous solution of the above equations for β and ζa can be mathematically
challenging. In this study, a different approach was employed. When a set of the values of
µ and ζp is given, a real positive β value can be numerically obtained by solving Equation
(30) by specifying an ζa value. By varying the ζa value incrementally, this procedure was
repeated for the same set of the values of µ and ζp. Eventually, the relationship of ζa verses
β could be established. Using the same set of µ and ζp, the relationship of β verses ζa could
be established by solving Equation (31) by specifying a β value. Figure 4 shows the contour
plot of I1 and the solutions of Equations (30) and (31) when µ = 0.05 and ζp= 0.05. The two
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solutions intersected at two locations. The intersection marked by a box is a local minimum
point, while the intersection marked by a circle is a local maximum point.
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Figure 5 shows the results for the case of µ = 0.15 and ζp= 0.05. Now, the two
curves did not intersect one another, indicating that a local minimum did not exist. Table 2
lists the optimum parameters for the two different primary damping ratios. For a fixed
primary damping ratio, the optimum frequency tuning ratio and absorber damping ratio
increased with an increase in the mass ratio. This indicates that higher damping is required
to dissipate the energy if a larger mass ratio is used. It can also be seen that for a fixed
mass ratio, a higher frequency tuning ratio and damping ratio were required for a system
with a smaller primary damping ratio. This is expected as there is more energy required
to be dissipated by the absorber damper. No optimum solution existed when µ > 0.127
for the case of ζp= 0.05 while no optimum solution existed when µ > 0.131 for the case of
ζp= 0.005.
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Table 2. The optimum parameters for VS and the corresponding optimum I1 values when ζp= 0.05
or ζp= 0.005.

ζp=0.05 ζp=0.005

µ β* ζ*
a I*

1 β* ζ*
a I*

1

0.05 1.021 0.118 0.131 1.028 0.119 0.021

0.06 1.027 0.132 0.125 1.035 0.132 0.019

0.07 1.034 0.145 0.119 1.042 0.145 0.018

0.08 1.042 0.158 0.114 1.050 0.158 0.017

0.09 1.051 0.171 0.110 1.059 0.171 0.016

0.10 1.062 0.185 0.106 1.069 0.185 0.015

0.11 1.075 0.201 0.103 1.081 0.199 0.014

0.12 1.092 0.220 0.100 1.095 0.216 0.014

0.13 – – – 1.114 0.236 0.013

The sensitivity of I1 to the detuning of the frequency tuning ratio β∗ or the absorber
damping ratio ζ∗a was investigated. Two sets of the optimum parameter values correspond-
ing to µ = 0.05 and µ = 0.10 were examined. By fixing the mass ratio as µ = 0.05 or
µ = 0.10, the optimum frequency tuning ratio β∗ or ζ∗a was varied by ±10%, respectively.
The variability is measured by

∆I1 =
I1 − I∗1

I∗1
×100% (32)

where I1 is the value responding to the parameter set with one detuned parameter. Table 3
lists the results. Three observations can be drawn. First, all variations were positive no matter
whether the optimum parameter was increased or decreased. This further validated that the
optimum frequency tuning ratio and the optimum absorber damping ratio yield a minimum
I1 value. Second, the I1 value was more sensitive to the variation in the frequency tuning ratio
than to the variation in the absorber damping ratio. This is understandable as the frequency
tuning ratio is the key parameter that affects the functionality of the vibration absorber. Third,
the I1 value was more sensitive to detuning if the primary damping was low. This can be
explained by the fact that high primary damping facilitates the energy dissipation.

Table 3. Variation in I1 when β∗ or ζ∗a is varied by ±10%.

ζp=0.05 ζp=0.005

µ β ζa ∆I1 (%) β ζa ∆I1 (%)

0.05 1.123 0.118 7.9 1.131 0.119 23.02

0.05 0.919 0.118 11.0 0.925 0.119 40.08

0.05 1.021 0.130 0.19 1.028 0.131 0.41

0.05 1.021 0.107 0.23 1.028 0.107 0.50

0.10 1.115 0.185 4.91 1.123 0.185 10.26

0.10 1.009 0.185 7.50 1.016 0.185 18.29

0.10 1.062 0.195 0.24 1.069 0.194 0.42

0.10 1.062 0.176 0.29 1.069 0.175 0.52
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3. Optimization of a Non-Traditional TMD for Energy Harvesting

