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Effective Null Raychaudhuri Equation
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Abstract: The effects on Raychaudhuri’s equation of an intrinsically-discrete or particle nature of
spacetime are investigated. This is done through the consideration of null congruences emerging
from, or converging to, a generic point of spacetime, i.e., in geometric circumstances somehow
prototypical of singularity issues. We do this from an effective point of view, that is through a
(continuous) description of spacetime modified to embody the existence of an intrinsic discreteness
on the small scale, this adding to previous results for non-null congruences. Various expressions for
the effective rate of change of expansion are derived. They in particular provide finite values for the
limiting effective expansion and its rate of variation when approaching the focal point. Further, this
results in a non-vanishing of the limiting cross-sectional area itself of the congruence.
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Recently, an effective metric, or qmetric, bitensor qab has been introduced [1–3], capable of
implementing the existence of an intrinsic discreteness or particle nature of spacetime at the microscopic
scale, while keeping the benefits of a continuous description for calculus [4]. qab acts like a metric in that
it provides a (modified) squared distance between two generic spacelike or timelike separated events
P and p (considered as the base and field point, respectively), which approaches the squared distance
as of an ordinary gab metric when P and p are far away. Contrary to a metric however, the squared
distance approaches εL2 (with ε = 1(−1) for spacelike (timelike) separation) in the coincidence limit
p→ P, with L being an invariant length characterizing the qmetric.

In [5], an extension of this qmetric approach to include the case of null separated events has
been considered, and an expression of qab for them has been provided. This case could be directly
relevant for the study of horizons. In the case of null geodesics near a focal point, this might be
exploited for example to study event horizons at their birth (described, e.g., in [6] (in particular,
Figure 57), [7], Figure 34.7, and [8], Box 12.1). When these geodesics are meant as histories of
ultrarelativistic or massless particles, we are led to singularity formation issues. In view of this,
the aim of this note is to investigate how the null Raychaudhuri equation gets modified by intrinsic
discreteness of spacetime, as captured by the qmetric, near a focal point.

A wide range of results has been obtained in the past concerning the study of quantum effects on
the Raychaudhuri equation. We would mention in particular the results obtained in Loop Quantum
Gravity/Cosmology (LQG/LQC) [9,10], which provide a detailed account, under isotropic conditions,
of the resolution of Schwarzschild’s singularity, as well as of the avoidance of the Big Bang singularity
formation. In a different vein, the studies originated in [11] are somehow prototypical of attempts
to include quantum effects in the Raychaudhuri equation with no reference to any specific quantum
theory of gravity. These latter studies are successful, as well, in showing that quantum effects protect
against singularity formation. The present attempt has also no reference to any definite quantum
theory of gravity. The difference with [11] is in the way quantum effects are introduced: there, through
consideration of quantum trajectories as in Bohm’s pilot wave formulation of quantum mechanics; here,
upon assuming the existence of a finite lower-limit invariant length L between space- or time-separated
events. The present study elaborates on previous results concerning the effects L induces on the rate of
change of expansion for timelike/spacelike congruences [12].
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In [1–3], the qmetric is introduced as something that leads to replacing the quadratic distance
σ2(p, P) between spacelike/timelike separated events by an effective distance [σ2]q = SL(σ

2)

dependent on the characterizing scale L. This effective distance is subject to the requirements SL → εL2

when σ2 → 0 and SL ∼ σ2 when σ2/L2 is large, as well as to an additional request in the form of the
effective kernel [G]q of the d’Alembertian, namely that [G]q(σ2) = G(SL) in all maximally-symmetric
spacetimes. This fixes the expression of qab(p, P) to the form:

qab = Agab + ε
( 1

α
− A

)
tatb, (1)

where ta is the normalized tangent vector (gabtatb = ε; ta = gabtb) at p to the geodesics connecting P
and p, gab is considered at p and α and A are functions of σ2, given by:

α =
SL

σ2 S′L
2 , (2)

A =
SL

σ2

( ∆
∆S

) 2
D−1

. (3)

Here, the prime symbol indicates differentiation with respect to σ2, and ∆ is a van Vleck
determinant ([13–16]; see [17–19]):

∆(p, P) = − 1√
g(p)g(P)

det
[
−∇(p)

a ∇
(P)
b

1
2

σ2(p, P)
]

(g = det gab) and ∆S(p, P) = ∆( p̃, P) with p̃ being that point on the geodesic through P and p (on the
same side of p) with σ2( p̃, P) = SL(p, P).

