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Abstract: This work presents an analytical study of the parametric instability of cylindrical panels
containing functionally graded porous exposed to static and dynamic periodic axial loads under simply
supported boundary conditions. Based on Hamilton’s principle, the governing equation of motion by
using first-order shear deformation theory (FSDT) has been obtained. By applying the Galerkin technique,
an excitation frequency expression is derived, which helps identify areas of instability of functionally
graded porous cylindrical panels. Numerical simulations are used to validate the analytical results.
Eventually, the impacts of the porosity coefficient, porosity distribution method, static and dynamic
periodic axial loads, panel angle, circumferential wave number, and cylindrical panel characteristics
on the region of instability are displayed in the section of results and discussions. The findings show
that when the porosity is further from the surface, the more stable the structure is. Furthermore, a small
angle of the cylindrical panels gives a better dynamic response than a large angle. In addition, increased
static and dynamic loads lead to an expansion of areas of instability.
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1. Introduction

The presence of porosity in a structure makes its strength-to-weight ratio very good
as compared to the strength of homogeneous isotropic materials at the same weight, as
well as being permeable and a thermal insulator [1]. Consequently, cylindrical panels are
key structural elements present in a wide range of engineering fields, including aircraft,
petrochemicals, nuclear reactors, the maritime industry, and mechanical engineering [2].
The stable performance of functionally graded porous (FGP) cylindrical panels is affected by
a variety of mechanical loads (i.e., static axial load and time-dependent load). Many studies
were performed on the free vibration of cylindrical shells made of homogeneous isotropic
and functionally graded porous by existing authors [3–7], and for rotating cylindrical shells
made of homogeneous isotropic, multilayered, functionally graded materials and CNT-
reinforced functionally graded materials, graded graphene, functionally graded porous
materials, and stiffened functionally graded porous [8–15]. Authors have investigated
linear and nonlinear free vibration of cylindrical panels made of homogeneous isotropic
and functional graded porous materials, and analyses based on different shear deformation
theories were performed in [16,17]. The effect of rotating on the cylindrical panel behavior
made of an isotropic martial was examined in [18]. The study of a free vibration composite
panel reinforced by CNT functionally graded panels based on the element-free KP–Ritz
method under different boundary conditions was investigated in [19]. Hong et al. [20]
examined the natural frequency of functionally graded cylindrical and parabolic panels
based on the Fourier–Ritz approach under various boundary conditions. Dong et al. [21]
studied the dynamic responses of the forward and backward traveling waves of functionally
graded graphene-reinforced cylindrical shells under the effects of angular velocity and
axial static load. Li et al. [22] investigated the combined impacts of subsonic airflow
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and hygrothermal on the natural frequencies and critical rotating velocity of a composite
laminated cylindrical shell; this study’s findings were based on Love’s nonlinear shell
theory. Liew et al. [23] investigated the vibration of a three-layer coating–FGM–substrate
cylindrical panel with an effect of increased temperature gradient due to being exposed to
stable heat conduction through thickness under different boundary conditions, and this
study has been performed based on first-order shear deformation theory (FSDT). SafarPour
et al. [24] used the first-order shear deformation theory to study the effects of high spinning
motion and critical voltage on the buckling and free vibration of piezoelectric cylindrical
materials reinforced by CNT with different boundary conditions. Chen et al. [25] studied
three solutions to the vibration behavior of pre-twisted isotropic and FGM cylindrical shell
panels under the impact of angular velocity. The results of this study were obtained by
taking into account the effect of centrifugal stress. Quang Chan et al. [26] investigated
the effect of compressive load on the nonlinear buckling and post-buckling of sandwich
cylindrical panels containing a porous core and two surfaces functionally graded with two
boundary conditions: one is four edges simply supported (SSSS) and the other condition is
two edges simply supported and two edges clamped (SSCC). The authors of [27–30] studied
the effects of static and dynamic axial forces and angular velocity on the instability behavior
of isotropic and CNTRC cylindrical shells. Han and Chu [31] investigated the region
of instability of truncated conical shells for different boundary conditions under impact
periodic rotation; Love’s thin shell theory and the generalized differential quadrature
(GDQ) method were used in the approach. Li et al. [32] investigated the instability of FG
cylindrical shells subjected to rotation and thermal effects, taking into consideration that the
properties of shells were dependent on the temperature. Li et al. [33] studied the unstable
behavior of rotating truncated conical shells reinforced by functionally graded graphene
under the impacts of time-dependent loads and thermal expansion deformation, Love’s
thin shell theory and the Galerkin method served as the foundation for the methodology.
Phu [34] used the geometrical characteristics of nonlinearity in the von Karman–Donnell
hypothesis and classical shear theory to study instability behavior for varying thicknesses of
functionally graded cylindrical shells. Zhao et al. [35] studied the instability behavior of FG
porous arches reinforced by graphene platelets under the effects of static and dynamic forces.
The study was performed based on the classical Euler–Bernoulli theory. Han et al. [36]
studied the dynamic stability of simply supported thin circular cylindrical shells under
the effects of constant and harmonic rotating speeds based upon Love’s thin shell theory.
Pellicano and Amabili [37] studied the stability and post-critical dynamics of a simply
supported cylindrical shell filled with fluid under the effect of dynamic and static axial
loads based on Donnell’s nonlinear shallow-shell theory. The authors of [38–40] studied
the influence of periodic axial loads on the parametric instability of simply supported
cylindrical shells, made of functionally graded materials, a sandwich containing FG core,
and exponentially graded sandwich materials, respectively.

