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Abstract: The master equation for an open quantum system is derived in the weak-coupling
approximation when the additional dynamical variable—the mean interaction energy—is included
into the generic relevant statistical operator. This master equation is nonlocal in time and
involves the “quasi-temperature”, which is a non- equilibrium state parameter conjugated
thermodynamically to the mean interaction energy of the composite system. The evolution equation
for the quasi-temperature is derived using the energy conservation law. Thus long-living dynamical
correlations, which are associated with this conservation law and play an important role in transition
to the Markovian regime and subsequent equilibration of the system, are properly taken into account.

Keywords: open quantum system; master equation; non-equilibrium statistical operator; relevant
statistical operator; quasi-temperature; dynamic correlations

1. Introduction

In this paper, we continue the study of memory effects and nonequilibrium correlations in open
quantum systems, which was initiated recently in Reference [1]. In the cited paper, the nonequilibrium
statistical operator method (NSOM) developed by Zubarev [2–5] was used to derive the non-Markovian
master equation for an open quantum system, taking into account memory effects and the evolution
of an additional “relevant” variable—the mean interaction energy of the composite system (the open
quantum system plus its environment). This approach allows one to describe systematically the
long-living nonequilibrium correlations associated with the total energy conservation. However,
the price paid for this possibility is the need to solve the system of coupled evolution equations for
the statistical operator of the open system and the additional nonequilibrium state parameters. In the
present paper, our main concern is the time behaviour of the so-called quasi-temperature, which is
a parameter conjugated to the mean interaction energy [1].

The structure of the paper is as follows. In Section 2, we show how a scheme for deriving master
equations in open quantum dynamics can be formulated within NSOM and introduce the auxiliary
“relevant” statistical operator describing correlated nonequilibrium states of the composite system.
This relevant statistical operator is then used in Section 3 to derive the non-Markovian master equation
in the limit of weak interaction between the open system and the environment. Nonequilibrium
correlations associated with the energy conservation introduce additional relaxation terms in the
master equation. These terms contain the state parameter (quasi-temperature) thermodynamically
conjugated to the mean interaction energy. In Section 4, we derive the general evolution equation for the
quasi-temperature and consider its modification in the weak-coupling limit. Finally, conclusions and
outlook are given in Section 5.
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2. The Reduced Statistical Operators and the Relevant Statistical Operator

Let us assume that the open quantum system of interest (S) interacts with another (as a rule,
much larger) system (E)—the environment, and the Hamiltonian of the composite system has the form

H = HS + HE + V ≡ H0 + V, (1)

where HS and HE are the Hamiltonians of the open quantum system and the environment, and V is
the interaction Hamiltonian. For the sake of simplicity, we restrict ourselves to the case when the
composite system (S + E) is isolated and, consequently, HS and HE do not depend on time. It is an easy
matter to generalize the main results and conclusions to the case when the open quantum system (or
the environment) is affected by some alternating fields.

Nonequilibrium states of the open quantum system and the environment are completely described
by the reduced statistical operators

$S(t) = TrE{$SE(t)}, $E(t) = TrS{$SE(t)}, (2)

where the symbol TrE (TrS) means the trace over all degrees of freedom of the environment (of the open
quantum system), and $SE(t) is the statistical operator of the composite system at time t. The evolution
of the composite system is described by the von Neumann equation (in units with h̄ = 1)

∂$SE(t)
∂t

= i[$SE(t), H]. (3)

The first step in deriving the master equation for the reduced statistical operator $S(t) is to apply
the operation TrE to both sides of Equation (3). This gives

∂$S(t)
∂t
− i[$S(t), HS] = −iTrE[V, $SE(t)]. (4)

For this formal equality to have the meaning of a closed evolution equation for the subsystem (S),
the statistical operator $SE(t) is to be expressed in terms of $S.

Let us now consider how a scheme for deriving the master equation can be formulated within
NSOM [3,4]. As usual, we start from the decomposition of the statistical operator $SE(t):

$SE(t) = $rel(t) + ∆$(t), (5)

where $rel(t) is the relevant part of the statistical operator for the composite system. We recall that
the problem posed in NSOM is to derive evolution equations (generalized kinetic equations) for some
set of observables 〈Pi〉t characterizing the nonequilibrium state of the system, where {Pi} is the set
of the corresponding basic dynamical variables, and the average is taken with the nonequilibrium
statistical operator of the system (in the present case with $SE(t)). The problem now is to construct
a proper relevant statistical operator that is a functional of the observables. It is commonly required
that $rel(t) corresponds to the extremum of the information entropy S(t) = −TrS,E{$rel(t) ln $rel(t)}
under the supplementary conditions that the mean values 〈Pi〉t be equal to given quantities and the
normalization condition TrS,E{$rel(t)} = 1. Under these conditions we have [3]

