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Abstract: The phenomena of strong running coupling and hadron mass generating have been studied in
the framework of a QCD-inspired relativistic model of quark-gluon interaction with infrared-confined
propagators. We derived a meson mass equation and revealed a specific new behavior of the
mass-dependent strong coupling α̂s(M) defined in the time-like region. A new infrared freezing point
α̂s(0) = 1.03198 at origin has been found and it did not depend on the confinement scale Λ > 0.
Independent and new estimates on the scalar glueball mass, ‘radius’ and gluon condensate value have
been performed. The spectrum of conventional mesons have been calculated by introducing a minimal
set of parameters: the masses of constituent quarks and Λ. The obtained values are in good agreement
with the latest experimental data with relative errors less than 1.8 percent. Accurate estimates of the
leptonic decay constants of pseudoscalar and vector mesons have been performed.
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1. Introduction

The low-energy region below ∼2 GeV becomes a testing ground, where much novel, interesting and
challenging behavior is revealed in particle physics (see, e.g., [1]). Any QCD-inspired theoretical
model should be able to correctly describe hadron phenomena such as confinement, running coupling,
hadronization, mass generation etc. at large distances. The inefficiency of the conventional perturbation
theory in low-energy domain pushes particle physicists to develop and use different phenomenological
and nonperturbative approaches, such as QCD sum rule, chiral perturbation theory, heavy quark effective
theory, rigorous lattice QCD simulations, the coupled Schwinger-Dyson equation etc.

The confinement conception explaining the non-observation of color charged particles (quarks, gluons)
is a crucial feature of QCD and a great number of theoretical models have been suggested to explain the
origin of confinement. Particularly, the confinement may be parameterized by introducing entire-analytic
and asymptotically free propagators [2]), vacuum gluon fields serving as the true minimum of the QCD
effective potential [3], self-dual vacuum gluon fields leading to the confined propagators [4], the Wilson
loop techniques [5], lattice Monte-Carlo simulations [6], a string theory quantized in higher dimensions
[7] etc. Each approach has its benefits, justifications, and limitations. A simple and reliable working tool
implementing the confinement concept is still required.

The strength of quark-gluon interaction g in QCD depends on the mass scale or momentum transfer
Q. This dependence is described theoretically by the renormalization group equations and the behavior of
αs

.
= g2/(4π) at short distances (for high Q2), where asymptotic freedom appears, is well investigated
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[8,9] and measured, e.g., αs(M2
Z) = 0.1185± 0.0006 at mass scale MZ = 91.19 GeV [1]. On the other hand,

it is necessary to know the long-distance (for Q2 ≤ 1 GeV) or, infrared (IR),behavior of αs to understand
quark confinement, hadronization processes, and hadronic structure. Many phenomena in particle physics
are affected by the long-distance property of the strong coupling [9,10], however the IR behavior of αs

has not been well defined yet, it needs to be more specified. A self-consistent and physically meaningful
prediction of αs in the IR region is necessary.

The existence of extra isoscalar mesons is predicted by QCD and in case of the pure
gauge theory they contain only gluons, and are called the glueballs, the bound states
of gluons. Presently, glueballs are the most unusual particles predicted by theory, but not found
experimentally yet [1,11]. The study of glueballs currently is performed either within effective models or
lattice QCD. The glueball spectrum has been studied by using the QCD sum rules [12], Coulomb gauge
QCD [13], various potential models [14]. A proper inclusion of the helicity degrees of freedom can improve
the compatibility between lattice QCD and potential models [15]. Recent lattice calculations, QCD sum
rules, ‘tube’ and constituent ‘glue’ models predict that the lightest glueball takes the quantum numbers
(JPC = 0++) [16]. However, errors on the mass predictions are large, particularly, MG = 1750± 50± 80
MeV for the mass of scalar glueball from quenched QCD [17]. Therefore, an accurate prediction of the
glueball mass combined with other reasonable unquenched estimates and performed within a theoretical
model with fixed global parameters is important.

One of the puzzles of hadron physics is the origin of the hadron masses. The Standard Model and,
in particular, QCD operate only with fundamental particles (quarks, leptons, neutrinos), gauge bosons
and the Higgs. It is not yet clear how to explain the appearance of the multitude of observed hadrons
and elucidate the generation of their masses. Physicists have proposed several models that advocate
different mechanism of the origin of mass from the most fundamental laws of physics. Particularly, the
dynamical chiral symmetry breaking is one of the widely accepted mechanisms explaining the connection
between the ‘current’ quark masses and the ‘constituent’ masses of quarks inside hadrons (see, e.g., [18]).
Nevertheless, the calculation of the hadron mass spectrum in a quality comparable to the precision of
experimental data remains actual.

In some cases, it is useful to investigate the corresponding low-energy effective theories instead
of tackling the fundamental theory itself. Indeed, data interpretations and calculations of hadron
characteristics are frequently carried out with the help of phenomenological models.

One of the phenomenological approaches is the model of induced quark currents. It is based on
the hypothesis that the QCD vacuum is realized by the anti-selfdual homogeneous gluon field [19].
The confining properties of the vacuum field and chiral symmetry breaking can explain the distinctive
qualitative features of the meson spectrum: mass splitting between pseudoscalar and vector mesons,
Regge trajectories, and the asymptotic mass formulas in the heavy quark limit. Numerically, this model
describes to within ten percent accuracy the masses and weak decay constants of mesons.