To the best of the authors’ knowledge, there is no research done on the linear dynamic
stability of functionally graded porous (FGP) cylindrical panels under the impacts of static
and dynamic forces. Hence, the present study is focused on the instability analysis of
cylindrical panels, the governing equations of motion were derived based on first-order
shear deformation theory (FSDT) by using Hamilton’s principle, and then applying the
Galerkin method to obtain the excitation frequencies; this is a straightforward method for
analyzing the linear parametric instability of simply supported FGP panels subjected to the
combined effects of static and dynamic axial loads. In the section on numerical results, the
influences of the porosity distribution, coefficient of porosity, circumferential wave number,
geometric parameters, static load factor, and dynamic load factor on the dynamic stability
of the FGP cylindrical panels are presented and discussed.

2. Theoretical Approach

The parameters of functional graded porous cylindrical panels under study are sym-
bolized as thickness: h; length: L; angle: θo; mean radius: R; square plan form: b; circumfer-
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ential length: S, as shown in Figure 1. An orthogonal coordinate (X, θ, Z) is used to identify
the structure’s axes. The X and θ axes are the longitudinal and circumferential directions of
the panels, respectively, and Z is the radial direction of the panels along the thickness.
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Figure 2. Types of porosity distributions. (a) Type 1; (b) Type 2; (c) Type 3. 

Figure 1. Geometric of the cylindrical panel under static and dynamic loads.

2.1. The Governing Equations of the Distribution of Porosity

In this work, three types of porosity distributions were investigated, as shown in
Figure 2 [17]. Type 1 is the uniform spread of porosity along the thickness direction and the
properties of materials are constant (denoted by Type 1). The second type is a nonuniform
symmetric distribution about the center. In this type, the midplane of the panel has the
maximum porosity and the maximum stiffness is on the surfaces of panels (denoted by
Type 2). The third type is a symmetric porosity about surfaces. This type has the maximum
porosity on the top and bottom surfaces of the panel and the midplane of the panel has the
maximum stiffness (denoted by Type 3).
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The governing equations of the three types of distribution can be defined as [15]:
Type 1:

[E(z), ρ(z)] = (E0, ρ0)(1− (e0, em∗)λ) (1)

Type 2:
[E(z), ρ(z)] = (E0, ρ0)(1− (e0, em)cos(

πz
h
)) (2)
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Type 3:
[E(z), ρ(z)] = (E0, ρ0)(1− (e0, em)sin(

∣∣∣πz
h

∣∣∣)) (3)

where e0 is the porosity coefficient, its value (0 < e0 < 1), which can be calculated as [17]
e0 = 1− Emin/E0 em∗ is the porosity coefficient of the mass density of Type 1 distributions,
which can be calculated as [17] em∗ =

(
(1−

√
1− e0λ)/λ

)
, E0, ρ0, Emin, ρmin. λ in Equation

(1) for Type 1 distributions can be calculated as λ = 1
e0

(
1−

(
1− 2em

π

)2
)

. em is the porosity

coefficient of mass density for Type 2 and Type 3 distributions, which can be calculated as
em = 1−

√
1− e0 or em = 1− ρmin/ρ0.

E0, Emin, ρ0, ρmin are the maximum and minimum values of elastic moduli and density,
respectively.