In this section, optimization of a non-traditional TMD for EH is considered. Assum-
ing that the absorber damper is an electromagnetic energy harvester similar to the one
employed by Yuan et al. [31], its damping coefficient can be approximated by

ca =
Θ2

2Rcoil+Rload
(33)

where Θ is the transduction factor, Rcoil is the resistance of one coil, and Rload is the resis-
tance of the load resistor. Equation (33) indicates that the absorber’s damping coefficient is
inversely proportional to the load resistance for a given electromagnetic energy harvester.
The instantaneous power dissipated by the absorber damper can be computed by

pe(t) = ca
·
x

2
a(t) =

Θ2

2Rcoil + Rload

·
x

2
a(t) (34)

On the other hand, the instantaneous power harvested by the load resistor is given by

pload(t) = Rloadi2(t) (35)

where i is the current of the circuit. The inductance of the coils is neglected for simplicity [32].
With this condition, the current is related to the absorber mass’s velocity relative to the
base, i.e.,

i =
Θ

2Rcoil + Rload

·
xa (36)

Substituting Equation (36) into Equation (35) yields

pload(t) =
Rload

2Rcoil + Rload
ca
·
x

2
a(t) (37)

A term can be defined as follows

f (R load) =
pload(t)

pe(t)
=

Rload
2Rcoil+Rload

(38)

This term represents the percentage of power available for harvesting from the power
dissipated by the electromagnetic energy harvester. Equation (38) shows that an increase in
the load resistance results in an increase in the harvested power percentage. This conflicts
with the goal of VS that requires high damping by lowering load resistance. Apparently,
there is a trade-off between VS and EH.

Based on Equations (35) and (36), the accumulated energy harvested by the load
resistor is given by

Eload =
Rload

2Rcoil + Rload
ca

∫ ∞

0

·
x

2
a(t)dt (39)

Comparing Equation (39) with Equation (11) indicates that the following index can be
used to measure the EH efficiency,

I3 =
Rload

2Rcoil+Rload

µζa
2π

∫ ∞

−∞
|Ga|2dr =

Rload
2Rcoil+Rload

I2 (40)

Numerical investigations were conducted with the following system parameters:
m = 0.34 kg, fp= 13.7 Hz, Θ = 2.596 Tm, and Rcoil= 2.3 Ω, where fp= ωp/(2π). Figure 6
shows the contours of I2 and the contours of I3 for the case of µ = 0.05 and ζp= 0.05. The
solutions of Equations (30) and (31) were also given where their intersection marked by a
box was a local maximum point for I2 that corresponded to β∗= 1.020 and R∗load= 15.0 Ω. In
Figure 6b, a local maximum of I3 is marked by an asterisk and corresponded to β∗= 0.9942
and R∗load= 27.5 Ω. This confirms the trade-off issue mentioned above. Figure 7 shows the
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results for the case of µ = 0.05 and ζp= 0.005. Now the optimum parameters to maximize
I2 became β∗= 1.027 and R∗load= 15.0 Ω, while the optimum parameters to maximize I3
became β∗= 1.000 and R∗load= 52.5 Ω. With a decrease in the primary damping ratio, the
energy dissipated by the absorber damping increases, and the load resistance should be
reduced in order to reduce the energy consumed by the coil resistance.
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Table 4 lists the optimum parameters that maximized the index I3 for the two differ-
ent primary damping ratios. It can be seen that the frequency tuning ratio varied little
regardless of the mass ratio and primary damping ratio. For a fixed primary damping
ratio, the optimum load resistance decreased with an increase in the mass ratio. For a fixed
mass ratio, the optimum load resistance increased with a decrease in the primary damping
ratio. By increasing µ, one can continue to find the optimum parameters that maximize I3.
For example, when µ = 0.25, the optimum solutions became β∗= 0.83 and R∗load= 12.5 Ω.
However, a local maximum no longer existed for I2.
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Table 4. The optimum parameters for EH when ζp= 0.05.