A relativistic constituent quark model developed first in [20] has found numerous applications both
in the meson sector (e.g., [21]) and in baryon physics (e.g., [22]). In the latter case baryons are considered
as relativistic systems composed of three quarks. The next step in the development of the model has been
done in [23], where infrared confinement for a quark-antiquark loop was introduced. The implementation
of quark confinement allowed to use the same values for the constituent quark masses both for the simplest
quark-antiquark systems (mesons) and more complicated multiquark configurations (baryons, tetraquarks,
etc.). Recently, a smooth decreasing behavior of the Fermi coupling on mass scale has been revealed by
considering meson spectrum within this model [24].

In a series of papers [25–29] relativistic models with specific forms of analytically confined propagators
have been developed to study different aspects of low-energy hadron physics. Particularly, the role of
analytic confinement in the formation of two-particle bound states has been analyzed within a simple
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Yukawa model of two interacting scalar fields, the prototypes of ‘quarks’ and ‘gluons’. The spectra of the
‘two-quark’ and ‘two-gluon’ bound states have been defined by using master constraints similar to the
ladder Bethe-Salpeter equations. The ’scalar confinement’ model could explain the asymptotically linear
Regge trajectories of ’mesonic’ excitations and the existence of massive ’glueball’ states [25]. An extension
of this model has been provided by introducing color and spin degrees of freedom, different masses of
constituent quarks and the confinement size parameter that resulted in an estimation of the meson mass
spectrum (with relative errors <3.5 per cent) in a wide energy range [27]. As a further test, the weak
decay constants of light mesons and the lowest-state glueball mass has been estimated with reasonable
accuracies. Then, a phenomenological model with specific forms of infrared-confined propagators has
been developed to study the mass-scale dependence of the QCD effective coupling αs at large distances
[28,29]. By fitting the physical masses of intermediate and heavy mesons we predicted a new behavior of
αs(M) in the low-energy domain, including a new, specific and finite behavior of αs(M) at origin. Note,
αs(0) depended on Λ, we fixed αs(0) = 0.757 for Λ = 345 MeV in [28].

In the present paper, we propose a new insight into the phenomena of strong running coupling and
hadron mass generating by introducing infrared-confined propagators within a QCD-inspired relativistic
field model. First, we derive a meson mass master equation similar to the ladder Bethe-Salpeter equation
and study a specific new behavior of the mass-dependent strong coupling α̂s(M) in the time-like region.
Then, we estimate properties of the lowest-state glueball, namely its mass and ‘radius’. The spectrum of
conventional mesons are estimated by introducing a minimal set of parameters. An accurate estimation of
the leptonic decay constants of pseudoscalar and vector mesons is also performed.

The paper is organized as follows. After the introduction, in Section 2 we give a brief sketch of
main structure and specific features of the model, including the ultraviolet regularization of field and
strong charge as well as the infrared regularizations of the propagators in the confinement domain.
A self-consistent mass-dependent effective strong coupling is derived and investigated in Section 3.
The formation of an exotic di-gluon bound state, the glueball, its ground-state properties are considered
in Section 4. Hereby we fix the global parameter of our model, the confinement scale Λ = 236 MeV.
In Sections 5 and 6 we give the details of the calculations for the mass spectrum and leptonic (weak)
decay constants of the ground-state mesons in a wide range of scale. Finally, in Section 7 we summarize
our findings.

2. Model

Consider the gauge invariant QCD Lagrangian:

L = −1
4

(
∂µAA

ν − ∂νAA
µ − g f ABCAB

µAC
ν

)2
+

(
q̄a

f

[
γα∂α −m f

]ab
qb

f

)
+ g

(
q̄a

f

[
Γα

CAC
α

]ab
qb

f

)
, (1)

where AC
α is the gluon field, qa

f is a quark spinor of flavor f with color a = {1, 2, 3} and mass m f =

{mud, ms, mc, mb}, Γα
C = iγαtC and g - the strong coupling strength.

Below we study two-particle bound state properties within the model. The leading-order
contributions to the spectra of quark-antiquark and di-gluon bound states are given by the
partition functions:

Zqq̄ =
∫∫
Dq̄Dq exp

{
−(q̄S−1q) + g2

2 〈(q̄ΓAq)(q̄ΓAq)〉D
}

,

ZAA =
〈
exp

{
− g

2 ( fAAF)
}〉

D , 〈(•)〉D
.
=
∫
DA e−

1
2 (AD−1A)(•).

(2)
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Our first step is to transform these partition functions so that they could be rewritten in terms of
meson and glueball fields. Below we briefly explain the procedure on the example of the quark-antiquark
bound states defined by Zqq̄. Further details on our model can be found in [27,28].