The extension of this approach to include the null case [5] is done shifting the focus of attention
from quadratic distance, which is identically vanishing in this case, to affine parameterization.
Exploiting the fact that an affine parameter λ, assigned with a null geodesics γ, is a distance as
measured along γ by suitable canonical observers parallelly-transported along it, the qmetric is
introduced as something that leads to replacing λ(p, P) (having λ(P, P) = 0) with an effective
parameterization [λ]q = λ̃(λ), which depends on the characterizing scale L (we omit the explicit
indication of this dependence). The effective parameterization has the requirements λ̃ → L when
λ→ 0 and λ̃ ∼ λ when λ/L is large, as well as the same additional request in the form of the effective
kernel [G]q of the d’Alembertian as above, specialized to points on null geodesics. This last request
consists of what is derived for points null separated from P from requiring [G]q(σ2) = G(SL) in all
maximally-symmetric spacetimes. This gives, for qab(p, P) with P and p null separated, the expression:

qab = Aγgab −
( 1

αγ
− Aγ

)
l(a m b),

with la = dxa

dλ and ma null with gabmalb = −2 considered at p (as well as gab is), la = gablb, ma = gabmb,
and αγ and Aγ are functions of λ given by:

αγ =
1

(dλ̃/dλ)2
, (4)

Aγ =
λ̃2

λ2

( ∆
∆S

) 2
D−2
(dλ̃

dλ

)− 2
D−2

.
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Here, ∆S(p, P) = ∆( p̃, P), where p̃ is that point on γ (on the same side of p) that has λ( p̃, P) = λ̃

with (∂aσ2)| p̃ = ∂aSL = 2λ̃la
| p̃.

The functions αγ and Aγ are defined for points on the null geodesic from P and then only on the
submanifold Γ consisting of the null congruence of all null geodesics emerging from P (considered as
the base point). Crucial in the derivation of these expressions is considering the d’Alembertian at points
of Γ in a form that has no derivations of the vectors tangent to the congruence taken along directions
outside Γ [5]. This has been accomplished through the following expression for the d’Alembertian
(meant as applied to a generic function f (σ2) in a maximally-symmetric spacetime):

2 f = ∇a∇a f =
(
4 + 2λ∇ili) d f

dσ2

(i = 1, ..., D− 1 are indices of components on Γ), i.e., in terms of a quantity, ∇ili = θ, the expansion of
Γ, in which all variations are in Γ. Expressions of [∇ili]q have then been readily obtained as:

[∇ili]q = ∇i

(dλ

dλ̃
li
)
+

1
2

dλ

dλ̃
qbcla∇aqbc (5)

=
dλ

dλ̃
∇ili − dλ

dλ̃

d
dλ

ln
dλ

dλ̃
+

1
2
(D− 2)

dλ

dλ̃

d
dλ

ln Aγ, (6)

where qab is the inverse of qab. These expressions provide the expansion [θ]q of the null congruence Γ
according to the qmetric. The aim of this brief report is to discuss what the associated effective null
Raychaudhuri equation is and to explore both this and the effective expansion [θ]q at coincidence limit
p→ P. The results we obtain refer to a null congruence emerging from generic P, but can equivalently
be read as referring to a null congruence converging to P upon substitution λ → −λ, λ̃ → −λ̃ and
L→ −L.