$rel(t) = exp
{
−Φ(t)−∑

i
Fi(t)Pi

}
. (6)

The Massieu-Planck function Φ(t) is determined by normalization,
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Φ(t) = ln Tr exp
{
−∑

i
Fi(t)Pi

}
, (7)

where the parameters Fi(t) (Lagrange multipliers) are found from the self-consistency conditions

〈Pi〉t = Tr{Pi$rel(t)}, (8)

which can be considered as the nonequilibrium equations of state.
The answer to which set of the dynamic variables Pi is preferable depends on the kind of the

system and the required level of its description. For instance, the “hydrodynamic” description
corresponds to taking the densities of conserved quantities as a basic set of the dynamical variables [4].
An extension of this set at the expense of higher derivatives allows one to obtain equations of the
generalized hydrodynamics and to widen the timescale of the description of the system evolution.
Such a scheme underlies the generalized collective mode theory (GCM) [6–8], which has proven its
efficiency at the study of variety of the condensed matter systems.

Conversely, the GCM can be extended by taking into account the “ultraslow” processes (defined
by the time integrals of corresponding densities) [9–11]) , which allows one to approach the problems
of account for slow structural relaxation and study the ageing processes in the glassy forming system
on equal footing with the extended hydrodynamics [12].

Thus, the main criterion for the choice of the dynamic variables of the abbreviated description
of the system is a slowness of their variation on the chosen time scale. A closer examination of this
point is given, e.g., in the books [2–4]. Leaving aside the problems connected with initial correlations,
memory effects, and other special features of quantum dynamics, for a moment, we will consider the
fundamental question about the possibility of deriving a master equation for an open quantum system
within the framework of NSOM. The problem is to find dynamical variables Pi such as their mean
values, calculated with the statistical operator $SE(t), contain the same information about the state of
the open system (S) as the reduced statistical operator $S(t).

To this end, let us consider some complete and orthonormal set G = {|n〉} of quantum states in
the Hilbert space of the open system (S). We introduce the so-called Hubbard operators [13]

Xmn = |m〉〈n|, (9)

which obey the following algebraic properties:

XαXα′ = ∑
α′′

gαα′ ;α′′Xα′′ , [Xα, Xα′ ] = ∑
α′′

cαα′ ;α′′Xα′′ (10)

with the structure constants

gαα′ ;α′′ = δmm′′δnm′δn′n′′ , cαα′ ;α′′ = gαα′ ;α′′ − gα′α;α′′ . (11)

To simplify some notations, we have introduced the ordered pairs of indexes α = (m, n), α′ =

(m′, n′), etc.
Let us show that the matrix elements of the reduced statistical operator $S(t) of the open system (S)

are expressed in terms of the mean values 〈Xmn〉t, where the averaging is performed with the statistical
operator of the composite system (S + E). To do this we write the obvious chain of equalities:

〈Xmn〉t ≡ TrS,E{Xmn$SE(t)} = TrS{Xmn$S(t)} = ∑
k,k′
〈k|Xmn|k′〉〈k′|$S(t)|k〉, (12)
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where relation (2) has been used. Since, in calculating the trace, we may take |k〉 ∈ G and |k′〉 ∈ G,
it follows from the definition (9) that 〈k|Xmn|k′〉 = δkmδk′n. Consequently,

〈Xmn〉t = 〈n|$S(t)|m〉. (13)

Thus, there is a good reason to include the Hubbard operators into the basic set of dynamical
variables {Pi}. Such an approach was used, for instance, in Reference [14] to study the role of initial
correlations for a system consisting of many two-level atoms interacting with a common bath.

Before writing down the explicit form of the relevant statistical operator, we would like to
emphasize that the first term appearing in Equation (5) is by itself an auxiliary operator, but it plays
an important role in NSOM. First, the choice of the relevant statistical operator determines the initial
(or boundary) condition for ∆$(t) (see, e.g., Ref. [1]). Second, the choice of $rel(t) determines the
“structure” of approximations in solving the von Neumann Equation (3), since the scheme of NSOM
works most effectively when the operator ∆$(t) may in a sense be regarded as a small correction to the
relevant part of the statistical operator (5).

