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Abstract: Astrocytes are the predominant glial cells that provide essential support to neurons and
promote microenvironment changes in neuropathological states. Astrocyte and astrocytic-like cell
culture have substantially contributed to elucidating the molecular pathways involved in key glial
roles, including those relevant to neurodevelopment, brain physiology and metabolism, which are
not readily accessible with traditional approaches. The in vitro methodology has also been applied to
neuroinflammatory and neurodegeneration contexts, revealing cellular changes involved in brain
dysfunction. Astrocytes studies in culture started with primary cell approaches using embryonic
and postmortem tissue. Further developments included newborn rodent primary cells, cell lines
and immortalized astrocytes, which resulted in homogeneous cell-type preparations grown on flat
surfaces. To overcome some in vitro shortcomings, tridimensional bioprinted models and organoid
culture enabled the mimicking of tissue cellular arrangements and, above these achievements,
complex astrocyte cell culture can be generated from induced pluripotent stem cells (iPSCs) to model
diseases. These unprecedented breakthroughs allowed the development of platforms to test new
therapies in brain cells derived from human material noninvasively obtained from live patients. In
this work, we reviewed the most studied astrocytic cell models for discussing limitations, advantages
and reliable experimental readouts for neuroinflammation in neurodegeneration research.

Keywords: alternative model; astrocyte; cell lines; cell culture; inflammation; innate immune response;
neurodegenerative disease

1. Introduction

Glial cells are non-neuronal cells initially described during the 19th century as con-
nective brain elements, which were not thought to be cellular but capable of keeping the
brain tissue together [1–3] The name derives from their adhesive (glue-like) properties.
Initially, the development of knowledge on glial cells was overshadowed by the research on
neurons because these are the electrically excitable cells that convey neurotransmitter-based
signals in distinct brain circuits [4]. One outcome of this neuronal-centered perspective is
that a simplified supporting and protective role has been attributed to the glia for a long
period. Astrocytes are well known for providing metabolic and trophic signals to neurons,
while forming a blood barrier when associated with neurovascular unity. Oligodendrocyte
function is traditionally understood as axon insulation to promote saltatory fast conduc-
tion. Microglia are usually defined as immune cells that protect neurons from potential
pathogens [5]. All these glial cell types have more elaborate and complex roles in the CNS,
and astrocyte research has consistently shown that these cells are versatile, essential to
normal brain function and can play important roles in brain diseases by impacting the
function of neurons, oligodendrocytes and microglia.

The notion of glia heterogeneity became clear when the star-shaped cells were named
astrocytes [6] and, later, cells with other morphologies and characteristics were identified
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as oligodendrocytes and microglia [7–12]. Golgi made important initial descriptions of
astrocytes, including the end-feet glia-vascular contacts. Later, Cajal further developed
an investigation technique that employed the gold chloride-sublimate staining, which
is specific for both protoplasmatic (gray matter) and fibrous (white matter) astrocytes.
These and other developments resulted in particular attention to astrocytes during those
years [13–20]. Once it was understood that astrocytes represent a distinct cell type, one
of the challenges was to isolate these cells to study them apart from the other neural
cells (see Figure 1 for a timeline). Here, we review how in vitro experimental approaches
with astrocytes provide the means to dissect and test hypotheses on cell-autonomous
mechanisms, and we evaluate real-time cellular events in different conditions, including
physiological and inflammation models related to neuropathologies. While addressing
these aspects, we also present examples of how these models have been applied in studying
conditions related to neurodegeneration to illuminate their potential contributions to
understanding neuroinflammation and broader neurological disorders.
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Figure 1. Timeline of major developments in astrocytic cell culture. Major breakthroughs and milestones
related to astrocyte cell culture are given in chronological order.

Microglia and astrocyte reactivity is frequently associated with neurodegenerative
diseases, including those that feature protein misfolding and aggregation. Although in-
flammation is not considered an initiating factor in neurodegenerative diseases, it has been
found that neuroinflammation occurs earlier than protein aggregation. In addition, the liter-
ature suggests that sustained and deregulated inflammatory responses involving microglia
and astrocytes contribute to disease progression. The relationship between inflammation
and neurodegenerative diseases have been substantially reviewed elsewhere [21–23]. Ther-
apeutic approaches aiming to modulate neuroinflammation in neurodegenerative diseases
depend on mechanistic research that dissects precise components of cellular responses,
which is currently investigated in astrocytes through several approaches.

At the time of writing this paper, almost 77,000 articles in the national library of
medicine (pubmed.gov or www.ncbi.nlm.nih.gov/pubmed/; accessed 21 February 2024)
were retrieved with “astrocyte” as the search term, nearly 8000 articles when the term “cell
culture” was conditionally added to the search as the obligatory (AND) term and almost
562 articles were retrieved when combining these two terms with “inflammation”. Unfortu-
nately, we are unable to list all potential and relevant work here. When using MeSH terms
“((astrocyte[MeSH Terms]) AND (cell culture[MeSH Terms])) AND (inflammation[MeSH
Terms])”, the search returned 50 results that were prioritized for selection in this review
along with other search strategies. According to official protein/gene symbol notation, we
adopted the use of all uppercase nonitalicized letters in abbreviations for proteins (without
special characters or hyphen), all uppercase letters italicized for human gene and transcript
and only first uppercase and italicized letters for rodent genes/transcript.

2. A Brief Overview of Astrocytes General Features and Physiological Roles

The descriptive approach in the astroglial biology field predominated until the devel-
opment of purified astrocyte cultures and astrocytic cell lines. However, one of the earliest
perceptions from morphological studies led to an important hypothesis that glia drive the
connections between themselves and blood vessels, in addition to their participation in
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cellular interactions that occur during brain development [24–29]. Intriguingly, a recent
study estimated that 99.8% of all gray matter astrocytes are connected with blood vessels,
thereby reinforcing their role in metabolic supply [30].