We begin by noting that, if we use the expressions for αγ and Aγ and introduce the quantity:

A∗γ = Aγ

(dλ̃

dλ

) 2
D−2

=
λ̃2

λ2

( ∆
∆S

) 2
D−2

, (7)

we can recast Equation (6) as:

[θ]q =
√

αγ

[
θ + (D− 2)

d
dλ

ln
√

A∗γ
]
. (8)

From this, considering the derivative of θ according to the qmetric:[ dθ

dλ

]
q

= [la∇aθ]q

= [la]q ∂a[θ]q

=
dλ

dλ̃
la∂a[θ]q

=
dλ

dλ̃

d
dλ

[θ]q

=
d

dλ̃
[θ]q,

we find: [ dθ

dλ

]
q

= αγ
dθ

dλ
+

1
2√αγ

[θ]q
dαγ

dλ
+ (D− 2) αγ

d2

dλ2 ln
√

A∗γ

= αγ
dθ

dλ
+

1
2

[
θ + (D− 2)

d
dλ

ln
√

A∗γ
]dαγ

dλ
+ (D− 2) αγ

d2

dλ2 ln
√

A∗γ. (9)
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In the third equality above, use has been made of [la]q = dxa/dλ̃ = (dλ/dλ̃)la.
Equation (9) is supposed to be the qmetric rate of change of the expansion for the null congruence

Γ. It exhibits quite a close resemblance to the qmetric rate of change of expansion found in [12] for
congruences of unit-tangent spacelike/timelike integral curves emerging from P (Equation (22) in
that paper), which, when the congruence is specialized to (spacelike/timelike) geodesics (which is the
context to which the qmetric (1) refers to), reads:

[ dθ

dλ

]
q
= α

dθ

dλ
+

1
2

[
θ + (D− 1)

d
dλ

ln
√

A
] dα

dλ
+ (D− 1) α

d2

dλ2 ln
√

A, (10)

where α and A are given in Equations (2) and (3). We see that Equations (9) and (10) are obtained one
from the other through the replacements (D− 2), αγ, A∗γ ↔ (D− 1), α, A.

Making use of the explicit expressions for αγ and A∗γ (Equations (4) and (7)), as well as of the
convenient expression:

θ =
D− 2

λ
− d

dλ
ln ∆ (11)

relating the expansion and the van Vleck determinant in null congruences ([18]; see also [5]),
Expressions (8) and (9) of the expansion and of its rate of change can be given the form:

[θ]q =
D− 2

λ̃
− d

dλ̃
ln ∆S, (12)

[ dθ

dλ

]
q
= −D− 2

λ̃2
− d2

dλ̃2
ln ∆S. (13)

In these (exact) expressions, any dependence of [θ]q and [dθ/dλ]q on αγ and A∗γ has been translated
into a dependence on λ̃ and ∆S. Comparison with Equation (11), and its derivative:

dθ

dλ
= −D− 2

λ2 − d2

dλ2 ln ∆, (14)

shows that the effective expansion and its effective rate of change at p with λ = λ(p, P) turn out to be
nothing more than the expansion and its rate of change evaluated at point p̃ on the same null geodesic
through P and p with λ( p̃, P) = λ̃. From:

dθ

dλ
= − θ2

D− 2
− 2

λ

d
dλ

ln ∆ +
1

D− 2

( d
dλ

ln ∆
)2
− d2

dλ2 ln ∆ (15)

(upon using (11) in (14)), accordingly we also get:

[ dθ

dλ

]
q
= −

[θ]q
2

D− 2
− 2

λ̃

d
dλ̃

ln ∆S +
1

D− 2

( d
dλ̃

ln ∆S

)2
− d2

dλ̃2
ln ∆S. (16)
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This fact makes Equations (12) and (13), as well as (16), quite useful when evaluating [θ]q and
[dθ/dλ]q at the coincidence limit. We find:

[θ]0 ≡ lim
λ→0

[θ]q

=
D− 2

L
− d

dL
ln ∆L

=
D− 2

L
− 1

3
L (Rablalb)|P + o

[
L (Rablalb)|P

]
=

D− 2
L

[
1− 1

3(D− 2)
δ + o(δ)