ζp=0.05 ζp=0.005

µ β* R*
load(Ω)/ζ*

a β* R*
load(Ω)/ζ*

a

0.05 0.994 27.5/0.072 1.000 52.5/0.040

0.06 0.989 23.3/0.069 0.999 46.7/0.037

0.07 0.984 20.0/0.067 0.998 42.5/0.035

0.08 0.978 18.3/0.063 0.996 40.0/0.032

0.09 0.972 16.7/0.060 0.995 37.5/0.030

0.10 0.965 15.8/0.056 0.993 35.8/0.028

0.11 0.958 15.0/0.053 0.992 34.2/0.027

0.12 0.951 14.2/0.051 0.990 33.3/0.025

0.13 0.945 13.3/0.049 0.988 31.7/0.024

Figure 8 shows the results for the case of µ = 0.08 and ζp= 0.05. As indicated by a box
in Figure 8a, the optimum solution in terms of VS became β∗= 1.05 and R∗load= 4.167 Ω.
This indicates that with a higher mass ratio, a higher absorber damping ratio or a lower
load resistance is required to achieve a greater amount of the dissipated power. However,
indicated by an asterisk in Figure 8b, the optimum solution in terms of EH became β∗= 0.98
and the load resistance of R∗load= 18.333 Ω. Now the trade-off between VS and EH becomes
more apparent. Reducing the load resistance enhances VS and compromises EH as more
energy is dissipated by the coil resistance.
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On the other hand, an increase in the primary damping had little effect on the trade-off
situation. Figure 9 shows for the case of µ = 0.08 and ζp= 0.15. The optimum solution
in terms of VS became β∗= 1.003, R∗load= 5.0 Ω, I2= 0.0771, and I3= 0.0402. The optimum
solution in terms of EH became β∗= 0.913 and R∗load= 18.333 Ω, I2= 0.0689, and I3= 0.0551.
The maximum I2 and I3 values were much smaller than those in Table 4, indicating that a
significant portion of the energy was already dissipated by the primary damping.
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Figure 9. Contour plots of I2 (a) and I3 (b) superimposed with Equation (30)’s solution (black dashed
line) and Equation (31)’s solution (red dotted line) when µ = 0.08 and ζp= 0.15.

4. Validation by Simulation and Experiment with the Band-Limited White Noise

It is not possible to validate the optimum results obtained in Sections 2 and 3 as they
are based on an ideal white noise excitation. Using the band-limited white noise base
motion, both the numerical simulation and experiment were conducted to validate the
general trends revealed in Sections 2 and 3. For this purpose, an apparatus was developed.
Figure 10a shows the schematic of the developed apparatus, while in Figure 10b, a photo of
the experimental set-up is shown. The primary system consisted of a 3-D printed block
used as the primary mass and four steel plates used as the primary spring. The primary
system was clamped to a base plate that was fastened to a slip table. The vibration absorber
consisted of an aluminum cantilever beam whose free end was attached by a pair of
magnets. A portion of each of the magnets moved inside a coil that was held to the fixed
stand. Each pair of the magnets and coil formed an electromagnetic energy harvester. As
the coils were stationary with respect to the base plate, such configuration resulted in a
model B TMD. The magnets and coils were identical to those employed by Yuan et al. [31].
The output leads of the two coils connected in series were fed to the terminals of a resistance
substitution box (ELENCO RS-500) that acted as a variable resistive load for the energy
harvester. A portion of the cantilever beam was sandwiched between two pieces of 3-D
printed plates and was then inserted into the primary block to create a clamed end. By
adjusting the length of the 3-D printed plates below the primary block, the length of the
cantilever beam was changed so that the frequency tuning ratio could be varied. The
relationship between the natural frequency of the TMD and the length of the cantilever
beam was obtained by curve-fitting the experimental results,

fa= 18.5118− 5.2048× 10−2L− 1.1139× 10−3L2+5.8917× 10−6L3 (41)

where L is the free length of the cantilever beam in millimeters. The length L could be varied
from 80 mm to 115 mm that corresponded to 10.327 ≥ fa≥ 6.662 Hz. Two different mass
ratios of µ = 0.154 and µ = 0.050 were considered. Reducing the mass ratio was achieved
by adding additional weights to the primary mass block. Table 5 lists the values of the key
parameters for the experimental system. Table 6 lists the cantilever beam lengths and their
corresponding β values. The β values used in the experiments are marked in blue.
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Figure 10. (a) schematic of the apparatus; (b) photo of the experimental set-up.

Table 5. The parameter values of the experimental system.

Name Symbol Value

Mass ratio µ 0.050 0.154

Primary mass m 0.957 kg 0.312 kg

Primary stiffness k 2125.173 N/m 931.223 N/m

Primary natural frequency fp 7.500 Hz 8.695 Hz

Primary damping ratio ζp 0.0056 0.0086

Absorber mass ma 0.048 kg

Transduction factor Θ 2.596 Tm

Resistance of coil Rcoil 2.3 Ω

Table 6. Different beam lengths and their corresponding frequency tuning ratios.