Revised concepts on the importance of glia in brain functions have been claimed
in recent decades, in part due to the popularization that such cells, mainly astrocytes,
outnumber human neurons by one order of magnitude. However, detailed literature
review and modern cell count techniques, including unbiased stereology and isotropic
fractionation, showed that this is not the case. Glia do not extensively outnumber neurons
in general, being less than 2:1 in the human cortex and around 3:1 in the spinal cord [31–33].
While cell number is not equivalent to cell importance, it is relevant to understanding how
neuron-to-glia ratio changes in different species (a higher proportion of astrocytes according
to increased brain size), regions (e.g., ~12:1 in the posterior gray matter of the thoracic
human spinal cord) and during development and pathological states [34]. Hence, we are
tempted to suppose that astrocyte functions in nutrient supply and energetic metabolism
should be critical in species with larger brains, which could explain the higher proportion
of astrocytes. However, it is not clear what the precise role is for different astrocyte tissue
densities in normal physiology.

Astrocytes play critical roles in CNS homeostasis because, in addition to supporting
neuronal function, these cells also influence neurotransmission and other glial cells. The
physiological activation of the astrocytes involves calcium propagation (calcium waves), a
mechanism that allows cellular communication with other astrocytes through gap junctions
channels; or pre- and postsynaptic neurons, forming the tripartite synapse by regulating
neurotransmitters glutamate and GABA uptake and synthesis [16,35–45]. In addition, astro-
cytes are implicated in brain tissue waste drainage by fluid exchange from the cerebrospinal
fluid (CSF) compartment to the interstitial fluid through astrocytic aquaporin 4 (AQP4),
which is essential for normal function of the glymphatic system [46], a newly described
waste clearance system. Toxic residues, such as Aβ-amyloid peptides and the Alzheimer’s
disease (AD) pathology-associated tau protein, for example, are removed from the brain by
the glymphatic system. Local homeostasis at Ranvier nodes, the site of saltatory conduc-
tion of action potentials, and oligodendrocyte normal functions, also involves astrocytes
that modulate blood flow through vasoactive nitric oxide (NO) and arachidonic acid, and
provides energetic metabolites glucose and lactate. Astrocytes projections called end-feets
form remarkable associations with the vascular endothelial cells, determining the formation
and maintenance of the blood–brain barrier (BBB). These interconnections are included in
the structuring of the outermost glial limiting membrane (glia limitans), which insulates
the brain parenchyma from the vascular and subarachnoid compartments [47–49].

Molecular markers immunostaining successfully allow the identification of astrocytes.
Although these cells represent a heterogeneous group, they consistently express glial fibril-
lary acidic protein (GFAP). This intermediate filament protein is involved in cell motility
and structural stability, and is highly expressed during brain damage and other insults.
Other markers include another intermediate filament protein, nestin and brain lipid binding
protein (BLBP) in the case of immature astrocytes. Mature cells express calcium-binding
protein S100β/S100B, excitatory amino acid transporters EAAT1/GLAST-1/SLC1A3 and
EAAT2/GLT-1/SLC1A2, glutamine synthetase (GS), aldehyde dehydrogenase ALDH1L1,
AQP4 and gap junction components connexin 30 (Cx30/GJB6) and Cx43/GJA1 [50–60].
These molecules are indeed useful for identifying astrocytes, and their functions are well
documented in key functional aspects of astrocytic cells. We highlight that these markers
may not be used unequivocally for every occasion. GFAP gene expression is usually ob-
served in white matter fibrous astrocytes, and its expression in radial glial progenitor cells
makes it less specific [61]. S100B, in contrast, has shown to be predominantly expressed in
gray matter protoplasmatic astrocytes, and in differentiating oligodendrocytes [62].

Astrocyte markers should ideally reflect their relevant molecular functions and can
be selected and/or used in combination to increase specificity and label most types of
astrocytes in different contexts. A recent study profiled astrocyte density and molecular
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signatures in different murine brain regions using fluorescent labeling driven by Aldh1l1
promoter, which suggested that neuron-to-astrocyte ratios change because of neuronal
density, and not because of astrocyte cell numbers. Although astrocyte density is quite
homogenous and correlated with endothelial cell numbers, transcriptional signatures point
to the existence of molecular features and functions specific to brain regions [63]. In the
future, cell markers, alongside neuroanatomical and functional information, will have to
be combined for proper evaluation of the varied spectrum of astrocyte physiology. These
recent developments on astrocyte heterogeneity will also impact the design, interpretations
and perception of limitations for studies conducted in vitro.

3. Reactive Astrocytes and Pathological States

The role of astrocytes in neuropathologies has been intensively studied, including
neuroinflammation, neurodegenerative diseases and neurodevelopmental disorders. The
mechanisms by which astrocytes intensify or cause detrimental effects to brain elements
include: (1) loss of tissue homeostasis control; (2) disease progression by transduction
of inflammatory signals into a changed cellular microenvironment; and (3) secretion of
molecules that damage or affect other brain cells. Much of the knowledge on astrocytes
behavior in pathological states is related to a reactive phenotype, which will be discussed
in the following paragraphs.

Escartin et al., in a review article signed by leading research groups, discussed that
the terminology for astrocytes in pathological states is not well defined [64]. Indeed, the
confusing terminology in the literature, and the lack of validation of in vitro findings
using in vivo models, render the comparisons between studies difficult and challenging.
According to that review work, special attention should be given to the following terms:
“reactive astrocyte”, “astrocytosis”, “reactive gliosis”, “astrogliosis”, “astrocyte activation”
and similar. Following the terminology consistency recommendation, in contrast to “as-
trocyte activation”, which refers to more physiological contexts, we will apply the terms
“reactive astrocytes”, “reactive astrogliosis” and “astrocyte reactivity” when referring to a
pathological state, or a model that simulates a pathological context.