2.2. Formulation of Dynamic Stability

The displacement field equation can be defined based on Donell’s shell theory using
first-order shear deformation theory (FSDT) [41]:

U(x, θ, z, t) = u(x, θ, t) + zϕx(x, θ, t)
V(x, θ, z, t) = v(x, θ, t) + zϕθ(x, θ, t)
W(x, θ, z, t) = w(x, θ, t)

(4)

where (u, v, w) symbolize the displacement of a point in x, θ, z directions, respectively, at
z = 0. ϕx symbolizes the rotation of the normal about the θ axis, ϕθ denotes the rotation of
the normal about the x axis. The strain–displacement relation can be calculated as:

εx = ∂ u
∂ x + z ∂ ϕx

∂ x , εθ = ∂ v
R ∂θ + w

R + z ∂ ϕθ
R ∂θ , γxz = ϕx +

∂ w
∂ x

γxθ = ∂ u
R ∂θ + ∂ v

∂ x + z( ∂ ϕx
R ∂θ + ∂ ϕθ

∂ x ), γθz = ϕθ +
∂ w

R ∂θ −
v
R

(5)

To derive the governing partial differential equations of motion, Hamilton’s principle
is used in the following form:

δ

t2∫
t1

(U− T−V)dt = 0 (6)

where δ is the variation operator, t1, t2 are two arbitrary times. U denotes potential energy. T
denotes kinetic energy, V denotes work done generated from static and dynamic axial forces.

U =
1
2

L∫
0

θ0∫
0

h
2∫

− h
2

(σxxεxx + σθθεθθ+σxθγxθ + σxzγxz + σθzγθz)Rdzdθdx (7)

The stresses in Equation (7) are given based on Hook’s law, as follows:(
σx
σθ

)
=

E(z)
1− µ2

(
εx + µεθ
εθ + µεx

)
,σxθ =

E(z)
2(1 + µ)

γxθ,
(
σxz
σθz

)
=

kE(z)
2(1 + µ)

(
γxz
γθz

)
(8)

µ denotes Poisson’s ratio and is assumed a constant value compared with other mechanical
characteristics of the FGP cylindrical panel [17]. k denotes the shear correction factor
(k = 5/6) [30].

T =
1
2

L∫
0

θ0∫
0

h
2∫

− h
2

ρ(z)

(
(

∂ U
∂ t

)
2
+ (

∂ V
∂ t

)
2
+ (

∂ W
∂ t

)
2
)

Rdzdθdx (9)
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V =
1
2

L∫
0

θ0∫
0

Nx(t)(
∂ w
∂ x

)
2
Rdθdx (10)

Nx(t) is the uniformly distributed axial periodic load per unit length,

Nx(t) = N0 + Nt cos(Ωt) (11)

N0 is the static axial load, Nt is the time-dependent axial load, Ω refers to the excita-
tion frequency in radian per unit time, and t denotes the time variable. Substituting
Equations (7)–(10) into Equation (6), we obtain the governing partial differential equations
of motion:

δu : ∂ Nxx
∂ x + ∂ Nxθ

R ∂θ = I0
∂2u
∂ t2 + I1

∂2ϕx
∂ t2

δv : ∂ Nθθ
R ∂θ + ∂ Nxθ

∂ x + Qθ
R = I0

∂2v
∂ t2 + I1

∂2ϕθ
∂ t2

δw : Nxx
∂2w
∂ x2 +

Nθθ
R + Nθθ ∂2w

R2 ∂θ2 + Nxθ
∂2w

R ∂θ ∂x + ∂ Qx
∂ x + ∂ Qθ

R ∂θ−
Nx(t) ∂2w

∂ x2 = I0
∂2w
∂ t2

δϕx : ∂ Mxx
∂ x + ∂ ∂ Mxθ

R ∂θ −Qx = I1
∂2u
∂t2 + I2

∂2ϕx
∂ t2

δϕθ : ∂ Mθθ
R ∂θ + ∂ Mxθ

∂ x −Qθ = I1
∂2v
∂t2 + I2

∂2ϕθ
∂ t2

(12)

where (Nx, Nθ, Nxθ, Qx, Qθ) are the force resultants and (Mx, Mθ, Mxθ) are the moment
resultants, which are expressed as follows [40]. Nxx

Nθθ
Nxθ

 =

h
2∫

− h
2

 σxx
σθθ
σxθ

dz,

 Mxx
Mθθ

Mxθ

 =

h
2∫

− h
2

 σxx
σθθ
σxθ

zdz,
[

Qx
Qθ

]
=

h
2∫

− h
2

[
σxz
σθz

]
dz (13)

I1i =
Ei

1−µ2 , I2i = µI1i, I3i =
Ei

2(1+µ) (i = 0, 1, 2)

(E0, E1, E2) =

h
2∫
− h

2

E(z)(1, z, z2)dz, (I0, I1, I2) =

h
2∫
− h

2

ρ(z)(1, z, z2)dz

Now, we substitute Equation (5) into Equation (8), and then into Equation (13), and
rewrite the equations of motion in the following form:

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55




u
v
w
ϕx
ϕθ

 = 0 (14)

The effects of the inertia forces of rotation and midplane displacement have been
neglected because they are smaller than the inertia force from transverse displacement
(w) [40], where Lij(i, j = 1, 2, 3, 4, 5) is the operator of the partial differential equation.
The cylindrical panels are assumed to be simply supported at both ends at x = 0, L and
corresponding to the boundary condition as (v = w = ϕθ = Nxx = Mxx = 0 at x = 0, L).