To be sure that all slow variables are incorporated in the relevant statistical operator, let us recall
that regardless of the structure of the open system and the properties of the environment, there is
the quantity (namely the average energy of the composite system 〈H〉t) which does not depend on
time and, consequently, is “slowly varying” at all time scales. As shown in Reference [15], taking into
account the energy conservation changes drastically the structure of non-Markovian kinetic equations
even in the Born approximation and ensures the existence of the equilibrium solution for the statistical
operator. Within NSOM, the additional “correlational” terms appearing in a kinetic equation can
be found in an explicit form, if 〈H〉t is included into the set of observables to construct the relevant
statistical operator. It is often convenient to take as a controlled parameter of state not the total energy
of the system but the mean interaction energy since all the remaining contributions to 〈H〉t can be
obtained by redefining the Lagrange multipliers for other basic dynamical variables [15].

Following Reference [1], we take the relevant statistical operator of the composite system in
the form

$rel(t) = exp
{
−Φ(t)−∑

α

Λα(t)Xα − β∗(t)V − βHE

}
. (14)

As usual, the Massieu-Planck function is determined from the normalization condition
for the operator $rel(t), and the Lagrange multipliers Λα(t), β∗(t) are determined from the
self-consistency conditions

TrS,E{Xα $rel(t)} = 〈Xα〉t, TrS,E{V$rel(t)} = 〈V〉t, (15)

where the averages 〈Xα〉t and 〈V〉t are calculated with the nonequilibrium statistical operator $SE(t) of
the composite system.

The relevant statistical operator (14) has some important properties. For example, if we set β∗ = β,
then $rel coincides with the exact equilibrium statistical operator at temperature T = (kBβ)−1. In this
connection, the quantity T∗ = (kBβ∗)−1 may be interpreted as a correlational quasi-temperature of the
open system. On the other hand, if we put β∗ = 0 (or T∗ = ∞), then the relevant statistical operator (14)
describes the state in which there are no correlations between the open system and the environment,

$
(0)
rel (t) = exp

{
−Φ(0)(t)−∑

α

Λα(t)Xα − βHE

}
. (16)

This expression can be cast into the form



Particles 2018, 1 289

$
(0)
rel (t) = $S(t)⊗ $E, (17)

where

$E = exp{−Φ(0)
E − βHE} (18)

is the equilibrium statistical operator of the environment, and the statistical operator of the subsystem
S is defined as

$S(t) = exp
{
−Φ(0)

S (t)−∑
α

Λα(t)Xα

}
. (19)

As above, the Massieu-Planck function Φ(0)
S (t) is determined from the normalization condition

for the operator on the left-hand side.
The relevant statistical operator (16) can be used to determine the initial condition $SE(0) = $

(0)
rel (0)

if the evolution of the composite system starts from a non-correlated state. However, even in this
simplest case, for all times—not just at time t = 0—the absence of correlations is not true and
consequently nonequilibrium states are not adequate described by statistical operator (16).

3. The Weak-Coupling Master Equation

Starting from the description of nonequilibrium states of the composite system by the relevant
statistical operator (14), one can derive the master equation for $S(t). To explain the scheme of the
derivation, we shall consider the case where the operator V in the Hamiltonian (1) describes weak
interaction between the open quantum system and the environment, i.e., it is possible to expand at
some stage the quantities of interest in a power series in the coupling constant to which the operator V
is proportional.

First we substitute the expression (5) into Equation (4):

∂$S(t)
∂t
− i[$S(t), HS] = −iTrE[V, $rel(t)]− iTrE[V, ∆$(t)]. (20)

Now, following the logic of NSOM, the operator ∆$ is to be expressed in terms of $rel. Then the
right-hand side of Equation (20) could, in principle, be considered as a functional of $S and β∗.
For this purpose, we first derive the evolution equation for the operator ∆$(t). Let us substitute the
expression (5) into the von Neumann Equation (3) and then change to the interaction picture by setting

Ã(t) = eitH0 A(t)e−itH0 (21)

for any operator A(t). After simple manipulations we obtain

∂

∂t
∆$̃(t)− i[∆$̃(t), Ṽ(t)] = −

(
∂

∂t
$̃rel(t)− i[$̃rel(t), Ṽ(t)]

)
. (22)

Let us assume that the initial condition ∆$̃(0) = ∆$(0) = 0 is satisfied. It means that the evolution
of the composite system starts from the state characterized by the condition $SE(0) = $rel(0). This is
typical when the open quantum system is prepared in a particular way (e.g., by some quantum
measurement [16]). Then Equation (22) can be written in the integral form