In vitro studies designed to mimic disease states are also capable of displaying as-
trogliosis, including increased chondroitin sulfate proteoglycans (CSPGs), which is the
hallmark of this process, along with other features of reactive astrocytes [65–69]. In severe
pathological states, it is well recognized that intense astrogliosis takes place during brain in-
jury, infection and neurodegenerative processes in general. The increased astrocyte density
and other relevant changes in pathological states, including cell shape, size and function,
determine profound changes in brain metabolism and reactive defense mechanisms, such
as the glial scar discussed below [64,70].

Reactive astrogliosis and certain astrocytes phenotypes can contribute to progressive
neuronal damage as a consequence of a proinflammatory state (called A1-, or A1-like astro-
cytes, in former literature) and from the loss of the protective and prosurvival functional
activities typical of A2-like cells (nomenclature also employed here to match common
terminology). The bias toward the “reactive” astrocyte can be triggered by varied stimuli
such as injury, pathogens, toxic molecules and so on [71–74]. It is beyond the scope of
this review to discuss reductionism of cell state interpretations, and whether astrocytes
reactivity leads solely to the secretion of inflammatory mediators and the increase in poten-
tially harmful molecular species. As one may expect, this concept also claims that these cell
changes are detrimental to neuronal elements, due to a decreased release of beneficial and
neuroprotective astrocyte-derived factors/metabolites (reviewed in [64,75–77]). While we
refrain from a simplified view of astrocyte states, we observe that the literature frequently
interprets astrocyte responses as a dichotomized polarization. This limitation is often
present in cell culture studies as well.

The complete understanding of reactive astrocytes and astrogliosis depends on the
observation and analysis of other components of the brain environment. In contrast to
the experimental setups that aim to approach the entire scenario, cell culture techniques
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have contributed to understanding the cell-autonomous mechanisms by which astrocytes
modify their functions under noxious stimuli. Different paradigms have shown that
astrocytes participate in neurotoxic events; for instance, mediating neuronal cell death
upon exposure of Aβ-amyloid peptide from AD, or by secreting proteins that reduce
neuronal survival in models of neurodegeneration or neurodevelopmental diseases, such
as Fragile X syndrome, Rett syndrome and Down syndrome [78–80]. For more information
on the different neurodegenerative diseases in which astrocytes play critical roles, we
suggest dedicated reviews [81–83].

4. Experimental Readouts for Reactive Astrocytes in Inflammation Context

As summarized in Figure 2, the analysis of astrocyte reactivity relies greatly on the
activity/expression of astrocyte markers, a few metabolic enzymes and transporters, pro-
inflammatory molecules and components of the extracellular matrix (ECM).
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astrocyte functions in barrier formation and tripartite synapse.

In experimental settings for neuroinflammation research, pathogen-associated molecu-
lar patterns (PAMPs), such as Gram-negative bacteria lipopolysaccharide (LPS), have been
widely employed to engage toll-like receptors (TLRs) and promote proinflammatory gene
expression in the brain or in cell culture. Shortly after TLRs characterization in the very
early 2000s, it was demonstrated that the effects of LPS infusion in the brain depend on its
cognate receptor TLR4 [84]. Lenhardt et al. corroborated this when reporting that astrocytes
and oligodendrocytes primary cultures do not express significant amounts of TLR4; instead,
only microglia cells express it and are a required factor to promote damage induced by
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LPS [85]. In a dedicated review a few years later, Saura questioned the literature regarding
NO production by astrocytes stimulated with LPS, arguing that small microglial contami-
nations are often present in astrocyte primary culture preparations, which accounts for a
dramatic effect in response to LPS [86]. In consequence, NO and other proinflammatory
molecules may not be produced by astrocytes.

Even though contaminating microglia is an alarming issue in cell culture, several
studies continued to report evidence that astrocytes are fully capable of mounting innate
immune responses through the activation of different signaling pathways [87]. These
findings were contested by experiments conducted with primary cultures treated with
liposomal clodronate, which reduced microglia and blunted proinflammatory cytokines
interleukin 1 β (IL-1β; protein symbol: IL1B) and tumor necrosis factor α (TNF-α; protein
symbol: TNF) upon IL6 stimulation [88]. In addition, microglia depletion with a CSF1
receptor inhibitor (PLX-5622) successfully reduced microglia content in astrocyte/microglia
mixed cultures. These microglia-depleted cultures were incapable of producing TNF when
stimulated with LPS, but maintained partial induction of IL6 [89]. Another CSF1R inhibitor
(PLX-3397) was also able to deplete microglia from primary astrocyte culture [90], and
is a promising tool, along with other CSF1R inhibitors, to accurately evaluate astrocyte
responses in inflammatory conditions.