]
(17)

and: [ dθ

dλ

]
0
≡ lim

λ→0

[ dθ

dλ

]
q

= −D− 2
L2 − d2

dL2 ln ∆L

=
d

dL
lim
λ→0

[θ]q

= −D− 2
L2 − 1

3
(Rablalb)|P + o

[
(Rablalb)|P

]
= −D− 2

L2

[
1 +

1
3(D− 2)

δ + o(δ)
]
, (18)

as well as: [ dθ

dλ

]
0
= − [θ]0

2

D− 2
− 2

L
d

dL
ln ∆L +

1
D− 2

( d
dL

ln ∆L

)2
− d2

dL2 ln ∆L, (19)

where ∆L is defined as ∆L = ∆( p̄, P) with p̄ on γ such that λ( p̄, P) = L, and we used of the
expansion ([15,17–19]):

∆(p, P) = 1 +
1
6

λ2(Rablalb)|P + o
[
λ2(Rablalb)|P

]
of the van Vleck determinant and put δ ≡ L2 (Rablalb)|P with the expansions useful when δ � 1;
this sets a maximum allowed value for (Rablalb)|P. We see that, whereas classically, i.e., according to
gab, both θ and dθ/dλ diverge when p → P (being θ ∼ D−2

λ and dθ
dλ ∼ −

D−2
λ2 for λ → 0), according

to the qmetric they both remain finite, the limiting values of [θ]q and [dθ/dλ]q turning out to be the
expressions for θ and dθ/dλ computed at λ = L.

This adds, and corresponds, to the non-vanishing of the effective cross-sectional
(D− 2)-dimensional area of Γ in the coincidence limit p→ P. Indeed, from:

[
dD−1V

]
q =

( λ̃

λ

)D−2 ∆
∆S

dD−2A dλ

≡ [dD−2A]q dλ (20)

(Ref. [5], Equation (32), upon using the explicit expression for Aγ), where
[
dD−1V

]
q is the

effective volume element and [dD−2A]q the effective cross-sectional area of the volume element
dD−1V = dD−2A dλ of Γ, we get:
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[dD−2A]0 ≡ lim
λ→0

[dD−2A]q

= LD−2 1
∆L

(dχ)D−2, (21)

where we consider as the cross-sectional area element a (D− 2)-cube of edge λdχ. This completes
what we were searching for.

If we start now from the classical Raychaudhuri equation as applied to our
(affinely-parameterized) null congruence Γ, written as:

dθ

dλ
= − 1

D− 2
θ2 − σab σab − Rab lalb

(σab is shear; the twist is vanishing due to surface-orthogonality) and the use of (15), we get:

σab σab + Rab lalb =
d2

dλ2 ln ∆ +
2
λ

d
dλ

ln ∆− 1
D− 2

( d
dλ

ln ∆
)2

, (22)

and, from (16),

[σabσab]q + [Rablalb]q =
d2

dλ̃2
ln ∆S +

2
λ̃

d
dλ̃

ln ∆S −
1

D− 2

( d
dλ̃

ln ∆S

)2
, (23)

with its coincidence limit:

lim
λ→0

(
[σabσab]q + [Rablalb]q

)
=

d2

dL2 ln ∆L +
2
L

d
dL

ln ∆L −
1

D− 2

( d
dL

ln ∆L

)2
. (24)

In particular, we can read here the expression for [Rablalb]q and its coincidence limit in the
shearless case.

To conclude, we briefly comment on a consequence of the above regarding singularities. Let us
consider the spacetime associated with a spherical layer of photons, assumed to be point-like particles,
undergoing spherically-symmetric collapse towards a focal point P (we could consider massive
particles, as well, but we choose photons to adhere to the results presented above). In our picture, we
can look at this as a spherically-symmetric congruence of null geodesics emerging from P and tracked
backwards in time, with the further crucial assumption that these geodesics are actual histories of
photons, which are then considered as source of spacetime curvature. For these circumstances, the
classical description tells us that a singularity unavoidably develops (this is a sort of prototypical case
of singularity formation in general relativity). Indeed, photons reach P in a finite variation ∆λ of affine
parameter, with diverging energy densities ρ = E/A (energy per unit transverse area). This means
that, in a finite ∆λ, photon histories do cease to exist, while some components of the Riemann tensor
w.r.t. a basis parallelly-propagated along the geodesics grow without limit, i.e., we have incomplete
geodesics corresponding to a parallelly-propagated singularity curvature [6].