∆$̃(t)− i
∫ t

0
dτ [∆$̃(τ), Ṽ(τ)] = −

∫ t

0
dτ

(
∂

∂τ
$̃rel(τ)− i[$̃rel(τ), Ṽ(τ)]

)
. (23)
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If the interaction between the open subsystem and its environment is weak, then, as is clear from
Formula (20), in the leading (Born) approximation it is sufficient to calculate ∆$(t) up to terms linear
in V. Apparently, in this approximation the second term on the left-hand side of Equation (23) may be
omitted. Using interaction representation (21) once again, we obtain

∆$(t) = −
∫ t

0
dτ e−i(t−τ)H0

(
∂$rel(τ)

∂τ
− i[$rel(τ), H]

)
ei(t−τ)H0 . (24)

The commutator in (24) is transformed in a standard way using definition (14) for the relevant
statistical operator, the Kubo identity for non-commuting operators [3] and the self-consistency
conditions (15). As a result, up to terms linear in V, we have

∆$(t) = −i
∫ t

0
dτ e−i(t−τ)H0 R(τ) ei(t−τ)H0 , (25)

where

R(τ) = [V, $S(τ)$E] + β∗(τ)
∫ 1

0
dx ($S(τ)$E)

x [V, H0]($S(τ)$E)
1−x. (26)

In Equation (26) the superscript, which emerges due to the Kubo identity, denotes the x-th power
of the corresponding statistical operators.

Using Formula (25), we can bring Equation (20) to its final form

∂$S(t)
∂t
− i[$S(t), HS] = −iTrE[V, $rel(t)]−

∫ t

0
dτ TrE[V, e−i(t−τ)H0 R(τ) ei(t−τ)H0 ]. (27)

It follows from the above analysis that both terms on the right-hand side of this equation are
functionals of $S(t′) and β∗(t′), where 0 < t′ ≤ t. However, Equation (27) is not itself a closed
master equation for the reduced statistical operator $S because we need also the evolution equation for
β∗(t) or for the correlational quasi-temperature T∗(t) = (kBβ∗(t))−1. A similar situation arises in the
“standard” kinetic theory when nonequilibrium correlations are taken into account in non-Markovian
kinetic equations. Within the weak coupling approximation, the equation for β∗(t) was derived in the
work [15] where a quantum system of particles with pair interaction was considered. As already noted,
the approach to the dynamics of open systems presented here is formally quite analogous to NSOM in
quantum kinetics, so that the equation for β∗(t) can be derived by applying the scheme described in
the work [15].

4. Equation for the Quasi-Temperature

Let us turn to the self-consistency conditions (15) and differentiate them with respect to time.
Recalling the explicit form (14) of the relevant statistical operator and the definition (7) of the
Massieu-Planck function leads to the set of equations

(Xα, V)
dβ∗(t)

dt
+ ∑

α′
(Xα, Xα′)

dΛα′(t)
dt

= −d〈Xα〉t
dt

,

(V, V)
dβ∗(t)

dt
+ ∑

α

(V, Xα)
dΛα(t)

dt
= −d〈V〉t

dt
.

(28)
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We have introduced the time-dependent correlation functions of dynamical variables in the
relevant ensemble,

(A, B) =
1∫

0

dx〈∆A$x
rel∆B$−x

rel 〉rel, ∆A = A− 〈A〉trel, (29)

where 〈. . .〉rel ≡ TrS,E{$rel(t) . . .} denotes averaging with the relevant statistical operator (14). It is easy
to check that the correlation function (29) satisfies the symmetry condition (A, B) = (B, A).

The chain of matrix Equations (28) can formally be solved for the derivatives dΛα(t)/dt, yielding
the evolution equation for the quasi-temperature:

C(t)
dβ∗(t)

dt
= ∑

α,α′
(V, Xα) (X, X)−1

αα′
d〈Xα′〉t

dt
− d〈V〉t

dt
, (30)

where (X, X) is a matrix whose elements are (Xα, Xα′), and the quantity

C(t) = (V, V)−∑
α,α′

(V, Xα)(X, X)−1
αα′(Xα′ , V) (31)

may be regarded as a generalized heat capacity.
Let us rewrite the right-hand side of Equation (30) in a more transparent form. First we eliminate

the derivative d〈V〉/dt applying the energy conservation law

d〈HS〉t
dt

+
d〈HE〉t

dt
+

d〈V〉t
dt

= 0, (32)

and then express the derivative d〈HS〉/dt in terms of d〈Xα〉/dt using the fact that, in general, the system
Hamiltonian HS can be written as