The approximate solution that satisfies boundary conditions can be assumed to solve
Equation (14) of the functionally graded porous cylindrical panel is as follows [21]:

u(x, θ, t) = (u1cosβθ− u2sinβθ)cosαx
v(x, θ, t) = (v1sinβθ− v2cosβθ)sinαx
w(x, θ, t) = (w1cosβθ−w2sinβθ)sinαx
ϕx(x, θ, t) = (ϕx1cosβθ−ϕx2sinβθ)cosαx
ϕθ(x, θ, t) = (ϕθ1sinβθ−ϕθ2cosβθ)sinαx

(15)
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where (n, m) are the half-circumferential and axial wave numbers, respectively, β = nπ/θ0,
α = mπ/L. After substituting Equation (15) into Equation (14) and converting the partial
differential equation to an ordinary differential equation by using superposition theory, the
ordinary differential equations of cylindrical panels are obtained as:

Γ11 Γ12 Γ14 Γ15
Γ21 Γ22 Γ24 Γ25
Γ41 Γ42 Γ44 Γ45
Γ51 Γ52 Γ54 Γ55




u1
v1
ϕx1
ϕθ1

 =


−Γ13
−Γ23
−Γ43
−Γ53

w1 (16)


Γ11 − Γ12 Γ14 Γ15
−Γ21 Γ22 − Γ24 Γ25
Γ41 − Γ42 Γ44 Γ45
−Γ51 Γ52 − Γ54 Γ55




u2
v2
ϕx2
ϕθ2

 =


−Γ13
Γ23
−Γ43
Γ53

w2 (17)

Γ31u1 + Γ32v1 + (Γ33 + Nx(t)α2)w1 + Γ54ϕx1 + Γ55ϕθ1 = I0
d2w1
dt2

Γ31u2 − Γ32v2 + (Γ33 + Nx(t)α2)w2 + Γ54ϕx2 − Γ55ϕθ2 = I0
d2w2
dt2

(18)

where Γij (i, j = 1, 2, 3, 4, 5) are defined in Appendix A. So, from Equations (16) and (17) we
can derive the relation between (u i, vi,ϕxi,ϕθi) and (w i), (i = 1, 2), defined as:

u1 = Dw1
v1 = Kw1
ϕx1 = tw1
ϕθ1 = Hw1

(19)

u2 = Dw2
v2 = −Kw2
ϕx2 = tw2
ϕθ2 = −Hw2

(20)

The constants D, K, t, H are shown in Appendix B, and then, substituting Equations
(19) and (20) into Equation (18), after some mathematical manipulation, we obtain the
following relationship:

I0
d2w
dt2 + (F−Nx(t)α2)w = 0 (21)

dw
dt

=

[
dw1
dt

dw2
dt

]
, w =

[
w1
w2

]
, F = −(Γ31D + Γ32K + Γ33 + Γ34t + Γ35H)

The critical buckling periodic loads are obtained from Equation (21) by neglecting the
mass term [30], so (Ncr = F/α2).

If we need natural frequency without periodic axial loads obtained from Equation (21),

ω =
√

F/I0 (22)

In the present study, the parametric instability is bounded by two periods, T and 2T,
with T = 2π [39]. The solution to Equation (21) corresponds to 2T because the width of
instability at period 2T is usually larger than T, and is assumed as [38]:

w = a cos
Ω
2

t + b sin
Ω
2

t (23)

where (a, b) are constants and p is the excitation frequency. Substituting Equation (23) into
Equation (21) and applying Galerkin’s method with periodic 2T to obtain an expression of
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the excitation frequency of (FGP) a cylindrical panel with the effect of the periodic load, we
can define the expression as an eigenvalue problem:

− I0
4 Ω2 + F(1−N01 − 0.5Nt1) = 0

− I0
4 Ω2 + F(1−N01 + 0.5Nt1) = 0

(24)

Now, we rewrite Equation (24) in a new form after mathematical manipulation, as follows:

Ω1,2 = 4ω
√

1−N01 ∓ 0.5Nt1 (25)

N01 is static load factor = N0/Ncr, Nt1 is dynamic load factor = Nt/Ncr, the negative signal
gives Ω1, and the positive signal gives Ω2. The dimensionless excitation frequency is
defined as follows:

Pi,j = Ωi,jR

√
ρ(1− µ2)

E
(i, j = 1, 2) (26)

3. Numerical Results and Discussions
3.1. Validation

The instability analysis has been validated, so three numerical examples are examined
for a cylindrical panel, a cylindrical shell made of homogeneous isotropic material, an FG
porous material, and sandwich shells containing an FG core material, respectively.