First, we allocate the one-gluon exchange between colored biquark currents

L2 =
g2

2 ∑
f1 f2

∫∫
dx1dx2

(
q̄ f1(x1)iγµtAq f1(x1)

)
DAB

µν (x1, x2)
(

q̄ f2(x2)iγνtBq f2(x2)
)

. (3)

By isolating the color-singlet combination and performing a Fierz transformation we rewrite

L2 =
2g2

9 ∑
J f1 f2

CJ

∫∫
dxdyJJ f1 f2(x, y) D(y) J †

J f1 f2
(x, y), (4)

where JJ f1 f2(x, y) = q̄ f1(x+ ξ1y) OJ q f2(x− ξ2y), OJ = {I, iγ5, iγµ, γ5γµ, i[γµ, γν]/2}, x1 = x+ ξ1y, x2 =

x − ξ2y , ξi = m fi
/(m f1 + m f2) and CJ are the Fierz coefficients corresponding to the different spin

combinations OJ = {I, iγ5, iγµ, γ5γµ, i[γµ, γν]/2}.
Let us consider a system of orthonormalized basis functions {UQ(x)}:∫

dx UQ(x)UQ′(x) = δQQ′ , ∑
Q

UQ(x)UQ′(y) = δ(x− y) , (5)

Particularly, it may read as:

Unl{µ}(x) ∼ Tl{µ}(x) L(l+1)
n

(
2cx2

)
e−cx2

, (6)

where c > 0 is a parameter, Tl{µ} is spherical harmonics and L(l+1)
n (x) are the Laguerre polynomials.

We expand the biquark nonlocal current on the orthonormalized basis as follows:

D(y) J †
J f1 f2

(x, y) =
√

D(y)
∫

dz δ(z− y)
√

D(z) J †
J f1 f2

(x, z)

= ∑
Q

∫
dz
√

D(y)UQ(y) ·
√

D(z)UQ(z) J †
J f1 f2

(x, z) . (7)

Then, we define a vertex function VQJ(x, y)

q̄ f1(x) VQJ(x, y) q f2(x) .
=

2
3

√
CJ

√
D(y)UQ(y)q̄ f1(x + ξ1y) OJ q f2(x− ξ2y) (8)

and a colorless biquark current localized at the center of masses:

JN (x) .
=
∫

dy q̄ f1(x) VQJ(x, y) q f2(x) , J †
N (x) = JN (x) , N = {Q, J, f1, f2} . (9)

One can diagonalize L2 on the basis {UQ(x)} and then, (4) takes a form:

L2 =
g2

2 ∑
N

∫
dxJN (x)JN (x) . (10)
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We use a Gaussian path-integral representation for the exponential

e
g2
2 ∑
N
(J 2
N )

=
〈

eg(BNJN )
〉

B
, 〈(•)〉B

.
=
∫

∏
N
DBN e−

1
2 (B2
N )(•) , 〈1〉B = 1 (11)

by introducing auxiliary meson fields BN (x). Then, we obtain

Zqq̄ =

〈∫∫
Dq̄Dq exp

{
−(q̄S−1q) + g(BNJN )

}〉
B

(12)

that allows us to take explicitly the path integration over quark variables and obtain

Zqq̄ → ZB = 〈exp {Tr ln [1 + g(BNVN )S]}〉B , (13)

where Tr .
= TrcTrγ; Trc and Trγ are traces taken on color and spinor indices, correspondingly.

We introduce a hadronization Ansatz and identify BN (x) fields with mesons carrying quantum
numbers N .

Let us collect all quadratic field configurations (∼ B2
N ) in the ‘kinetic’ term and isolate higher-order

terms describing the interaction between mesons in Wres[g BN ] ∼ 0(g3 B3
N ).

Then, we obtain the path integral written in terms of meson fields BN as follows:

Zqq̄ → ZB =
∫

∏
N
DBN exp

{
−1

2 ∑
NN ′

(BN [δNN
′ − αsλNN ′ ] BN ′) + Wres[g BN ]

}
, (14)

where the LO kernel of the meson polarization function λNN ′ is defined and αs
.
= g2/4π.

2.1. UV Regularization of Meson Field and Strong Charge

It is a difficult problem to describe a composite particle within QFT which operates with free fields
quantized by imposing commutator relations between creation and annihilation operators. The asymptotic
in- and out- states are constructed by means of these operators acting on the vacuum state. Physical
processes are described by the elements of the S-matrix taken for the relevant in- and out- states. The original
Lagrangian requires renormalization, i.e., the transition from unrenormalized quantities such as mass,
wave function, and coupling constant to the physical or renormalized ones.

The appropriate diagonalization of the Fourier transform of the polarization kernel∫∫
dxdy UQ(x)λNN ′(p, x, y) UQ(y) = δNN

′
λN (−p2) ,

λN (−p2) =
8 CJ

9π3

∫
d4k

∣∣VJ(k)
∣∣2 ΠN (k, p) (15)

is equivalent to the solution of the corresponding ladder BSE. The kernel λNN ′(p, x, y) is real and
symmetric (p - the meson momentum), variational methods can be applied for its evaluation.

The Fourier transform of the vertex function VJ(k) determined by the LO one-gluon exchange and
the polarization (self-energy) kernel ΠN (p) of the meson in Equation (15) are defined as follows:

VJ(k)
.
=

∫
d4x UJ(x)

√
D(x) e−ikx , (16)

ΠN (k, p) .
= −Nc

4!
Tr
[
OJ S̃m1

(
k̂ + ξ1 p̂

)
OJ′ S̃m2

(
k̂− ξ2 p̂

)]
.
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The graphical representation of the meson self-energy function λN (−p2) is given in Figure 1.