HS = ∑
α

EαXα (33)

with Eα ≡ Emn = 〈m|HS|n〉. After the above manipulations, Equation (30) takes the form

C(t)
dβ∗(t)

dt
= ∑

α

(
Eα + ∑

α′
(V, Xα′) (X, X)−1

α′α

)
d〈Xα〉t

dt
+

d〈HE〉t
dt

. (34)

For the time derivatives on the right-hand side of this equation, we have the expressions

d〈Xα〉t
dt

= −i〈[Xα, HS]〉tS − i〈[Xα, V]〉trel + Iα(t),

d〈HE〉t
dt

= −i〈[HE, V]〉trel + IE(t),

(35)

where 〈. . .〉tS means averaging with the reduced statistical operator $S(t), and

Iα(t) = −iTrS,E {[Xα, V]∆$(t)} , IE(t) = −iTrS,E {[HE, V]∆$(t)} . (36)

Formulas (35) follow directly from the von Neumann Equation (3) and Equation (5).
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Let us show that the first term on the right-hand side of the evolution Equation (35) for 〈HE〉t is
equal to zero. To this end, we use the obvious identity

TrS,E {$rel(t)[A, ln $rel(t)]} = 0, (37)

which is valid for any operator A. Taking A = HE and recalling the explicit form (14) of the relevant
statistical operator, one readily obtains

TrS,E {$rel(t)[HE, V]} = 0. (38)

Substituting Equation (35) into Equation (34) leads, in general, to a rather cumbersome evolution
equation for the quasi-temperature. However, this equation can be considerably simplified, if the
system-environment coupling is weak. To do this, let us assume that 〈V〉E ≡ TrE (V$E) = 0, where $E

is given by Equation (18). If the initial operator V does not satisfy this condition, then it suffices to
redefine HS and V by replacing HS → HS + 〈V〉E and V → V − 〈V〉E. Then it is easy to check that the
leading terms in the correlation functions (Xα, V) as well as in the mean values 〈[Xα, V]〉trel are of the
second order in interaction. In this approximation, Equation (34) reduces to

C(t)
dβ∗(t)

dt
= −i ∑

α

{
Eα〈[Xα, V]〉trel + ∑

α′
(V, Xα′) (X, X)−1

α′α 〈[Xα, HS]〉tS

}
+ ∑

α

Eα Iα(t) + IE(t), (39)

where the generalized heat capacity C(t) is to be evaluated with the relevant statistical operator (16)
for a non-interacting composite system. This gives

C(t) =
1∫

0

dx TrS,E

{
V
(

$
(0)
rel

)x
V
(

$
(0)
rel

)1−x
}

. (40)

Note that the time dependence of the generalized heat capacity (40) arises from that of the relevant
statistical operator (16).

We would like to note that the “coherent” term ∑α Eα〈[Xα, HS]〉tS in Equation (39) vanishes due
to Equation (33). It can also be shown that within the leading weak coupling approximation the
term in braces in Equation (39) vanishes, so that we finally arrive at the simplified equation for the
quasi-temperature:

C(t)
dβ∗(t)

dt
= ∑

α

Eα Iα(t) + IE(t). (41)

Let us touch upon a physical meaning of the quasi-temperature in more detail. Of course, 1/β∗(t)
cannot be treated as a temperature in its ordinary meaning since it cannot be even measured. Moreover,
the quasi-temperature can even be negative if the system admits the dynamically induced inversion
of the levels’ population [17–19]. However, 1/β∗(t) can really be considered as the generalized
temperature since: (i) it is introduced in a quasi-Gibbsian manner via the relevant statistical operator
similarly (14), like the ordinary temperature is; (ii) it obeys the generalized thermodynamic relation (41),
whose right-hand side is nothing but the derivative of the total kinetic energy of the composite (S + E)
system; (iii) it tends to its asymptotic value at t→ ∞ [20], which coincides with the bath temperature.

To conclude this Section, and to explain the essence and the importance of the dynamical
correlations in more detail we would like to note the following. The dynamical correlations are
incorporated in the master Equation (27) by means of the second term of (26), which involves
the quasi-temperature 1/β∗(t). First, the quasi-temperature is defined as the state parameter
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conjugated to the interaction energy, see definition (14) of the relevant statistical operator. On the
other hand, the dynamic equation (41) for the quasi-temperature involves both the generalized
heat capacity (40) (which is expressed in terms of the “energy-energy” non-equilibrium correlation
functions), and collision integrals (36) (which also bring the information about the dynamical
correlations between the system and environment arising from the conservation law (32)).