Example 1. The validation of the natural frequency of the isotropic cylindrical panel is shown
in Table 1 and against results taken from Soldatos and Hadjigeorgiou [16]. In this example,
there are three different values of the parameter h/b (0.1, 0.2, and 0.3) and different panel angles
(θ0 = 30, 60, 90). L = b, S =(bθ0/2 sin(θ0/2)), where b is the square plan form, and the panel
characteristic R = 1 m and mechanical properties are E = 200 Gpa, ρ = 7850 kg/m3 µ = 0.3.
Equation (22) is used to compare with Soldatos and Hadjigeorgiou’s smallest first four frequency
parameters [16]. The reliability of the results is good between the present result and the result of [16],
as shown in Table 1.

Table 1. Comparison of the natural frequency of cylindrical panels.

h/b θ0 (degree) Soldatos and
Hadjigeorgiou [16] Present Study

0.1
30 0.7001 0.6393
60 0.8096 0.7589
90 0.9574 0.9296

0.2
30 1.2032 1.1158
60 1.1979 1.1462
90 1.2199 1.2143

0.3
30 1.5947 1.4945
60 1.528 1.4804
90 1.4699 1.4864

Example 2. The comparison of instability under effect periodic loads has been compared with
SofIiyev and Kuruoglu [39] for sandwich cylindrical shells containing an FG core. The top layer is
made of a metal-rich material, i.e., nickel (Ni), the bottom layer is made of a ceramic-rich material,
i.e., silicon nitride (Si3N4), and the core of the shell is functionally graded through thickness from
Si3N4 to Ni and the equations of elastic modulus and density are:

(E, ρ) = Em, ρm(h
2 ≤ z ≤ −a) + E(z), ρ(z) + Ec, ρc(a ≤ z ≤ h

2 )

(E(z), ρ(z)) =
a∫
−a

[((Em, ρm)− (Ec, ρc))Vc + ((Ec, ρc))]dz, Vc = ( z+a
2a )

d
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where (d) denotes the volume friction index, (a) refers to the half thickness of core, and
the geometrical dimensions and mechanical properties are θ0 = 2π, L/R = 0.1, R/h = 25,
h/a = 4, Em = 205.09 Gpa, ρm = 8900 kg/m3, µm = 0.31, Ec = 322.271 Gpa, ρc = 2370 kg/m3,
µc = 0.24, and Nt1 = 0, 0.1, 0.3, 0.5, and N01 = 0.2; see Table 2 for different wave numbers
(m,n) = (1,1) and (1,3), and for a different volume friction index, d = 0.5, 2. The results have
been obtained based on the first-order shear deformation theory. The results show good
agreement between the present study and the results of SofIiyev and Kuruoglu [39].

Table 2. Comparison of dimensionless excitation frequencies.

d = 0.5
(m,n) Nt1 SofIiyev [39] Kuruoglu Present Study

P1 P2 P1 P2

(1,1)

0 66.5 66.55 67.421 67.421
0.1 66.964 66.132 67.8412 66.9984
0.3 67.786 65.29 68.6736 66.1449
0.5 68.598 64.436 69.4961 65.2802

d = 2

(1,3)

0 60.196 60.571 60.588 60.966
0.1 60.196 59.819 60.588 60.209
0.3 61.314 59.056 61.714 62.453
0.5 62.049 58.284 59.442 58.664

Example 3. We compare the results of Yuewu and Dafang [7] for functional graded porous materials
for the cylindrical shells with different values of the porosity coefficient and circumferential wave
number based on Type 2 distributions, as shown in Table 3. The numerical results were performed
based on Equation (22), the dimension of the cylindrical shell and material properties are h/R = 0.01,
L/R = 0.2, E = 200 Gpa, ρ = 7850 kg/m3, µ = 0.3, and the dimensionless natural frequency
v = ωR

√
ρ/E. The results of the present study agree with the results of Yuewu and Dafang [7].