While microglia is naturally in contact with astrocytes, one must note that microglia in
standard culture conditions lose their phenotype [91]. Stimuli that trigger contaminating
microglia reactivity and proliferation pose a difficult problem regarding the evaluation
of genuine astrocytes responses. This contributes to the finding that microglia secreted
factors (C1q, TNF and IL1A) cause robust reactivity of astrocytes [92]. Overall, these obser-
vations indicate that IL6 is a suitable cytokine to evaluate astrocyte reactivity and has been
known to have functions related to astrocytes for quite a long time [93]. Other transcripts
have been identified as pan reactive (Gfap and vimentin/Vim), neuroinflammatory-specific
(A1/A1-like), or ischemic-specific (A2/A2-like), discriminating phenotypes and highlight-
ing complement C3 as a good marker of A1/A1-like cells in neurodegenerative diseases [92].
Also of note, oncostatin M receptor (Osmr), ceruloplasmin (Cp) and lipocalin 2 (Lcn2) could
be sensitive markers of astrocyte reactivity; in fact, these transcripts show major induction
in brain tissue infused with LPS (as well as other transcripts classified as A1- or A2-specific),
and Osmr induction presents a relative selectivity for astrocytes [94,95]. A well-studied
mechanism by which astrocytes respond to inflammatory stimuli, pathological and/or
aging conditions is the release of extracellular vesicles (EVs), promoting neuroprotection
and neuronal survival in response to anti-inflammatory cytokines, such as IL10 [96,97].
On the other hand, under pro-inflammatory stimuli, such as IL1B or TNF, secreted EVs
can promote inflammatory signal transmission, as well as neuronal plasticity and mod-
ulation [97–99]. The presence of the inflammasome NLRP3 and NLRC4 expression was
observed in both human and mouse astrocytes [100] and NLRP2 only in humans [101].
Especially when related to certain disorders, such as demyelination, multiple sclerosis
(MS), AD, amyotrophic lateral sclerosis (ALS) and traumatic brain injury [72,100,102–104],
culture models were extremely important to some of these findings.

Other readouts were studied in the context of brain damage or neurodegenerative
diseases, including CSPG production in response to transforming growth factor beta
(TGFB1/2/3) signaling, which resulted in glial scar formation [105–107]. Loss of AQP4,
which impacts cerebrospinal fluid homeostasis, is also a relevant index of pathological
changes in astrocytes relevant to barrier function [108,109]. Morphological changes, calcium
signaling, and metabolic analytes (ATP levels, reactive oxygen species, synthesis and
uptake of neurotransmitters) present changes in models of AD, Parkinson’s disease (PD)
and ALS [75,110].

5. Astrocytic In Vitro Models

When selecting an in vitro model, it is critical to consider the advantages and limita-
tions to provide plausible answers to the investigated biological question. The most used
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cell culture models are cell lines, primary cell culture, immortalized astrocytes (IA), differen-
tiated induced pluripotent stem cells (iPSCs), 3D culture, bioprinting and organoids/mini-
brains. We reviewed the most common astrocytic cell models and evaluated their limitations
and advantages (see Table 1), along with the reported outcomes (Table 2). In addition, we
show some examples of studies conducted with astrocyte primary culture in Table 1. The
outcomes from the analysis of different astrocytic cell culture types, especially in the case of
convergent results, provide powerful means to establish specific roles of the most abundant
glial cell type in neuroinflammation and neurodegeneration research.

Table 1. Comparison between the different cell culture techniques for astrocyte research.

Culture Type
Cell Line Main Advantage Limitations

Primary culture Low cost and simple methodology. Disseminated
methodology that is comparable to literature.

Usually employs serum (not obligatory) and is
susceptible to induction of reactive phenotypes.

High percentage of cellular senescence with
passages; low proliferation; difficult to scale up;

prone to contamination.

Cell lines Easy to obtain (many are commercial); expandable; allow
several passages; easy to manipulate; reduces animal usage

Cancer cell phenotype; expression profile differs
from in vivo astrocytes.

Immortalized astrocytes
Intended to keep primary cell characteristics;

less cell death and increased resilience to passages,
freezing/thaw; easier to manipulate

Similar to primary cell culture; genomic
integration that promotes cellular changes

iPSC-derived astrocyte

Relevant to disease studies (derived from patient);
can be grafted; more similar to in vivo; reduces animal usage;

good proliferation; allows differentiation into astrocyte
types; serum-free

High cost; long-term culture; can
present mutations

Bioprinting Robotized; standardized dimensions;
improves ECM

Expensive; delicate constructs;
demands bioink characterization

3D culture/organoids Allows the analysis of complex interactions between different
cell types; mimics in vivo conditions; cell heterogeneity

High cost; difficult to reproduce results, cell death
in the organoid core; difficult nutrient diffusion

Table 2. Readouts in different astrocyte culture models (neuroinflammation studies).

Astrocyte-Related
Readouts Primary Culture Cell Lines Immortalized

Astrocytes
iPSC-Derived

Astrocyte Bioprinting 3D Culture
and Organoids

GFAP, S100B, Vimentin [88–92,111,112] [113,114] [115–117] [118–120] [121–123] [124] (GFAP
only), [125]

C3, AQP4,
ALDH1L1, CD44 [92,111,112] - [115,117] [118–120] - [126]

GS, GLT-1, GLAST [111] - [115,117] [118] - [126]

Metabolic assays
(e.g., glutamate

clearance/uptake, lactate
and glucose uptake)

[111] - [115] - - -

Pro-inflammatory
(e.g., NFkB, TNF-α, IL-1

α, IL-1 β, IL-6)
[87,88,91,93] [113,114,127] [116,128] [119] [123] [126]

Anti-inflammatory
(e.g., IL-10) - - - - - [126]

Oxidative stress
(e.g., ROS production,

iNOS, DDIT3/CHOP *)
- [113,114,127] [116] - - -

Intracellular calcium - [113,114] - - - -

* DDIT3/CHOP: C/EBP homologous protein 10.