Moreover, the second term in Equation (26) gives rise to additional contributions to the collision
integrals IS(t) and IE(t) by taking the non-equilibrium correlations into account. These terms are
even called “correlational” ones [3,15,21], and they determine an additional relaxation timescale [20],
which turns out to be much shorter than that of the (S) subsystem dynamics.

5. Conclusions and Outlook

Equation (41) for the quasi-temperature and the master Equation (27) for the reduced statistical
operator provide us with a complete description of open quantum dynamics in the weak coupling
limit. It must be emphasized that both equations are non-local in time due to the structure of the
nonequilibrium correction ∆$(t) to the statistical operator (see Equation (25)).

Note that the interplay between memory effects and correlations may strongly affect kinetic
processes [15,21]. First of all, a transition to the Markovian regime (when the memory effects
become negligible) occurs due to the energy conservation and the long-living dynamical correlations,
accompanying this phenomenon. It is known [3] that the Levinson equation (non-Markovian one)
does not have an equilibrium solution, while the local in time Uehling-Uhlenbeck equation does.
The correlational term eliminates this bottleneck of the quantum kinetic theory by providing a proper
Markovization of the system and tending of the distribution functions to their (quasi)equilibrium limits.
At this stage of the system evolution, the quasi-temperature 1/β∗(t) tends to its equilibrium value
1/β, both correlational parts of the collision integrals (36) and Equation (41) become identically equal
to zero, and the non-Markovian quantum kinetic equation converts to its Uehling-Uhlenbeck form.

From a strictly mathematical point of view, the time non-locality (non-Markovian effects) appears
at the stage of integral presentation of the von Neuman equation regardless of taking the dynamical
correlations into account. It means that the master Equation (27) turns out to be non-Markovian even
if one neglects the second term in (26). Though the Markovian approximation is widely believed [16]
to be justified if the time scale τS, over which the state of the system varies appreciably, is large
compared to the time scale τE, over which the environment correlation functions decay, in the case
of a particular open quantum system the situation can be more diverse. One can formally solve the
(Heisenberg) equations of motions for the environment variables and insert the obtained results into
the dynamic equations for the (S) subsystem variables. The obtained Langevin-type equations are
found to be non-Markovian. However, if the dynamics of the environment variables is not strongly
interconnected with that of the (S) subsystem, and the time behaviour of the bath variables can be
calculated explicitly, one comes to the Markovian kinetic equations without any suggestions about
relaxation times hierarchy. This is exactly the case of the dephasing model [22], where the dynamic
equation for the system coherency does not involve the memory effects.

Secondly, memory effects are most pronounced at the initial stage of the system dynamics.
In particular, their consideration turns out to be indispensable in the presence of ultra-short external
fields [20]. Similar situations in which memory effects and correlations play an important role can
emerge in open quantum systems. For instance, the period between switching of quantum registers
can be comparable or even less than the dephasing time [22].

Finally, there exist various approaches [23–25] to the quantification of memory effects in quantum
open systems, and even to the definition (or redefinition) of the non-Markovianity itself. Usually,
they are based upon a conception of the trace distance between two quantum states, and the obtained
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results are expressed in terms of the rate of change of the above mentioned distance. In this
context, one can propose another look at this issue, which is based, say, on the concept of the
generalized thermodynamics. In particular, one can investigate the transition times from the essentially
non-Markovian regimes to the local in time dynamics (which would manifest itself in tending of the
quasi-temperature to its equilibrium limit) and compare them with other typical timescales for open
quantum systems (e.g., the dephasing time or the thermalization time [22]). The ratio between the above
mentioned times can be treated as a generalized measure of the non-Markovianity. In our opinion,
such an approach would be most promising for small-sized systems, when the environment can hardly
be treated as a thermal bath. It should be noted that our scheme can be directly applied to this case,
when the environment has not been equilibrated yet and is characterized by the non-equilibrium
temperature 1/β(t) which, in general, is not equal to the “correlational” quasi-temperature 1/β∗(t).

Definitely, the consistency and the robustness of our scheme should be verified on particular
models of the open quantum systems. We believe these studies to be very perspective, and we are
going to carry them out in our further researches using some exactly solvable models.
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