Figure 1. The graphical representation of the meson self-energy function λN (−p2).

The gluon D̃(p) (in Feynman gauge) and quark propagator S̃m1( p̂) defined in Euclidean momentum
space read:

D̃AB
µν (p) = δABδµν · D̃0(p), D̃0(p) =

1
p2 =

∞∫
0

ds e−sp2
,

S̃m f ( p̂)=
1

−i p̂ + m f
= (i p̂ + m f ) · S̃0

m f
(p), S̃0

m f
(p) =

∞∫
0

dt exp[−t(p2 + m2
f )] . (17)

In relativistic quantum-field theory a stable bound state of n massive particles shows up as a pole in
the S-matrix with a center of mass energy. Accordingly, we go into the meson mass shell −p2 = M2

J and
expand the quadratic term in Equation (14) as follows:

(BN [1− αsλN (−p2)]BN ) = (BN [1− αsλN (M2
N )− αsλ̇N (M2

N )[p
2 + M2

N ]BN ) . (18)

Then, we rescale the boson field and strong charge as

BN (x)→ BR(x)/
√

αsλ̇N (M2
N ) , g BN (x)→ gR BR(x) , λ̇N (z)

.
=

dλN (z)
dz

(19)

If we require a condition

1− αsλN (M2
N ) = 0 (20)

one obtains the Lagrangian of meson field BR with the mass M and Green’s function
(

p2 + M2
N
)−1 in the

fully renormalized partition function (the conventional form) as follows:

Z =
∫
DBR exp

{
−1

2

(
BR

[
p2 + M2

N

]
BR

)
+ Wres[gR BR]

}
. (21)

It is easy to find that regularizations in Equation (19) lead to another requirement:

ZM = 1− αRλ̇N (M2
N ) = 0 , (22)

that is nothing else but the ‘compositeness’ condition which means that the renormalization constant of
the mesonic field ZM is equal to zero and bare meson fields are absent in the consideration.
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Since the calculation of the Feynman diagrams proceeds in the Euclidean region where k2 = −k2
E, the

vertex function VJ(k) decreases rapidly for k2
E → ∞ and thereby provides ultraviolet convergence in the

evaluation of any diagram.

2.2. IR Regularization of the Green Functions

Ultraviolet singularities in the model have been removed by renormalizations of wave function and
charge, but infrared divergences remain in Equation (20) because of propagators in Equation (17). The QCD
vacuum structure remains unclear and the definition of the explicit quark and gluon propagator encounters
difficulties in the confinement region. Particularly, IR behaviors of the quark and gluon propagators are not
well-established and need to be more specified [26]. It is clear that conventional forms of the propagators
in Equation (17) cannot adequately describe the hadronization dynamics and the currents and vertices
used to describe the connection of quarks and gluons inside hadrons cannot be purely local. Presently, any
widely accepted and rigorous analytic solutions to these propagators are still missing.

In our previous papers, specific forms of quark and gluon propagators were exploited [27,28]. These
propagators were entire analytic functions in Euclidean space and represented simple and reasonable
approximations to the explicit propagators calculated in the background of vacuum gluon field obtained
in [4].

On the other hand, there are theoretical results predicting an IR behavior of the gluon propagator.
Particularly, a gluon propagator was inversely proportional to the dynamical gluon mass [30] at the
momentum origin p2 = 0, while others equaled to zero [31,32]. Numerical lattice studies [33]
and renormalization group analysis [34] also indicated an IR-finite behavior of gluon propagator.

Below we follow these theoretical predictions in favor of an IR-finite behavior of the gluon propagator
and exploit a scheme of ‘soft’ infrared cutoffs on the limits of scale integrations for the scalar parts of both
propagators as follows:

D0(x)=
1

(2π)2x2 → DΛ(x) =
1

(2π)2

∞∫
Λ2

ds exp[−s x2] ,

S̃0
m f

(p)→ S̃Λ
m f

(p) =
1/Λ2∫
0

dt exp[−t (p2 + m2
f )] . (23)

Propagators DΛ(x) and S̃Λ
m f

(p) do not have any singularities in the finite x2- and p2- planes in
Euclidean space, thus indicating the absence of a single gluon (quark) in the asymptotic space of states.
The analytic confinement means the absence of real mass poles in the gluon and quark propagators.
Particularly, the Fourier transformation of the gluon propagator in Equation (23) reads

D̃Λ(p) =
{

1− exp[−p2/4Λ2]
}

/p2 = 1/(4Λ2) + p2/(32Λ4) + O(p4) . (24)

An IR parametrization is hidden in the energy-scale Λ of confinement domain. The analytic
confinement disappears as Λ→ 0. Note, propagators in Equation (23) differ from those used previously in
[25,27–29] and represent lower bounds to the explicit ones.
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2.3. Meson Mass Equation

The dependence of meson mass M on αs and other model parameters {Λ, m1, m2} is defined by
Equation (20). Furthermore, it is convenient to go to dimensionless co-ordinates, momenta and masses
as follows:

xν ·Λ→ xν , kν/Λ→ kν , pν/Λ→ pν , m1/Λ→ µ1 , m2/Λ→ µ2 , M/Λ→ µ . (25)