Table 3. Comparison of dimensionless excitation frequencies.

n Porosity Coefficient Yuewu and
Dafang [7] Present Study

1

0 1.2429 1.2465
0.2 1.2155 1.2191
0.4 1.1893 1.1931
0.6 1.1677 1.1718
0.8 1.1633 1.1682

4

0 1.2256 1.246
0.2 1.2006 1.2208
0.4 1.1772 1.1974
0.6 1.159 1.1795
0.8 1.1591 1.1805

3.2. Results of the Present Study

In the present study, the dynamic stability of FG porous cylindrical panels is investi-
gated under the impact of the porosity coefficient, porosity distribution, wave numbers,
geometrical dimensions, static load factor, and dynamic load factor. The dimensionless
excitation frequencies are obtained by applying Equation (26). The mechanical properties
are [17] E0 = 200 Gpa, ρ0 = 7850 kg/m3, µ = 0.3, and the mean radius of the cylindrical
panel is constant, i.e., R = 1 m. h/R = 0.05, L/S = 2, θ0 = 100

◦
are assumed to be constant

values unless otherwise specified.
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3.2.1. The Effect of Porosity Distribution

Figure 3 shows the effect of porosity distribution versus dynamic load on the instability
of the FGP cylindrical panel, e0 = 0.4, static load factor 0.5, and wave number (m,n) is
(1,2). The results show that Type 2 distributions give the largest values of dimensionless
excitation frequencies compared to other types. The results appear to show that Type 2
distributions provide the highest values of dimensionless excitation frequencies compared
to other types, which is due to the surfaces’ resistance to loads and deformation due to the
lack of porosity at the surfaces, resulting in higher density and stiffness at the surface panel
than other types. On the other hand, to enhance the stability of the structure, the porosity
of the surface must be prevented. The closer the porosity is to the center, the stronger the
structure will be than if the porosity was closer to the surface.
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3.2.2. The Effect of the Panel’s Angle

The effect of the angle of the panels on the instability of the structure is shown in Figure 4,
with the values of N01 = 0.2, e0 = 0.4, and m = n = 1. The results reveal that the width of the
instability region of the small angle, such as θ0 = 30

◦
, increases greater than the large angle

of the panel, and the origin point of instability is greater than the large angle. The reason is
that when the angle increases, the flexural rigidity of the panel drops, and the decreasing
amplitude of the natural frequency becomes larger with the rise of the panel angle.

3.2.3. The Effect of the Porosity Coefficient

The examined coefficient of porosity for Type 2 distributions against the dynamic load
factor on the dimensionless excitation frequencies is presented in Figure 5. The values of
the static load and wave number are N01 = 0.2, m = n = 1, respectively. The results show
the instability of the structure decreases and is wider as the porosity coefficient increases.
The reason for that is the decrease in both the stiffness and mass density of the panel.
The increase in the porosity coefficient of the cylindrical panel results in extra foam in the
structure, resulting in more weakness in the bending stiffness.



Vibration 2022, 5 579

Vibration 2021, 4 11 
 

 

 
Figure 3. The effect of porosity distribution. 

3.2.2. The Effect of the Panel’s Angle: 
The effect of the angle of the panels on the instability of the structure is shown in 

Figure 4, with the values of 01N  = 0.2, 0e  = 0.4, and m = n = 1. The results reveal that 

the width of the instability region of the small angle, such as 0 30oθ = , increases greater 
than the large angle of the panel, and the origin point of instability is greater than the large 
angle. The reason is that when the angle increases, the flexural rigidity of the panel drops, 
and the decreasing amplitude of the natural frequency becomes larger with the rise of the 
panel angle. 

 
Figure 4. The effect of the panel angle. Figure 4. The effect of the panel angle.

Vibration 2021, 4 12 
 

 

3.2.3. The Effect of the Porosity Coefficient 

The examined coefficient of porosity for Type 2 distributions against the dynamic 
load factor on the dimensionless excitation frequencies is presented in Figure 5. The values 
of the static load and wave number are 01N  = 0.2, m = n = 1, respectively. The results 
show the instability of the structure decreases and is wider as the porosity coefficient in-
creases. The reason for that is the decrease in both the stiffness and mass density of the 
panel. The increase in the porosity coefficient of the cylindrical panel results in extra foam 
in the structure, resulting in more weakness in the bending stiffness. 

 
Figure 5. The effect of the porosity coefficient. 