5.1. Primary Cell Culture

Brain cell culture procedures started with studies of neuronal development, perhaps
because nerve cell biology was one of the most favorable subjects to be investigated under
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the microscope in the early 20th century. In fact, the hanging drop technique developed by
Ross Harrison in 1910 showed for the first time that it was possible to culture neurons out-
side the body. This breakthrough highly influenced similar applications for numerous cell
types (Figure 1), and subsequent improvements like culture flasks, culture chambers and,
more recently, microfluidic devices and others refined neuroscience studies in vitro [129].
Human and other mammalian neuroglia observation in cell culture dates from the 1930s,
and possibly earlier, as reviewed in a study by Mary Jane Hogue [130]. However, conditions
that made it possible to enrich astrocytes were developed later. For instance, dissociated
human brain cells from a fetus gave rise to astrocytes and radial glia cells formerly known
as spongioblasts [131,132]. This preparation was successfully used to investigate astrocyte
transformation by an oncogenic DNA virus, for example [133]. In the 1970s and early 1980s,
it was shown that a newborn rodent brain could be used to obtain macroglia [134], and
McCarthy and Vellis successfully separated oligodendrocytes from astrocytes by driving
sheer forces through shaking to obtain a purified primary cell culture expressing GFAP
with typical astrocyte morphology [135–137]. These purified preparations represented
key methodologies to characterize metabolic and electrophysiological properties of the
astrocytes, including the transport of excitatory neurotransmitter glutamate ([82], reviewed
in [83]) which is converted to glutamine because mature astrocytes in culture express
glutamine synthase (GS) [138–140]. There is also in vitro evidence that astrocytes are
metabolically involved in ionic and osmotic homeostasis in the brain [141]. Subsequently,
it was found that glutamate cotransport with sodium in astrocytes stimulates aerobic gly-
colysis, consequently with lactate production, which mediates metabolic coupling between
neuronal activity and glucose consumption by the brain [142]. With that in mind, at least
four relevant biochemical parameters to brain function can be measured from cell culture
material due to astrocyte metabolism: glucose consumption, lactate production, glutamate
uptake and glutamine synthesis. Primary culture of combined cell types can also help
disclose mechanisms of cell–cell interactions, like those involved in the formation of glia
limitans, which is important to BBB [143]. In addition, the study of astrocyte function in
neurodegenerative diseases has been improved with primary culture techniques. MS, an
autoimmune disease mediated by the demyelination of the CNS, is an example of a degen-
erative disease where astrocytes play both inflammatory and protective roles, secreting
chemokines and promoting cell migration through the BBB, but also favoring CNS remyeli-
nation by promoting the differentiation of oligodendrocyte precursor cells. These mecha-
nisms have been well studied by different groups utilizing not only in vivo models [144]
but also primary cultures of astrocytes and co-cultures with microglia [100,145,146].

Much of the discussion on primary cell culture, microglial contamination and neuroin-
flammatory analysis has been presented in the Experimental Readouts for Reactive Astrocytes
in an Inflammatory Context Section (see above). In fact, primary cell culture of astrocytes is
the most used model in vitro to evaluate how these cells respond to inflammation.

Although it is not possible to promptly translate in vitro findings into physiological
astrocyte function in brain tissue, primary cell culture data not only enabled exploring
new mechanisms and cellular features, but also provided proof of concept that is very
difficult to show in vivo. It should be noted that much of the knowledge discussed in
this section was reported before the massive development of genetic tools available today
to work in vivo (transgenics, gene editing, viral delivery, conditional and cell-specific
DNA recombination, etc.). Primary culture from transgenic and knock-out rodent models
increased the possibilities to expand our knowledge on gene function in astrocytes.

5.2. Cell Lines

Cell lines are essential for the development of the cell biology field. The advantages of
using cell lines are numerous: stable and reproducible preparations within certain passage
numbers; cells are handled easily and in a short time they expand to large quantities,
sparing numerous animals from being used in experimental research; and the cells are
usually available in cell banks so there is a widespread use and it is easier to compare
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results worldwide. Several studies related to astrocytes have been conducted with cell
lines, helping to unveil their cellular functions in the CNS [147–151]. As we will discuss,
there are more limitations concerning the use of cell lines in terms of representation of brain
astrocyte functions in vivo.

One of the most used cell lines for astrocyte research is C6 rat astroglioma cells.
These cells were isolated from rat glioma induced by N-nitrosomethylurea with verified
relative preservation of the expression of typical astrocyte markers such as GFAP, glutamate
transporter, S100B and GS [152]. The expression of genes typical of brain tumors such as
PDGFb, IGF-I and EGFR was also observed in C6 cells [153]. The ambiguous nature of
these cells, sharing both astrocytic and tumoral origins, clearly limits the interpretation
of data that could be relevant to astrocyte physiology, and that accounts for the fact that
C6 are also used in cancer research for glioma and glioblastoma, including new potential
drug testing.

The advantages and limitations of the cell lines must be carefully considered while
planning the experiment design, because chromosome stability, cell growth, metabolism,
oxidative stress resistance and susceptibility to cell death are impacted by the cancerous
transformation [152,154]. These limitations may not be present for other types of cell culture
listed below.

C6 cells are responsive to LPS and capable of inducing Il6, Tnf, GFAP, ciclo-oxigenase 2
(PTGS2/COX-2) and inducible nitric oxide synthase (NOS2), although at a very high
concentration (10 µg/mL) [113]. In addition, the PD-inducing neurotoxin 1-methyl-4-
phenyl 1,2,3,6 tetrahydropyridine (MPTP), or ferrous sulfate that induces oxidative stress,
also increases proinflammatory molecules [114,155]. These studies were conducted by the
same research group, and it will be interesting to verify the capacity of astrocytic cell lines
to respond to and promote inflammatory reactivity in comparison to other models. In this
direction, it was shown that Aβ25–35-amyloid peptide is able to induce the expression of
proinflammatory molecules in C6 cells [127].