The polarization kernel λN (−p2) in Equation (15) is natively obtained real and symmetric that
allows us to find a simple variational solution to this problem. Choosing a trial Gaussian function for the
ground-state mesons:

U(x, a) =
2a
π

exp
{
−ax2

}
,

∫
d4x |U(x, a)|2 = 1 , a > 0 (26)

we obtain a variational form of Equation (20) for meson masses as follows:

1 = αs ·max
a>0

λ(µ, µ1, µ2, a) = αs · λ̂(µ, µ1, µ2) . (27)

Further we exploit Equation (27) in different ways, by solving either for αs at fixed masses {µ, µ1, µ2},
or for µ by keeping αs and {µ1, µ2} fixed.

3. Effective Strong Coupling in the IR Region

Understanding of both high-energy and hadronic phenomena is necessary to know the strong
coupling in the nonperturbative domain at low mass scale. Despite important results and constraints
obtained from experiments, most investigations of the IR behavior of αs have been theoretical, a number of
approaches have been explored with their own benefits, justifications, and limitations.

The QCD coupling may feature an IR-finite behavior (e.g., in [35]). Particularly, the averaged IR
value of strong coupling obtained from analyzing jet shape observables in e+e− annihilation is finite and
modest: 〈αs〉 = 0.47± 0.07 for the energy interval E < 2 GeV [36]. The stochastic vacuum model approach
to high-energy scattering found that αs ∼ 0.81 in the IR region [37]. Some theoretical arguments lead to
a nontrivial IR freezing point, particularly, the analytical coupling freezes at the value of 4π/β0 within
one-loop approximation [26]. The phenomenological evidence for αs finite in the IR region is much more
numerous [9,10,38].

There is an indication that the most fundamental Green’s functions of QCD, such as the gluon and
quark propagators may govern the detailed dynamics of the strong interaction and the effective strong
charge [39]. Therefore, in the present paper we perform a new investigation of the IR behavior of αs as a
function of mass-scale M by using the IR-confined propagators defined in Equation (23).

In our previous investigation, we studied the mass-scale dependence of αs(M) within another
realization of analytical confinement and determined it by fitting physical masses of mesons [28,29]. This
strategy led to a smooth decreasing behavior of αs(M), but the result was depending on a particular choice
of model parameters, namely, the masses m1 and m2 of two constituent quarks composing a meson.

However, any physical observable, including αs, should not depend on the particular scheme of
calculation, by definition. This kind of dependence is most pronounced in leading-order QCD and often
used to test and specify uncertainties of theoretical calculations for physical observables. There is no
common agreement of how to fix the choice of scheme.
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Our idea is to investigate the behavior of the strong effective coupling αs only in dependence of
mass-scale µ by solving Equation (27). In doing so, the dependencies on µ1 and µ2 may be removed by
revealing and substituting indirect dependencies of µi = µi(µ).

For this purpose, we analyze the meson masses estimated in [28,29] in dependence of fixed parameters
m1 and m2, there. Then, one may easily notice a pattern: m1 + m2 > M for light (π and K) and m1 + m2 <

M for other mesons (ρ, K∗, ..., ηb, Υ). Hereby, the constituent quark masses {mud, ms, mc, mb} were
obtained by fitting αs(M) at physical masses of {D∗, D∗s , J/Ψ, Υ} and then, we calculate (m1 + m2)/M =

{0.816, 0.824, 0.935, 0.992} of these mesons, consequently.
A similar pattern is also revealed in the case of our earlier model with ‘frozen’ strong coupling not

depending on mass scale [27]. Also, it was stressed that the self-energy function λ(M, m1, m2) was low
sensitive under significant changes of parameters m1, m2 (see Figure 2 in [27]).

Therefore, not losing the general pattern, we can substitute an ‘average’ dependence m1 = m2 = M/2.
As mentioned above, this assumption is not able to change drastically the behavior of αs. Controversially,
we now define αs more self-consistently, in dependence only on the mass-scale µ = M/Λ by eliminating
the direct presence of constituent quark masses.

Finally, we calculate a variational solution α̂s to αs in dependence on a dimensionless energy-scale
ratio µ as follows:

α̂s(µ) = 1/λ̂(µ, µ/2, µ/2) . (28)

The behavior of new variational upper bound α̂s(µ) to αs(µ) is plotted in Figure 2. The slope of the
curve depends on Λ > 0, but the value at origin remains fixed for any Λ > 0 and equals to

α̂s(0) = α̂0
s = 1.03198 , or α̂0

s /π = 0.328489 . (29)

We use the meson mass M as the appropriate characteristic parameter, so the coupling α̂s(M) is
defined in a time-like domain (s = M2). On the other hand, the most of known data on αs(Q) is possible
in space-like region [1]. The continuation of the invariant charge from the time-like to the space-like region
(and vice versa) is elaborated by making use of the integral relationships (see, e.g., [40]). Particularly, there
takes place a relation:

αs(q2) = q2
∞∫

0

ds
(s + q2)2 α̂s(s) (30)

A detailed study of this transformation deserves a separate consideration and below we just note that at
origin (q2 = −s = 0) both representations converge:

αs(0) = α̂s(0)
∞∫

0

dt
(1 + t)2 = α̂s(0) · 1 . (31)
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Figure 2. Mass-dependent effective strong coupling α̂s(M) for different values of confinement scale (dots
for Λ = 216 MeV, solid line for Λ = 236 MeV and dashes for Λ = 256 MeV.