Beam Length (mm) fa (Hz) β (µ = 0.050) β (µ = 0.154)

115 6.662 0.888 0.766

111.5 6.996 0.933 0.805

108 7.329 0.977 0.843

104.5 7.662 1.022 0.881

101 7.995 1.066 0.920

97.5 8.327 1.110 0.958

94 8.661 1.155 0.996

90.5 8.994 1.200 1.034

87 9.399 1.253 1.081

83.5 9.557 1.274 1.099

80 10.327 1.377 1.188

Figure 11 shows a flow chart of the experimental system. The shaker system (B&K,
2809) with a slip table was driven by a power amplifier (B&K, 2718). An accelerometer
(B&K, 4383) was mounted on the slip table to measure the acceleration of the base. Three
Laser distance sensors (Wenglor, CP24MHT80) were used to measure the displacements
of the base, the primary mass, and the absorber mass, respectively. A desktop computer
equipped with a data acquisition board (dSPACE, dS1104) was used to output the excitation
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signal to the power amplifier and collect signals of all the sensors. A Simulink model was
developed and downloaded to dSPACE ControlDesk software version 3.2.1 (dSPACE
GmbH, Paderborn, Germany) to control the experiment.
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Figure 11. Flow chart of the experimental system.

The exciting signal was a band-limited white noise with a frequency range of 4 to 20 Hz.
The frequency range was chosen so that the dynamics of the combined system was fully
covered. Figure 12 shows the base acceleration measured by the accelerometer and its power
spectrum. The PSD of the base acceleration was found to be S0= 1.519× 10−4 (m/s2)2s/rad.
For each of the two µ values, the experiments were conducted in the following manner. The
absorber beam length was varied in a step of 3.5 mm. For each of the absorber beam lengths,
the experiments were conducted by varying load resistances in the following increments: 0.5 Ω,
1.5 Ω, 3.5 Ω, 7.5 Ω, 10.5 Ω, 20 Ω, 40 Ω, 70 Ω, 100 Ω, 150 Ω, 200 Ω, 400 Ω, and infinity. The
infinite load resistance was achieved by an open circuit. The velocities of the primary mass and
absorber mass were obtained by differentiating the measured displacements numerically. To
alleviate the noise amplification problem in numerical differentiation, the output displacement
signals from the sensors were first processed by a low-pass filter with a cut-off frequency of
80 Hz. The filtered signals were then interpolated using a cubic spline approximation. The
mean squared relative velocities of the primary mass and absorber mass were computed by

E(V2) ≈ 1
T

∫ T

0

·
x

2
a(t)dt (42)

and

E(V2
a ) ≈

1
T

∫ T

0

·
x

2
a(t)dt (43)

, respectively, where T is the duration of the simulation. Then the indices I1, I2, and I3 were
computed using Equations (12), (13), and (40), respectively. To improve the smoothness of
the results, 10 sets of experiments were conducted for each of the β and ζa combinations,
and the average values of I1, I2, and I3 were computed. The performance of the absorber in
terms of VS and EH was evaluated by examining the values of I2 and I3, respectively.

Figures 13–16 compare the experimental results and the simulation with a mass ratio
of µ = 0.050. To make the curves more distinct and easier to identify, only five curves are
shown in the 2D plots. All the figures showed that the experimental results matched in
general with the simulation ones. The following observations can be made from Figure 13.
With a small β value, I1 decreased dramatically to a minimum value, then increased slowly
as ζa increased. As β changed from 0.8 to 1.2, the increasing trend of I1 vs. ζa after reaching
a minimum value became less significant, and the overall trend of I1 gradually changed to
monotonically decreasing. In the simulation, the minimum value of I1 was achieved when
β∗= 1.022 and ζ∗a= 0.119, while in the experiment, the minimum value of I1 was achieved
when β∗= 1.066 and ζ∗a= 0.155. Figure 14 shows that the trend of I2 was opposite to that of
I1. When β increased from 0.8 to 1.2, with an increase in ζa, the trend of I2 first increased to
a maximum value and decreased. The maximum I2 value occurred around β∗= 0.977 and
ζ∗a= 0.068 in the simulation and around β∗= 1.022 and ζ∗a= 0.155 in the experiment. Both
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the experimental and the simulation results of I1 and I2 confirmed the theory that the sum
of I1 and I2 should equal a constant, as proven in Appendix A.
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Figures 15 and 16 present the indices I2 and I3 as the function of β and Rload. It
can be seen that the maximum I2 value occurred around β∗= 0.977 and R∗load= 30.0 Ω
in the simulation and around β∗= 1.022 and R∗load= 10.0 Ω in the experiment, while the
maximum I3 value occurred around β∗= 0.977 and R∗load= 50.0 Ω in the simulation and
around β∗= 1.022 and R∗load= 20.0 Ω in the experiment. The above observations revealed
that in both the simulation and the experiment, reducing the load resistance results in
better VS and poorer EH performance. This confirms the aforementioned trade-off between
energy dissipated by the absorber damping and the energy harvested by the load resistor.