5.3. Immortalized Astrocytes (IAs)

To complete studies involving many treatments, replications and validations, in addi-
tion to combining results acquired over years, it is important to preserve the cells’ morpho-
logic, proliferative and metabolic patterns between passages. This is usually difficult to
achieve with primary cell culture, which presents limited cellular replication and capacity
to preserve gene expression and morphology [152]. Immortalization is a suitable solution
for this problem.

Cell immortalization can be performed through oncogenes expression, namely hTERT
(human telomerase reverse transcriptase) and SV40 large T antigen; one promotes telomere
extension during replication and the other interferes with cell-cycle control, respectively.
Telomeres shortening during each cell-cycle is a consequence of the linear nature of chro-
mosome endings, and hTERT efficiently replenish the lost DNA fragments, while large
tumor antigen interacts and inactivates tumor suppressors p53 and retinoblastoma-protein
(pRb) [115,156–160].

Since varied cell lines were generated by immortalization, it is important to observe
the different strategies employed in each case, which can impact the choice for a particular
astrocytic cell. Immortalization with SV40 large T antigen was achieved in cells from
a human fetus brain in 1985. Unlike former experiments with SV40 infection [133] that
provided cells with limited passage, the employed strategy consisted in transfecting origin
defective SV40 DNA into glia cells, so that the virus would not replicate, which resulted in
an increased ratio of replication and survival of the cells called SVG [156]. Similar results of
immortalization were observed in other subsequent studies; for instance, HSC2/HSC6 cells
using temperature-sensitive mutant of SV40 large T antigen [161], A735 cells also using
SV40 large T antigen [162], NHA-E6/E7/hTERT cells using telomerase [163], NHA/TS
cells using SV40 early region [164] and C8-D1A [165]. These models have been widely
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employed, including preclinical studies and BBB modeling [166–168]. It is worth noting
that IAs from different species can be acquired through commercial platforms.

Another approach to generate immortalized cells involves obtaining a primary cell
culture from transgenic animals designed for this purpose. Liu and colleagues were able to
isolate immortalized astrocytes from murine optic nerves [169]. The transgenic strain ex-
presses the temperature sensitive SV40 large T antigen mutant tsA58 under the class I MHC
H2kb promoter, leading to ubiquitous oncogene expression upon IFNγ exposure [170]. For
instance, astrocytes deficient in Abcd1-deficiency (X-linked adrenoleukodystrophy model)
have been studied using this technology [171]. As will be discussed in the Section 7, these
immortalization techniques can produce cells with similar and dissimilar characteristics
compared to primary cell culture and, once again, this can impact interpretations and
comparisons of the resulting experimental data.

IAs can replicate inflammatory responses observed with other in vitro models. A
proteomic study compared the responses of immortalized human fetal astrocytes to high
concentrations of IL1B, or TNF, or LPS, and concluded that several proteins involved in
inflammation could be induced by these treatments but, unlike the cytokines, LPS failed to
activate the canonical nuclear factor (NF)-κB pathway and induce IL6 [128]. The failure
in IL6 induction by LPS is actually surprising considering primary cell culture and cell
line data, and deserves further investigation. Cytokine treatment on murine IAs were also
able to convert the cells to a neurotoxic phenotype that did not depend on inflammatory
molecules released by the astrocytes [116], which reinforces the concept that these cells are
sensitive to the proinflammatory milieu typical of neurodegenerative diseases. SV40 large
T antigen transformed IAs from the hippocampus of 3xTg-AD and wild-type control mice
were shown to display comparable features to primary astrocytes, except for diminished
levels of GFAP and AQP4 [117]. Few inflammatory readouts were investigated in this study,
but curiously NOS2 induction by LPS and TNF was present in these IAs, and astrocytes
as a source of NO have been questioned before (see above). Overall, IAs represent a
promising tool to conduct large-scale studies for neuroinflammation in combination with
neurodegenerative disease models, although validation of cellular responses must be
carefully evaluated.

5.4. iPSC-Derived Astrocytes

Takashi and Yamanaka showed that somatic cells could be reprogrammed to pluripo-
tency by the forced expression of four transcription factors: Pou5f1/Oct-3/4, Sox2, cMyc
and Klf4. This was achieved in complete differentiated fibroblasts, and the resulting cells
were called induced pluripotent stem cells (iPSCs), which presented morphofunctional
features typical of embryonic stem cells [172]. The method was successfully applied to
human cells [173].

One of the first astrocyte cell culture obtained from human iPSCs (hiPSCs) was re-
ported in 2011, when iPS(IMR90)-4 cells reprogrammed from an IMR90 fibroblast were
subjected to differentiation, resulting in immature astrocytes [174]. More than 90% of these
cells showed expression of GFAP and S100B after 24 weeks in culture. In addition, these
cells could propagate calcium waves, uptake glutamate and promote synaptogenesis and
BBB formation. In conclusion, these cells presented primary astrocyte culture character-
istics that could be maintained for 180 days after several passages and expansion. The
predifferentiation of hiPSCs into neuroepithelial cells was a key step to achieve astrocytic
cells. In contrast, induced astrocytes (iAstrocytes) could also be directly obtained from
fibroblasts through the expression of NFIA, NFIB and SOX9 transcription factors [175].
Several methods were reported to generate iAstrocytes through neural progenitor cells
(NPC) like the pioneer methods [174,176–179]. Most methods demanded long culture
protocols to generate homogeneous mature astrocytes [174,179], or required sorting to
reduce heterogeneity [180,181]. More recently, cell culture media conditions provided the
means to reduce the protocol timeline [182].
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Due to technical improvements and popularization of hiPSCs generation, this ap-
proach has been applied to study neurodegenerative diseases [183] and drug testing [184]
through the use of the patients’ cells to discover new treatments. In line with this strategy,
patients’ hiPSC-derived astrocytes have received growing attention in the last decade,
which is corroborated by many preclinical studies [185].