Therefore, the obtained freezing value α̂s(0) = 1.03198 may be compared with those obtained as
continuation of αs(Q) in space-like domain. Particularly, in the region below the τ-lepton mass the strong
coupling value is expected between αs(Mτ) ≈ 0.34 [1] and an IR fix point αs(0) = 2.972 [41]. Moreover, a
use of MS renormalization scheme leads to value αs(0) = 1.22± 0.04± 0.11± 0.09 for confinement scale
ΛQCD = 0.34± 0.02 GeV [9].

We conclude that our IR freezing value α̂0
s /π = 0.32849 does not contradict above mentioned

predictions and it is in a reasonable agreement with other quoted estimates: α0
s /π = 0.265 [42] and α0

s /π =

0.26 [43] as well as other phenomenological predictions [44,45].
It should be stressed that despite some similar behaviors, the definition and origin of our

mass-dependent coupling α̂s is quite distinct from the RG flow expected in QCD.
It is important to stress that we do not aim to obtain the behavior of the coupling constant at all

scales. At moderate M2 = −p2 we obtain αs in coincidence with the QCD predictions. However, at large
mass-scale (above 10 GeV) α̂s decreases faster. The reason is the use of confined propagators in the form of
entire functions in Equation (23). Then, the convolution of entire functions leads to a rapid decreasing
in Euclidean (or, a rapid growth in Minkowskian) space of physical matrix elements once the mass and
energy of the reaction have been fixed. Consequently, the numerical results become sensitive to changes of
model parameters at large masses and energies.

Note, any physical observable must be independent of the particular scheme and mass by definition,
but in (28) we obtain α̂s in dependence on scaled mass M/Λ. This kind of scale dependence is
most pronounced in leading-order QCD and often used to test and specify uncertainties of theoretical
calculations for physical observables. Conventionally, the central value of αs(µ) is determined or taken for
µ equaling the typical energy of the underlying scattering reaction. There is no common agreement of how
to fix the choice of scales.

Below, we will fix the model parameter Λ by fitting the scalar glueball (two-gluon bound state) mass.

4. Lowest Glueball State

Most known experimental signatures for glueballs are an enhanced production in gluon-rich channels
of radiative decays and some decay branching fractions incompatible with (qq̄) states. Particularly, there
are predictions expecting non-qq̄ scalar objects, such as glueballs in the mass range ∼ 1.5÷ 1.8 GeV [46,47].
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Some references favor the f0(1710) and f0(1810) as the lightest glueballs [48], while heavy glueball-like
states (pseudoscalar, tensor, ...) are expected in the mass range MG ∼ 2.4÷ 4.9 GeV [1].

Gluodynamics has been extensively investigated within quenched lattice QCD simulations. A use
of fine isotropic lattices resulted in a value 1475 MeV for the scalar glueball mass [16]. An improved
quenched lattice calculation at the infinite volume and continuum limits estimates the scalar glueball mass
equal to 1710± 50± 80 MeV [49].

Among different glueball models, the two-gluon bound states are the most studied purely gluonic
systems in the literature, because when the spin-orbital interaction is ignored (` = 0), only scalar and
tensor states are allowed. Particularly, the lightest glueballs with positive charge parity can be successfully
modeled by a two-gluon system in which the constituent gluons are massless helicity-one particles [50].

Below we consider a pure two-gluon scalar bound state with JPC = 0++. By omitting details of
intermediate calculations (similar to those represented in the previous section) we define the scalar glueball
mass M0++ from equation:

1− 8 α̂

3π
max
a>0

∫
dz eizp ΠG(z) = 0 , p2 = −M2

0++ , (32)

where

ΠG(z)
.
=
∫∫

dtds U(t, a)
√

WΛ(t) DΛ

(
t + s

2
+ z
)

DΛ

(
t + s

2
− z
)√

WΛ(s) U(s, a)

is the self-energy (polarization) function of the scalar glueball and WΛ(s) is a potential function connecting
scalar gluon currents. The ground-state basis U(t, a) may be chosen as in Equation (26). Then, we can
estimate an upper bound to the scalar glueball mass by using the effective mass-dependent coupling
defined in Equation (28).

Our model has a minimal set of free parameters: {α̂, Λ, mud, ms, mc, mb}. The glueball mass depends
on {α̂, Λ}. We fix Λ by fitting the expected glueball mass. Particularly, for Λ = 236 MeV and α̂(MG)

defined in Equation (28) we obtain new estimates:

M0++ = 1739 MeV , α̂(M0++) = 0.451 . (33)

The new value of M0++ in (33) agrees not only with our previous estimate [27], but also with other
predictions expecting the lightest glueball located in the scalar channel in the mass range ∼ 1500 ÷
1800 MeV [12,16,46,51]. The often referred quenched QCD calculations predict 1750± 50± 80 MeV for
the mass of the lightest glueball [17]. The recent quenched lattice estimate with improved lattice spacing
favors a scalar glueball mass MG = 1710± 50± 58 MeV [49].