Figures 17–20 compare the experimental and the simulation results with the mass
ratio of µ = 0.154. Comparing Figures 17 and 18 with Figures 13 and 14, the trends of
I1 vs. ζa and I2 vs. ζa became more consistent with an increase in β. There was no local
minimum or maximum value for I1 and I2. As shown in Figures 19 and 20, the maximum
I2 value occurred around R∗load= 15.0 Ω in the simulation and around R∗load= 10.0 Ω in the
experiment, while the maximum I3 value occurred around R∗load= 40.0 Ω in the simulation
and around R∗load= 20.0 Ω in the experiment. With an increase in the mass ratio µ, the
trade-off between the dissipated power and harvested power became more severe for
the simulation results than for the experimental ones. The discrepancies between the
experimental and the simulation results may mainly be attributed to the two factors. First,
the base excitation of the experiment was generated by sending a band-limited white noise
signal to the shaker. It is expected that due to the shaker’s dynamics, the actual base
motion was somewhat different from the input signal used in the simulation. Second, in
the experiment, the velocities of the primary mass and the absorber mass were obtained by
numerically differentiating the measured displacement signals. Although the measured
signals were filtered by a low-pass filter and interpolated with cubic spline approximation
to alleviate the noise effect on numerical differentiation, the obtained velocities were not
exactly the same as those from the numerical simulation. It is worth noting that the purpose
of the experiment was to demonstrate the general trend of the system behaviors revealed
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in the analytical result and the numerical simulation. Overall, the analytical predictions
and the experimental results are in good agreement.
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Figure 20. 3D and 2D plots of I3 with µ = 0.154: (a) experimental result; (b) simulation result.
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5. Conclusions

Optimization of a non-traditional vibration absorber or model B TMD was investigated.
An electromagnetic device was used as the absorber damper for a dual purpose of vibration
suppression (VS) and energy harvesting (EH) in a primary system subjected to random
base excitation. In terms of VS, the objective of optimization was to minimize an index
I1 that measured the power dissipated by the primary damper and maximize an index I2
that measured the power dissipated by the absorber damper. It was shown that when the
primary system is undamped, the power dissipated by the absorber damper remains a
constant. To further investigate the case of the undamped primary system, an alternate
performance index Ip was defined to measure the vibration energy of the primary system.
It was found that when the mass ratio exceeded 0.142, no local minimum point of Ip
existed. For the mass ratio equal to or less than 0.142, with an increase in the mass ratio,
the optimum frequency tuning ratio and absorber damping ratio increase as well. For
the damped primary system, the minimization of the power dissipated by the primary
damping was equivalent to the maximization of the power dissipated by the absorber
damper. The optimum frequency tuning ratio and absorber damping ratio were derived
when there was a minimum or maximum point. The sensitivity of VS performance was
investigated by detuning the optimum tuning frequency ratio or the optimum absorber
damping ratio by ±10%. The results showed that the I1 value is more sensitive to detuning
if the primary damping is low. For a given primary damping ratio, the I1 value is more
sensitive to the variation in the frequency tuning ratio than to the variation in the absorber
damping ratio.

In terms of EH, the objective of optimization was to maximize an index I3 that measured
the power harvested by the load resistor. The trade-off issue between VS and EH was
investigated. It was found that for a given mass ratio and primary damping ratio, the
optimum frequency tuning ratio required to maximize VS was slightly higher than that
required to maximize the harvested power. However, the optimum load resistance followed
a reverse relation. An increase in the mass ratio worsened the trade-off situation. On the
other hand, an increase in the primary damping had little effect on the trade-off matter.