The possibility to explore astrocytes from human subjects with minimal invasivity (cell
collection) allowed the cellular investigation of mechanisms in the same genetic background
of the patient, which is very relevant for sporadic cases of neurodegenerative diseases.
However, it is important to evaluate if epigenetic marks and gene expression are compatible
with differentiated astrocytes and without residual molecular signatures from the parental
cell type [186–188]. Although hiPSC-derived astrocytes represent several advantages for
studying brain diseases, interpretation issues may arise depending on the differences be-
tween hiPSC lines that can impact growth properties, susceptibility to cell death, effects of
long-term culturing and so on. These problems can be circumvented by the use of several
age-matched controls and hiPSCs from different patient donors, or the use of controls gener-
ated through correction of the disease-associated mutation (see [189] for a discussion). The
high costs and laborious procedures involved in iPSC generation and maintenance make it
difficult to obtain representative samples from different patients. The CRISPR-Cas9 gene
edition methodology allowed significant advances in terms of introducing or correcting
mutation, avoiding genetic alterations caused by viral integration into the genome and
other artifacts promoted by previous generation strategies [190]. Several companies and
nonprofit organizations provide hiPSCs and hiPSC-derived astrocytes, alleviating research
laboratories from the burden involved in hiPSC generation and maintenance.

iAstrocytes development has already produced notable results in the field of neuroin-
flammation [110]. Santo et al. described a method to generate astrocytes from human iPSCs
and ESCs, yielding functional astrocytes that are inflammation responsive to cytokines
with increased percentage of IL8- and IL6-positive cells, similarly to primary culture [191].
Stratification of MS patients into benign or progressive MS phenotypes allowed the study
of iPSC-derived reactive astrocytes and the discovery of neuroprotective properties in
inflammatory conditions related to the benign MS phenotype [192]. Another recent article
also made use of co-culture assemblies of neurons and astrocytes derived from iPSCs,
modeling tau-pathology that features tau hyperphosphorylation and misfolding, resulting
in changed neuroinflammatory patterns [118]. iPSCs of a different source, in this case
human peripheral blood mononuclear cells, have also been used to model ALS-astrocytes,
which shows increased secretion of IL1B, TNF and IL6 [119]. Other examples involved
the investigation of inflammatory disruptors of the BBB modeled with iPSC-derived cells,
and drug testing against inflammation using human fibroblasts as source material to
generate iAstrocytes [193–195].

5.5. 3D Culture and Bioprinting

The traditional culturing in flasks and plates presents an obvious limitation compared
to in vivo: cells grown as monolayers do not replicate the microenvironment found in
tissues [196]. It is well documented that many cell types present aberrant cell division
rates, show flatter shape and lose their phenotypic identity when cultured in 2D [197]. The
development of 3D culture methods circumvented this limitation. This involves assembling
a natural or a synthetic polymeric scaffold jointly with the cell suspension. In addition,
the employed material can simulate the architecture and soft fabric of the brain. The use
of hydrogels in combination with ECM components promote important changes in cell
behavior, and provide a molecular microenvironment more compatible with the tissue
in vivo [198–201].

The 3D culturing technique can be further combined with bioprinting, and the hy-
drogel mixture to be mixed with cell suspension, in this case, is called bioink. Bioprinting
improves the spatial distribution of biomaterial and cellular components, leading to the con-
struction of a synthetic and complex living tissue. The bioprinting process is controlled and
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can produce constructs previously determined in size, thickness and shape [199,200,202].
Accordingly, 3D culturing and bioprinting increase the dimension of exploratory evalu-
ations of cell–cell [189,190,203,204], cell–hydrogel [205] and cell–ECM interactions [206]
in processes of cell migration [207], shape remodeling [122], differentiation [208,209], neu-
ropathological paradigms [210,211] and so on, with greater chance of compatibility with
in vivo conditions.

A 3D collagen hydrogel-based culture was successfully employed with astrocytes,
thus generating a culture system that consistently generates less reactive state, resembling
undamaged brain phenotypes. Upon TGFB treatment, these cells presented more ram-
ification morphology and expressed molecules associated with gliosis (elevated GFAP,
Aquaporin 4, CSPG, Vimentin and IL-6 secretion) [212]. Different materials have been
systematically tested to evaluate in vitro conditions that mimic the natural resting state of
astrocytes and microglia culture (reviewed in [213]). Although 3D culture is promising
for modeling neuroinflammation and neurodegeneration, there is still a lack of systematic
studies that compare neuroinflammatory readouts in 3D cultures versus canonical 2D. For
instance, SARS-CoV-2 infection and AD has been investigated in 3D cultures [214,215], but
neuroinflammatory readouts are not explored in general.

5.6. Neurospheres and Brain Organoids (Mini-Brain)

Neural stem cells (NSCs) have been isolated from the embryonic, neonatal and adult
rodent CNS, and respond to the mitogenic signal from epidermal growth factor (EGF) and
fibroblast growth factor 2 (FGF-2). These cells are capable of asymmetric division, maintain-
ing the stem cell pool, while retaining the ability to differentiate into neurons and macroglia.
NSCs from rodents and humans can be cultured in nonadherent conditions, developing
spheroids called neurospheres. Neurospheres in adherent conditions and deprived from
growth factors differentiate in neurons and astrocytes [80,216,217]. Neurospheres have
been used to access cellular properties from progenitor and stem cells, such as prolifera-
tion, self-renewal capacity, and multipotency, while their capacity to generate astrocytes
has been less explored. It has been argued that experiments involving neurospheres lack
consistency between research groups, due to sensitivity to the culturing method used (for
review see [218]). Nevertheless, neurospheres can be considered a good approach to study
the development of neural cells.