Another important property of the scalar glueball is its size, the ‘radius’ which should depend
somehow on the glueball mass. We estimate the glueball radius roughly as follows:

r0++ ∼ 1
2Λ

√∫
d4x x2 WΛ(x) U2(x)∫

d4x WΛ(x) U2(x)
≈ 1

394.3 MeV
≈ 0.51 fm . (34)

This may indicate that the dominant forces binding gluons are provided by vacuum fluctuations
of correlation length ∼ 0.5 fm. On the other side, typical energy-momentum transfers inside a scalar
glueball should occur in the confinement domain ∼ 236 MeV ∼ 0.85 fm, rather than at the chiral symmetry
breaking scale Λχ ∼ 1 GeV ∼ 0.2 fm.
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From (33) and (34) we deduce that

r0++ ·M0++ ≈ 4.41 .

This value may be compared with the prediction (rG ·MG = 4.16± 0.15) of quenched QCD calculations [17,
49].

The gluon condensate is a non-perturbative property of the QCD vacuum and may be partly
responsible for giving masses to certain hadrons. The correlation function in QCD dictates the value
of corresponding condensate. Particularly, with Λ = 236 MeV and α̂s = 0.451 we calculate the lowest
non-vanishing gluon condensate in the leading-order (ladder) approximation:

α̂s

π

〈
FA

µνFµν
A

〉
=

16Nc

π
Λ4 ≈ 0.0214 GeV4

which is in accordance with a refereed value [52]

αs

〈
G2
〉
= (7.0± 1.3) · 10−2 GeV4 , or,

αs

π

〈
G2
〉
= (2.2± 0.4) · 10−2 GeV4 .

5. Meson Mass Spectrum

Below we consider the most established sector of hadron physics, the spectrum of conventional
(pseudoscalar P(0−+) and vector V(1−−)) mesons.

In previous investigations with analytic confinement [27–29], we fixed all the model parameters
(Λ, α̂s, mud, ms, mc, mb) by fitting the real meson masses.

In the present paper, the universal confinement scale Λ = 236 MeV is fixed by fitting the scalar
glueball mass. In addition, the effective strong coupling α̂s is unambiguously determined by Equation (28).

Therefore, we derive meson mass formula Equation (20) by fitting the meson physical masses with
adjustable parameters {mud, ms, mc, mb}.

This results in a new final set of model parameters (in units of MeV) as follows:

Λ = 236 , mud = 227.6 , ms = 420.1 , mc = 1521.6 , mb = 4757.2 . (35)

The constituent quark mass values fall into the expected range. The present numerical least-squares
fit for meson masses and the values for the model parameters supersede our previous results in [27,28]
obtained by exploiting different types of analytic confinement and running coupling.

It is known that light pseudoscalar mesons (π(140) and K(494)) are much lighter than their vector
counterparts (ρ(770) and K∗(892)). Any correct description of these light pseudoscalar mesons requires an
indispensable implementation of dynamical chiral symmetry breaking in the working theoretical model.
Therefore, no results for the pion and kaon masses are represented in Table 1.
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Table 1. Estimated masses of conventional mesons MP and MV (in units of MeV) for model parameters (35)
compared to the recent experimental data [1].

0−+ MP Data 1−− MV Data

ρ 774.3 775.26
K∗ 892.9 891.66

D 1893.6 1869.62 Φ 1010.3 1019.45
Ds 2003.7 1968.50 D∗ 2003.8 2010.29
ηc 3032.5 2983.70 D∗s 2084.1 2112.3
B 5215.2 5259.26 J/Ψ 3077.6 3096.92
Bs 5323.6 5366.77 B∗ 5261.5 5325.2
Bc 6297.0 6274.5 B∗s 5370.9 5415.8
ηb 9512.5 9398.0 Υ 9526.4 9460.30

Note, we consider ω and Φ as ‘pure’ states without mixing. Also, we pass the η − η′ mixing,
because this problem obviously deserves a separate and complicated consideration due to a possible gluon
admixture to the conventional qq̄-structure of the η′.

Our present model has only five free parameters (Λ and four masses of constituent quarks) and a
constraint self-consistent equation for αs. Nevertheless, our estimates on the conventional meson masses
represented in Table 1 are in reasonable agreement with experimental data and the relative errors do not
exceed 1.8 per cent in the whole range of mass scale.

6. Leptonic Decay Constants of Mesons

One of the important quantities in the hadron physics is the leptonic (weak) decay constant of meson.
The precise knowledge of its value provides significant improvement in our understanding of various
processes convolving meson decays. Particularly, the weak decay constants of light mesons are well
established data and many collaboration groups have these with sufficient accuracy [1,53,54].

Therefore, the leptonic decay constant values (plotted in Figure 2 in dependence of meson physical
mass) are often used to test various theoretical models.

A given meson in our model is characterized by its mass M, two of constituent quark masses m1

and m2 along the infrared confinement parameter Λ universal for all hadrons, including exotic glueballs.
The masses (mud, ms, mc, mb) of four constituent quarks have been obtained by fitting the meson physical
masses. Hereby, the effective strong coupling α̂s depends on the ratio M/Λ.