According to the qmetric description, in that same ∆λ photon histories keep staying away from P
(since the spatial distance from the actual location p of the photon and P according to any canonical
observer at P remains no lower than L), and energy density reaches a maximum insurmountable value
[ρ]0 = limλ→0[ρ]q = E/[A]0. Then photon histories do not cease to exist after ∆λ, and, using the
density [ρ]0 as source of Einstein’s equations, no components of Riemann in a parallelly-propagated
basis are any longer diverging. In this sense, we can say then that the microstructure of spacetime, as
captured by the qmetric, removes a classically-blatant curvature singularity.

Assuming L is as small as orders of Planck’s length, the density [ρ]0 actually challenges the domain
of validity of Einstein’s equations and the notion of spacetime, as can be envisaged by computing
(Equation (21)):
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[A]0 = 4πL2 1
∆L

, (25)

where ∆L = ∆( p̄, P) is finite in spite of being the classical metric singular at P when λ = 0 (∆( p̄, P)
is indeed computed for the metric configuration associated with λ( p̄, P) = L, that is, clearly, with
λ 6= 0). The qmetric thus embodies that, after ∆λ, the photons’ spacetime, instead of becoming singular,
changes its nature from continuous to discrete and calls for new equations, different from Einstein’s, to
rule its evolution.

At variance with [11], our derivation does not assume a fixed background spacetime. Indeed, all
quantum spacetime effects at P are thought to be subsumed by the qmetric, and the photons that go
along the null congruence actively contribute in determining the qmetric at P. Due to the complete
generality of our model, not much can be said about the specific physical mechanisms that lead to a
finite expansion and a finite rate of change of it in the coincidence limit. What we do can say is that
this is an effect of quantum geometry, since this is what the qmetric embodies. Our point of view is
that in the approach presented here, the specific physical mechanisms in action could be handled only
when we have some hint about how to modify Einstein’s equations when we are approaching the
scale L. For a detailed account of the manner in which the formation of a singularity is avoided, one
should take into account in an essential manner the influence of the imploding matter itself on the
geometry, and this requires the new field equations. What this study seems able to say is simply that
at circumstances in which general relativity requires a singularity formation, the granular structure of
spacetime as captured by the qmetric requires that no singularity is formed; this on general grounds,
whatever the new field equations will be.

Upon comparing these results with those found in LQG and LQC [9,10], in our opinion it is fair
to say that, if under isotropic symmetry conditions, the latter are far more definite and accurate in
their predictions (e.g., in cosmology, the effective Raychaudhuri equation when followed backwards
towards the initial singularity predicts a vanishing of the expansion with a change of sign of the
rate of change of the latter, namely a bounce), i.e., the approach presented here seems to have some
predictive disadvantages or some loss of accuracy. This however is part of the game. LQG is indeed a
specific theory of quantum gravity. Here, instead, we remain as generic as possible when introducing
quantum effects on geometry. Another way to look at this is to consider that in LQG the quantization
of length is an induced concept. It is a consequence of a quantization procedure based on general
relativity (discretization of the classical theory and the search for a quantum theory corresponding
to this discretization) [20]. Here, instead, length quantization is meant as a simple primary concept,
a basic unavoidable (meaning, it should be present in any quantum theory of gravity) quantum effect,
and all the discussion is built on this. When considering singularity issues, the genericity of our
approach has its own point of merit. Indeed, the results we obtain, in particular the avoidance of
singularity formation, happen to be absolutely general (and a similar comment could be done for [11]).
From this, singularity avoidance in quantum gravity turns out to be on an even firmer ground in that
it cannot be considered as specific to the quantum theory of gravity one is considering, but happens
whichever this theory might be.
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