Further improvements of human NSC culture methods allowed the evolution of a
methodology called brain organoids (also known was mini-brains). The hiPSCs grown
on feeder cells were cultured in nonadherent conditions, and without 3D scaffolds could
generate laminated structures called human cortical spheroids that presented functional
astrocytes and only excitatory neurons in a reproducible manner [124]. Brain organoids
are self-organized structures that are successfully used to model brain diseases (reviewed
in [219–221]). The Zika virus (ZIKV) infection is one example of mini-brain modeling for
studying fetal virus infection, revealing the dynamics of infectivity in astrocytes [222].
Several methodologies have been developed to include technological upgrades from
bioprinting, for instance the inclusion of vascular elements and the use of microfluidic
devices [222–226]. Although much effort has been employed to use brain organoids in re-
generative medicine, their use as disease models started a new chapter for studying the glia
relationship with neuroinflammation. An important implementation is the incorporation
of microglia in these organoids, which has been recently achieved [126,227–229].

Since the employment of mini-brain–containing microglia cells is quite recent, the
reports of neuroinflammation are related to neuronal/macroglial components only. This
is in agreement with studying astrocytes disconnected from microglia, which represents
most studies conducted so far. Cairns et al. introduced a model of herpes simplex (HSV-1)
infection in mini-brains that presented features of AD brains including amyloid plaque–like
formations, gliosis, neuroinflammation and decreased functionality. In this study, gliosis
and astrocyte reactivity was accessed by increased GFAP, vimentin, LCN2 and serpin
family E member 3, while the proinflammatory profile was accessed by the upregulation
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of TNF, IL1B, IL6 and IFNG [125]. ZIKV infection in mini-brains also induced markers
of neuroinflammation [222], which were also shown in a model of methamphetamine
exposure that promoted astrogliosis and upregulation of GFAP, inflammasome NRLP1,
IL6 and other genes related to inflammation [230]. Altogether, brain organoids offer
an advanced platform for testing mechanisms involving astrocytes that are relevant to
neuropathologies with inflammatory components.

6. Major Differences between Cell Cultures: Implications for Neuroinflammation
Associated with Neurodegeneration

Primary astrocyte cell culture development not only paved the way for studying these
cells, but also promoted the use of a widespread technique that is relatively easy to standard-
ize in research laboratories. As mentioned, microglia and other cell-type contamination can
lead to variable degrees of astrocyte reactivity that are problematic for results interpretation.
In addition, the use of fetal calf serum presents the cells with many soluble molecules
usually not present in the brain environment. These culturing techniques yield a reactive
phenotype, unlike humans in vivo (see [195] for discussion). New technical advances in cell
purification and synthetic medium formulation can overcome these limitations, although
the classical culture methodology will still be used for screening analysis and preliminary
data acquisition. This also holds true for cell lines, which are advantageous for large-scale
analysis such as drug testing and RNAi or CRISPR-Cas9 screenings.

Regarding cell lines and IA, Galland et al. compared the C6 cell line, IA and primary
astrocyte culture, suggesting that C6 and IA show different morphology and biochem-
ical activity compared to primary astrocytes [152]. The authors observed a decrease in
astrocyte markers such as GFAP, S100B, ALDH1L and AQP4, in addition to a reduced
glutamate metabolism in IA cells, indicating an inferior profile when compared to the other
cells [115,158,231–234]. Although these striking differences are present in cell lines, immor-
talized and C6 cells preserve cell shape plasticity and glucose consumption in response to
glutamate [152]. iAstrocytes represent a new chapter in astrocyte in vitro studies, and it is
important to compare treatment and disease modeling outcomes with traditional models,
as has been done by some groups. So far, the possibilities offered by this technology are
more prevalent than the drawbacks.

Both primary astrocytes, cell lines, IA and iAstrocytes may benefit from 3D culturing,
which can promote a resting state that is similar to the natural microenvironment in the
undisturbed brain. Co-cultures of iPSC-derived neural cells also seem promising for mod-
eling diseases and BBB function. The complexity of varied cell populations in the same
system pose a problem similar to studies in vivo, which is the evaluation of individual
cell-type responses and contributions. Since neuroinflammation is quite susceptible to
the influence of microenvironment modifications promoted by the different neural cells,
the gain of reproducing the natural context demands comes with the cost of sophisticated
analysis application. Cell sorting, single-cell RNA sequencing and other single-cell ap-
proaches are being used to analyze astrocytes responses and generate detailed information
of subpopulations and heterogeneity with unprecedented cutting-edge technologies.

7. Conclusions and Future Directions

Cell lines and IAs are important tools in astrocyte research, especially those involving
complex molecular/genetic manipulations. One advantage of these cells is their capacity
to rapidly expand cellular material and apply large-scale analysis. However, experimental
interpretations are quite limited compared to primary cultures, since astrocytes features
can be compromised by cell transformation and modify neuroinflammatory responses
to a large extent. Also, rodent 2D culturing can be very limited in terms of providing
pathological mechanisms, excluding those that are conserved and cell-autonomous, since
cells are grown as monolayer and present initial degrees of reactivity, and these are limited
to simpler interactions. Co-cultures may circumvent the lack of cell diversity interaction and
offer a middle ground compared to more elaborated 3D cell cultures, which recapitulates
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natural astrocyte behavior. iAstrocytes represent a new frontier to model neurodegenerative
diseases, and neuroinflammation research is gathering important information for both
protective or detrimental effects from astrocytes reactivity. Organoids combined with iPSC
technology and gene-editing tools represent the highest level of neurodegenerative disease
modeling. The combination of these different in vitro resources will be essential to validate
findings and evaluate cellular responses individually.
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