3.2.4. The Effect of Static and Dynamic Load Factors 

Figure 6 examines the effects of static and dynamic load on the linear parametric in-
stability of the cylindrical panel with a different dynamic load factor. The geometric prop-
erties of the panel are coefficients of porosity, i.e., 0e  = 0.4 and (m,n) = (1,2). It is detected 
that the value of the origin point of the boundary instability region shifts forward to a 
high value when the static load factor decreases, and the width of the instability region is 
wider when the static load factor and dynamic load factor increase. The existence of dy-
namic load leads to the instability region appearing and the boundary of instability be-
ginning to shift to the left. That means the structure’s resistance and response dynamics 
decrease when the static load increases. The structure approaches failure whenever the 
static and dynamic load factors equal the critical value, and this means that the structure 
does not weaken only when the porosity increases but also weakens when the static load 
factor increases. 

Figure 5. The effect of the porosity coefficient.

3.2.4. The Effect of Static and Dynamic Load Factors

Figure 6 examines the effects of static and dynamic load on the linear parametric
instability of the cylindrical panel with a different dynamic load factor. The geometric
properties of the panel are coefficients of porosity, i.e., e0 = 0.4 and (m,n) = (1,2). It is
detected that the value of the origin point of the boundary instability region shifts forward
to a high value when the static load factor decreases, and the width of the instability region
is wider when the static load factor and dynamic load factor increase. The existence of
dynamic load leads to the instability region appearing and the boundary of instability
beginning to shift to the left. That means the structure’s resistance and response dynamics
decrease when the static load increases. The structure approaches failure whenever the
static and dynamic load factors equal the critical value, and this means that the structure
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does not weaken only when the porosity increases but also weakens when the static load
factor increases.
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3.2.5. The Effect of the h/R Ratio

In Figure 7, the influence of the thickness-to-radius ratio on the behavior of the
instability of a structure has been presented. The cylindrical panel parameters are N01 = 0.1,
and the various values of the radius-to-thickness ratio are 0.01, 0.1, and 0.2. Figure 7 shows
that the dimensionless excitation frequencies increase by about 28.2% when the thickness
increases from 0.01 to 0.2, and the instability regions are significantly wider when the
thickness-to-radius ratio increases. To explain this behavior, we can say that the stiffness of
the structure increases with the increase of the thickness.
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3.2.6. The Effect of the L/S Ratio

Figure 8 displays the effect of the length-to-circumferential ratio on the dimensionless
excitation frequencies with various dynamic load factors. The panel characteristics are
e0 = 0.4, N01 = 0.1, m = n = 1, and the values of the length-to-circumferential ratio are 0.5,
1, and 2. The results show that when the size of the length increases, the origin point of
dimensionless excitation frequency decreases, the influence of axial dynamic load on the
structure decreases significantly, and the width of the instability region decreases. It is
observed that the excitation frequency is more sensitive to a change in length. When the
panel is shorter, the onset of the instability region shifts to the right.
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30 

0.1 
0.3 
0.5 
0.7 
0.9 

1.181 3.6808 7.594 
7.542 
7.526 
7.591 
7.954 

1.1767 3.6665 
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100 

0.1 
0.3 
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3.2.7. The Effect of the Circumferential Wave Number

Table 4 shows the effect of the circumferential wave number with an angle on the
instability of the cylindrical panel. The excitation frequency increases as the circumferential
wave number (n) increases for the smallest angle of the panel, (i.e., 30◦), but for the largest
angle of the panel, such as θ0 = 100

◦
, 180

◦
, the excitation frequency decreases and then

increases when the circumferential wave number increases. It is observable that the lower
point of the instability region increases with the increase of porosity after a specific value of
porosity coefficient, in fact, the reduction in stiffness and weight remains with the porosity
increase, but at this value, this phenomenon happens because the average reduction in
stiffness is significantly smaller than the cross-section inertia.

Table 4. The effect of the circumferential wave number.

θ (Degree) Porosity Coefficient (m,n) = (1,1) (m,n) = (1,2) (m,n) = (1,3)

p (Type 2) p (Type 2) p (Type 2)

30

0.1 1.181 3.6808 7.594
0.3 1.1767 3.6665 7.542
0.5 1.1783 3.6726 7.526
0.7 1.1956 3.725 7.591
0.9 1.2659 3.9365 7.954
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Table 4. Cont.