The leptonic decay constants which are known either from experiment or from lattice simulations is
an additional characteristic of a given meson.

We define the leptonic decay constants of pseudoscalar and vector mesons as follows:

ipµ fP = gren
8Nc

9

∫ dk
(2π)4 VP(k)Tr

[
γµ(1− γ5)S̃

(
k̂ + ξ1 p̂

)
iγ5S̃

(
k̂− ξ2 p̂

)]
,

δµν MV fV = gren
8Nc

9

∫ dk
(2π)4 VV(k)Tr

[
γµS̃

(
k̂ + ξ1 p̂

)
iγνS̃

(
k̂− ξ2 p̂

)]
, (36)

where gren = g/
√

αλ̇(MJ) is the renormalized strong charge and vertices VJ(k) are defined in
Equation (16).

The parameters Λ, MJ , m1, m2 and α̂s have been already fixed by considering the glueball and meson
spectra, so these values in Equation (35) will be used to solve Equation (36) for fP and fV .

In doing so we note a ‘sawtooth’-type dependence of f J on meson masses (see Figure 3) that requires
an additional parameterization to model more adequately this unsmooth behavior.
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Figure 3. Experimental data on leptonic decay constants plotted versus physical masses of mesons.

For the meson mass Equation (27), the parameter a in the basis function U(x, a) served as a variational
parameter to maximize the meson self-energy function λ(M, m1, m2).

In contrast to this, for Equations (36) we introduce:

U(x, RM) =
R2

M
πΛ2 exp

{
−R2

Mx2/2
}

, RM > 0 , (37)

where RM characterizes the ‘size’ of each meson M in units of mass.
Then, we define the meson ‘sizes’ RM by solving Equation (36) with Equation (37) and fixed model

parameters Equation (35).
Note, the ‘size’ parameters RM show the expected general pattern: the ‘geometrical size’ of a meson,

which is proportional to 1/RM, shrinks when the meson mass increases.
The obtained values of meson ‘sizes’ and the best fit values estimated for the leptonic decay constants

are represented in Table 2.

Table 2. Meson ‘size’ parameters RM (in units of GeV) and leptonic decay constants fP and fV (in units of
MeV) compared to experimental data in [1,55–57].

0−+ RM fP Data Ref. 1−− RM fV Data Ref.

ρ 0.33 221 221 ± 1 [1]
K∗ 0.38 217 217 ± 7 [1]

D 0.93 207 206.7 ± 8.9 [1] Φ 0.42 227 227 ± 2 [1]
Ds 1.08 257 257.5 ± 6.1 [1] D∗ 0.78 245 245 ± 20 [57]
ηc 1.83 238 238 ± 8 [56] D∗s 0.90 271 272 ± 26 [57]
B 1.73 193 192.8 ± 9.9 [55] J/Ψ 2.40 416 415 ± 7 [1]
Bs 2.18 239 238.8 ± 9.5 [55] B∗ 3.34 196 196 ± 44 [57]
Bc 3.34 488 489 ± 5 [56] B∗s 0.92 228 229 ± 46 [57]
ηb 3.80 800 801 ± 9 [56] Υ 2.80 715 715 ± 5 [1]

7. Conclusions

In conclusion, we demonstrate that many properties of the low-energy phenomena such as strong
running coupling, hadronization processes, mass generation for quark-antiquark and di-gluon bound
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states may be explained reasonably within a QCD-inspired model with infrared-confined propagators. We
derived a meson mass equation and by exploiting it revealed a specific new behavior of the strong coupling
α̂s(M) in dependence of mass scale. An infrared freezing point α̂s(0) = 1.03198 at origin M = 0 has been
found and it did not depend on the particular choice of the confinement scale Λ > 0. A new estimate
of the lowest (scalar) glueball mass has been performed and it was found at ∼ 1739 MeV. The scalar
glueball ‘size’ has also been calculated: rG ∼ 0.51 fm. A nontrivial value of the gluon condensate has
also been obtained. We have estimated the spectrum of conventional mesons by introducing a minimal
set of parameters: four masses of constituent quarks {u = d, s, c, b} and Λ. The obtained values fit the
latest experimental data with relative errors less than 1.8 percent. Accurate estimates of the leptonic decay
constants of pseudoscalar and vector mesons have also been performed.

In the present paper, we considered neither quark-antiquark potential which may occur consistent
with confinement, nor the role of the chiral condensate in the model, these questions deserve
separate studies.

Note, the suggested model in its simple form is far from real QCD. However, our guess about the
structure of the quark-gluon interaction in the confinement region, implemented by means of confined
propagators and nonlocal vertices has been probed and the obtained numerical results were in reasonable
agreement with experimental data in different sectors of low-energy particle physics. Since the model is
probed and the parameters are fixed, the consideration may be extended to actual problems in hadron
physics, such as spectra of other mesons (scalar, iso-scalar), higher glueball states, exotic states (qq̄ + gg
admixtures, tetraquark, X(3872) and Z(4430), ...), baryon decays (Λb → Λ∗ + J/Ψ) etc.
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