An apparatus was developed to validate the analytical results. The developed apparatus
allowed both the frequency tuning ratio and the absorber damping ratio to be varied manually.
The combined system was excited with a band-limited white noise. The powers dissipated
by the primary damping, the power dissipated by the absorber damper, and the power
harvested by the load resistor were found experimentally and numerically for the apparatus
with two different mass ratios, respectively. The experimental results showed a general
agreement with the numerical ones. In particular, the minimization of the power dissipated
by the primary damping was equivalent to the maximization of the power dissipated by the
absorber damper, and the trade-off between the power dissipated by the absorber damper
and the power harvested by the load resistor became worse when the mass ratio increases.
These results agree in general with the trends predicted by the analysis.
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Abbreviations

m, k, and c mass, stiffness, and damping coefficient of the primary system
ma, ka, and ca mass, stiffness, and damping coefficient of the absorber system
y displacement of the base
x, and xa displacement of the primary mass and the absorber mass relative to the base
ωp and ωa natural frequency of the primary system and the absorber system
µ mass ratio
ζp and ζa damping ratio of the primary system and the absorber system
Y and ω amplitude and frequency of the base motion
X and Xa steady-state displacement amplitude of the primary mass and the absorber mass
r frequency ratio
β frequency tuning ratio
V and Va steady-state velocity amplitude of the primary mass and the absorber mass
G and Ga velocity FRF of the primary mass and the absorber mass
S PSD
E expectation value
I1, I2, Ip, I3, and I4 performance indices
Θ transduction factor
Rcoil and Rload resistance of one coil and the load resistor
pe and pload power dissipated by the absorber damper and harvested by the load resistor
i current
f ratio of harvested power to power dissipated by the absorber damper
Eload accumulated energy harvested by the load resistor
S0 PSD of the band-limited white noise
T duration of simulation
L length of the cantilever beam

Appendix A

The constants in Equations (16) and (17)

A1= (1 + µ)(ζ a + µζ p), A2 = 4ζ pζ2
a(1 + µ) + 4ζa(ζ

2
p + µζ2

a)− 2ζa,
A3 = 4ζ2

a(ζ p + ζa) + ζa, A4 = 4ζ p(µζ a + ζp)(ζ p + ζa) + 2µζ p, A5 = 4ζ pζa(ζp + ζa)+ ζp,
B1 = (ζp + µζa)(ζ a + µζ p), B2 = 4ζ2

aζ2
p(1 + µ) + 4ζ pζa(ζ

2
p + µζ2

a) + 2ζ pζa(µ− 1),
B3 = ζpζa + 4ζ pζ2

a
(
ζp + ζa

)
The proof that the sum of I1 and I2 is a constant is given below.

I1 + I2 =
ζp
4

A1β4+A2β2+A3
B1β4+B2β2+B3

+ ζaµ
4

A1β4+A4β2+A5
B1β4+B2β2+B3

= 1
4
(ζ p A1+ζaµA1)β4+

(
ζp A2+ζaµA4)β2+ζp A3+ζaµA5

B1β4+B2β2+B3

Using the terms defined above, the following can be derived.

ζp A1 + ζaµA1 = (µ + 1)(ζ p + µζa)(ζ a + µζ p) = (µ + 1)B1

ζp A2 + ζaµA4 = ζp[4ζ pζ2
a(µ + 1) + 4ζa(ζ

2
p + µζ2

a)− 2ζa] + ζaµ[4ζ p(µζ a + ζp)(ζ p + ζa) + 2µζ p]

= 4ζ2
pζ2

a(µ + 1) + 4ζ pζa(ζ
2
p + µζ2

a)− 2ζ pζa + 4µζ pζa(µζ a + ζp)(ζ p + ζa) + 2µ2ζpζa

= (µ + 1)[4ζ 2
pζ2

a(µ + 1) + 4ζ pζa(ζ
2
p + µζ2

a) + 2ζ pζa(µ− 1)]= (µ + 1)B2

ζp A3 + ζaµA5 = ζp[4ζ 2
a(ζ p + ζa) + ζa] + ζaµ[4ζ pζa(ζ p + ζa) + ζp]

= 4ζ pζ2
a(ζ p + ζa) + ζpζa + 4µζ pζ2

a(ζ p + ζa) + µζ pζa

= (µ + 1)[4ζ pζ2
a(ζ p + ζa) + ζpζa] = (µ + 1)B3
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Thus,

I1+I2 =
µ + 1

4
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