θ (Degree) Porosity Coefficient (m,n) = (1,1) (m,n) = (1,2) (m,n) = (1,3)

p (Type 2) p (Type 2) p (Type 2)

100

0.1 0.3461 0.3367 0.723
0.3 0.3349 0.3355 0.722
0.5 0.3235 0.3416 0.726
0.7 0.313 0.3625 0.739
0.9 0.3103 0.787

180

0.1 0.3368 0.1271 0.212
0.3 0.3253 0.1246 0.211
0.5 0.3134 0.1224 0.212
0.7 0.3021 0.1212 0.216
0.9 0.2978 0.1243 0.23

4. Conclusions

This study analyzed the parametric instability of simply supported functional graded
porous cylindrical panels subjected to combined static and time-dependent periodic axial
loads. The problem has been solved based on first-order shear deformation theory (FSDT)
with Hamilton’s principle. The general equations are converted to ordinary differential
equations by using superposition theory. Herein, the influences of different parameters on
the instability of cylindrical panels have been examined, and the results are fully discussed.
The theoretical approach was validated compared to other studies.

• According to the results shown, it may be concluded that the symmetric porosity
distribution around the midplane (i.e., Type 2) has more stiffness and results in the
excitation frequency shifting forward to a high value, so it is preferred over the rest of
the types.

• A small angle (i.e., θ0 = 30
◦
) of the panel results in a large excitation frequency, but

it is more influenced by the dynamic load. This behavior is fully reversed when the
angle of the panel is large.

• By increasing the circumferential wave number, the excitation frequencies decrease
and then increase when the angle of the panel is large (i.e., θ0 = 100

◦
, 180

◦
), but when

the angle of the panel is small (i.e., θ0 = 30
◦
) the excitation frequencies increase by

increasing the circumferential wave number.
• The excitation frequencies increase when the static load factor decreases. Additionally, the

width of instability increases as the static load factor and dynamic load factor increase.
• The structure is less stable when it has porosity, and the weakness of the structure

increases with an increase in the porosity.
• For design purposes, care should be taken to decide the values of the static load factor

and the porosity coefficient because a wrong selection leads to instability and then an
early failure in the structure.

• The dimensionless excitation frequencies and width of the instability region have a
large value when the thickness is large and when the length is small.
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Appendix A

Γi,j (i, j = 1, 2, 3, 4, 5) are parameters and given by:

Γ11 = −
(

I10α
2 + I30

β2

R2

)
, Γ12 = I20

β
Rα+ I30

β
Rα, Γ13 = I20

α
R , Γ14 = −

(
I11α

2 + I31
β2

R2

)
,

Γ15 = (I21 + I31)
β
R α, Γ21 = Γ12, Γ22 = −

(
I30α

2 + I10
β2

R2 + kI30
1

R2

)
, Γ23 = −

(
(I10 + kI30)

1
R2

)
β

Γ24 = (I21 + I31)
β
Rα, Γ25 = −

(
I31α

2 + I11
β2

R2 − kI30
1

R2

)
, Γ31 = Γ13, Γ32 = Γ23

Γ33 = −
(

I10
1

R2 + kI30(
β2

R2 + α2)
)

, Γ34 =
(

I21
1
R − kI30

)
α, Γ35 =

(
−I11

1
R2 + k I30

R

)
β

Γ41 = Γ14, Γ42 = Γ24, Γ43 = Γ34, Γ44 = −
(

I12α
2 + I32

β2

R2 + kI30

)
, Γ45 = (I22 + I32)

β
Rα

Γ51 = Γ15, Γ52 = Γ25, Γ53 = Γ35, Γ54 = Γ45, Γ55 = −
(

I32α
2 + I12

β2

R2 + kI30

)
Appendix B

D, K, t, H are defined as:

D = − 1
Γ11

(Γ12K + Γ13 + Γ14t + Γ15H), K = a1 + a2t + a3H, t = j1 + j2H

H = − (a1+a2j1)(Γ11Γ52−Γ51Γ12)+j1(Γ11Γ54−Γ51Γ14)+(Γ11Γ53−Γ51Γ13)
(a3+a2j2)(Γ11Γ52−Γ51Γ12)+j2(Γ11Γ54−Γ51Γ14)+(Γ11Γ55−Γ51Γ15)

where

j1 = − a1(Γ11Γ42−Γ41Γ12)+(Γ11Γ43−Γ41Γ13)
a2(Γ11Γ42−Γ41Γ12)+(Γ11Γ44−Γ41Γ14)

, j2 = − a3(Γ11Γ42−Γ41Γ12)+(Γ11Γ45−Γ41Γ15)
a2(Γ11Γ42−Γ41Γ12)+(Γ11Γ44−Γ41Γ14)

a1 = − Γ11Γ23−Γ21Γ13
Γ11Γ22−Γ21Γ12

, a2 = − Γ11Γ24−Γ21Γ14
Γ11Γ22−Γ21Γ12

, a3 = − Γ11Γ25−Γ21Γ15
Γ11Γ22−Γ21Γ12
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